Z-Type Heterojunction MnO2@g-C3N4 Photocatalyst-Activated Peroxymonosulfate for the Removal of Tetracycline Hydrochloride in Water
Abstract
:1. Introduction
2. Experimental Section
2.1. Materials
2.2. Photocatalyst Sample Preparation
2.2.1. Preparation of g-C3N4
2.2.2. Preparation of MnO2
2.2.3. Preparation of MnO2@g-C3N4
2.3. Photocatalyst Characterization
2.4. Photocatalytic Degradation of TC by Mn-CN
3. Results and Discussion
3.1. Properties of the Material
3.2. Photocatalytic Efficiency of the Samples toward TC Degradation
3.3. The Effect of Catalyst Dosage
3.4. The Effect of initial TC Concentration
3.5. The Effect of PMS Dosage on TC Degradation
3.6. The Effect of Initial Solution pH
3.7. Stability of Photocatalytic Materials
3.8. Visible Light Photocatalytic Degradation Mechanism
3.9. TC Degradation Toxicity Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, H.B.; Hu, C.; Liu, L.Z.; Xing, X.C. Interaction of ciprofloxacin chlorination products with bacteria in drinking water distribution systems. J. Hazard. Mater. 2017, 339, 174–181. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.P.; Yang, G.P.; Wang, D.; Lu, C.Y.; Guan, W.S.; Li, Y.L.; Deng, J.; Crittenden, J. Fabrication of the flower-flake-like CuBi2O4/Bi2WO6 heterostructure as efficient visible-light driven photocatalysts: Performance, kinetics and mechanism insight. Appl. Surf. Sci. 2019, 495, 143521. [Google Scholar] [CrossRef]
- Li, J.N.; Cheng, W.X.; Xu, L.K.; Jiao, Y.N.; Baig, S.A.; Chen, H. Occurrence and removal of antibiotics and the corresponding resistance genes in wastewater treatment plants: Effluents’ influence to downstream water environment. Environ. Sci. Pollut. Res. 2016, 23, 6826–6835. [Google Scholar] [CrossRef] [PubMed]
- Moradi, S.; Sobhgol, S.A.; Hayati, F.; Isari, A.A.; Kakavandi, B.; Bashardoust, P.; Anvaripour, B. Performance and reaction mechanism of MgO/ZnO/Graphene ternary nanocomposite in coupling with LED and ultrasound waves for the degradation of sulfamethoxazole and pharmaceutical wastewater. Sep. Purif. Technol. 2020, 251, 117373. [Google Scholar] [CrossRef]
- Mirzaei, A.; Yerushalmi, L.; Chen, Z.; Haghighat, F. Photocatalytic degradation of sulfamethoxazole by hierarchical magnetic ZnO@g-C3N4: RSM optimization, kinetic study, reaction pathway and toxicity evaluation. J. Hazard. Mater. 2018, 359, 516–526. [Google Scholar] [CrossRef] [PubMed]
- Yang, G.R.; Gao, Q.Z.; Yang, S.Y.; Yin, S.H.; Cai, X.; Yu, X.Y.; Zhang, S.S.; Fang, Y.P. Strong adsorption of tetracycline hydrochloride on magnetic carbon-coated cobalt oxide nanoparticles. Chemosphere 2020, 239, 124831. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Jia, S.Y.; Zhuo, N.; Yang, W.B.; Wang, Y.P. Flocculation of copper(II) and tetracycline from water using a novel pH- and temperature-responsive flocculants. Chemosphere 2015, 141, 112–119. [Google Scholar] [CrossRef]
- Meng, X.; Liu, Z.M.; Deng, C.; Zhu, M.F.; Wang, D.Y.; Li, K.; Deng, Y.; Jiang, M.M. Microporous nano-MgO/diatomite ceramic membrane with high positive surface charge for tetracycline removal. J. Hazard. Mater. 2016, 320, 495–503. [Google Scholar] [CrossRef]
- Shao, S.C.; Wu, X.W. Microbial degradation of tetracycline in the aquatic environment: A review. Crit. Rev. Biotechnol. 2020, 40, 1010–1018. [Google Scholar] [CrossRef]
- Zhang, X.L.; Chen, J.X.; Li, J. The removal of microplastics in the wastewater treatment process and their potential impact on anaerobic digestion due to pollutants association. Chemosphere 2020, 251, 126360. [Google Scholar] [CrossRef]
- Khan, A.; Zhang, K.K.; Taraqqi-A-Kamal, A.; Wang, X.G.; Chen, Y.; Zhang, Y.R. Degradation of antibiotics in aqueous media using manganese nanocatalyst-activated peroxymonosulfate. J. Colloid Interface Sci. 2021, 599, 805–818. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, T.B.; Huang, C.P.; Doong, R.A.; Wang, M.H.; Chen, C.W.; Dong, C.D. Manipulating the morphology of 3D flower-like CoMn2O4 bimetallic catalyst for enhancing the activation of peroxymonosulfate toward the degradation of selected persistent pharmaceuticals in water. Chem. Eng. J. 2022, 436, 135244. [Google Scholar] [CrossRef]
- Gao, Y.; Wang, Q.; Ji, G.Z.; Li, A.M. Degradation of antibiotic pollutants by persulfate activated with various carbon materials. Chem. Eng. J. 2022, 429, 132387. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhou, J.B.; Chen, X.; Wang, L.; Cai, W.Q. Coupling of heterogeneous advanced oxidation processes and photocatalysis in efficient degradation of tetracycline hydrochloride by Fe-based MOFs: Synergistic effect and degradation pathway. Chem. Eng. J. 2019, 369, 745–757. [Google Scholar] [CrossRef]
- Chen, G.Y.; Yu, Y.; Liang, L.; Duan, X.G.; Li, R.; Lu, X.K.; Yan, B.B.; Li, N.; Wang, S.B. Remediation of antibiotic wastewater by coupled photocatalytic and persulfate oxidation system: A critical review. J. Hazard. Mater. 2021, 408, 124461. [Google Scholar] [CrossRef]
- Adil, S.; Maryam, B.; Kim, E.J.; Dulova, N. Individual and simultaneous degradation of sulfamethoxazole and trimethoprim by ozone, ozone/hydrogen peroxide and ozone/persulfate processes: A comparative study. Environ. Res. 2020, 189, 109889. [Google Scholar] [CrossRef]
- Ji, Y.F.; Dong, C.X.; Kong, D.Y.; Lu, J.H.; Zhou, Q.S. Heat-activated persulfate oxidation of atrazine: Implications for remediation of groundwater contaminated by herbicides. Chem. Eng. J. 2015, 263, 45–54. [Google Scholar] [CrossRef]
- Li, L.; Yuan, X.P.; Zhou, Z.P.; Tang, R.D.; Deng, Y.C.; Huang, Y.; Xiong, S.; Su, L.; Zhao, J.; Gong, D.X. Research progress of photocatalytic activated persulfate removal of environmental organic pollutants by metal and nonmetal based photocatalysts. J. Clean. Prod. 2022, 372, 133420. [Google Scholar] [CrossRef]
- Liu, B.C.; Qiao, M.; Wang, Y.B.; Wang, L.J.; Gong, Y.; Guo, T.; Zhao, X. Persulfate enhanced photocatalytic degradation of bisphenol A by g-C3N4 nanosheets under visible light irradiation. Chemosphere 2017, 189, 115–122. [Google Scholar] [CrossRef]
- Guan, R.P.; Yuan, X.Z.; Wu, Z.B.; Jiang, L.B.; Zhang, J.; Li, Y.F.; Zeng, G.M.; Mo, D. Efficient degradation of tetracycline by heterogeneous cobalt oxide/cerium oxide composites mediated with persulfate. Sep. Purif. Technol. 2019, 212, 223–232. [Google Scholar] [CrossRef]
- Jia, J.; Zhang, Q.Q.; Li, K.K.; Zhang, Y.T.; Liu, E.Z.; Li, X. Recent advances on g-C3N4-based Z-scheme photocatalysts: Structural design and photocatalytic applications. Int. J. Hydrogen Energy 2022, 48, 196–231. [Google Scholar] [CrossRef]
- Jiang, L.B.; Yuan, X.Z.; Zeng, G.M.; Liang, J.; Chen, X.H.; Yu, H.B.; Wang, H.; Wu, Z.B.; Zhang, J.; Xiong, T. In-situ synthesis of direct solid-state dual Z-scheme WO3/g-C3N4/Bi2O3 photocatalyst for the degradation of refractory pollutant. Appl. Catal. B Environ. 2018, 227, 376–385. [Google Scholar] [CrossRef]
- Song, Y.L.; Qi, J.Y.; Tian, J.Y.; Gao, S.S.; Cui, F.Y. Construction of Ag/g-C3N4 photocatalysts with visible-light photocatalytic activity for sulfamethoxazole degradation. Chem. Eng. J. 2018, 341, 547–555. [Google Scholar] [CrossRef]
- Guo, F.; Li, M.Y.; Ren, H.J.; Huang, X.L.; Shu, K.K.; Shi, W.L.; Lu, C.Y. Facile bottom-up preparation of Cl-doped porous g-C3N4 nanosheets for enhanced photocatalytic degradation of tetracycline under visible light. Sep. Purif. Technol. 2019, 228, 115770. [Google Scholar] [CrossRef]
- Gao, X.X.; Yang, B.Z.; Yao, W.Q.; Wang, Y.J.; Zong, R.L.; Wang, J.; Li, X.C.; Jin, W.J.; Tao, D.P. Enhanced photocatalytic activity of ZnO/g-C3N4 composites by regulating stacked thickness of g-C3N4 nanosheets. Environ. Pollut. 2020, 257, 113577. [Google Scholar] [CrossRef]
- Wang, J.J.; Tang, L.; Zeng, G.M.; Deng, Y.C.; Liu, Y.N.; Wang, L.G.; Zhou, Y.Y.; Guo, Z.; Wang, J.J.; Zhang, C. Atomic scale g-C3N4/Bi2WO6 2D/2D heterojunction with enhanced photocatalytic degradation of ibuprofen under visible light irradiation. Appl. Catal. B Environ. 2017, 209, 285–294. [Google Scholar] [CrossRef]
- Xue, S.Y.; Wu, C.Z.; Pu, S.Y.; Hou, Y.Q.; Tong, T.; Yang, G.; Qin, Z.J.; Wang, Z.M.; Bao, J.M. Direct Z-Scheme charge transfer in heterostructured MoO3/g-C3N4 photocatalysts and the generation of active radicals in photocatalytic dye degradations. Environ. Pollut. 2019, 250, 338–345. [Google Scholar] [CrossRef]
- Yu, H.B.; Wang, D.Y.; Zhao, B.; Lu, Y.; Wang, X.H.; Zhu, S.Y.; Qin, W.C.; Huo, M.X. Enhanced photocatalytic degradation of tetracycline under visible light by using a ternary photocatalyst of Ag3PO4/AgBr/g-C3N4 with dual Z-scheme heterojunction. Sep. Purif. Technol. 2020, 237, 116365. [Google Scholar] [CrossRef]
- Eslami, A.; Hashemi, M.; Ghanbari, F. Degradation of 4-chlorophenol using catalyzed peroxymonosulfate with nano-MnO2/UV irradiation: Toxicity assessment and evaluation for industrial wastewater treatment. J. Clean. Prod. 2018, 195, 1389–1397. [Google Scholar] [CrossRef]
- Jawad, A.; Zhan, K.; Wang, H.B.; Shahzad, A.; Zeng, Z.H.; Wang, J.; Zhou, X.Q.; Ullah, H.; Chen, Z.L.; Chen, Z.Q. Tuning of Persulfate Activation from a Free Radical to a Nonradical Pathway through the Incorporation of Non-Redox Magnesium Oxide. Environ. Sci. Technol. 2020, 54, 2476–2488. [Google Scholar] [CrossRef]
- Li, J.N.; Li, X.Y.; Wang, X.; Zeng, L.B.; Chen, X.; Mu, J.C.; Chen, G.H. Multiple regulations of Mn-based oxides in boosting peroxymonosulfate activation for norfloxacin removal. Appl. Catal. A Gen. 2019, 584, 117170. [Google Scholar] [CrossRef]
- Zhang, Q.; Peng, Y.; Deng, F.; Wang, M.; Chen, D.Z. Porous Z-scheme MnO2/Mn-modified alkalinized g-C3N4 heterojunction with excellent Fenton-like photocatalytic activity for efficient degradation of pharmaceutical pollutants. Sep. Purif. Technol. 2020, 246, 116890. [Google Scholar] [CrossRef]
- Nguyen, M.D.; Nguyen, T.B.; Tran, L.H.; Nguyen, T.G.; Fatimah, I.; Kuncoro, E.P.; Doong, R.A. Z-scheme S, B co-doped g-C3N4 nanotube@MnO2 heterojunction with visible-light-responsive for enhanced photodegradation of diclofenac by peroxymonosulfate activation. Chem. Eng. J. 2023, 452, 139249. [Google Scholar] [CrossRef]
- Dong, F.; Zhao, Z.W.; Xiong, T.; Ni, Z.L.; Zhang, W.D.; Sun, Y.J.; Ho, W.K. In Situ Construction of g-C3N4/g-C3N4 Metal-Free Heterojunction for Enhanced Visible-Light Photocatalysis. ACS Appl. Mater. Interfaces 2013, 145, 11392–11401. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.Z.; Yu, J.Y.; Peng, W.D.; Tian, J.; Yang, C. Novel multilayer TiO2 heterojunction decorated by low g-C3N4 content and its enhanced photocatalytic activity under UV, visible and solar light irradiation. Sci. Rep. 2019, 9, 5932. [Google Scholar] [CrossRef]
- Du, X.R.; Zou, G.J.; Wang, Z.H.; Wang, X.L. A scalable chemical route to soluble acidified graphitic carbon nitride: An ideal precursor for isolated ultrathin g-C3N4 nanosheets. Nanoscale 2015, 7, 8701–8706. [Google Scholar] [CrossRef]
- Panimalar, S.; Uthrakumar, R.; Selvi, E.T.; Gomathy, P.; Inmozhi, C.; Kaviyarasu, K.; Kennedy, J. Studies of MnO2/g-C3N4 hetrostructure efficient of visible light photocatalyst for pollutants degradation by sol-gel technique. Surf. Interfaces 2020, 20, 100512. [Google Scholar] [CrossRef]
- Bai, X.J.; Yan, S.C.; Wang, J.J.; Li, W.; Jiang, W.J.; Wu, S.L.; Sun, C.P.; Zhu, Y.F. A simple and efficient strategy for the synthesis of a chemically tailored g-C3N4 material. J. Mater. Chem. A 2014, 2, 17521–17529. [Google Scholar] [CrossRef]
- Liu, X.M.; Liu, Y.; Zhang, W.K.; Zhong, Q.Y.; Ma, X.Y. In situ self-assembly of 3D hierarchical 2D/2D CdS/g-C3N4 hereojunction with excellent photocatalytic performance. Mat. Sci. Semicon. Proc. 2020, 105, 104734. [Google Scholar] [CrossRef]
- Rivera-Lugo, Y.Y.; Félix-Navarro, R.M.; Trujillo-Navarrete, B.; Reynoso-Soto, E.A.; Silva-Carrillo, C.; Cruz-Gutiérrez, C.A.; Quiroga-González, E.; Calva-Yáez, J.C. Flower-like δ-MnO2 as cathode material of Li-ion batteries of high charge-discharge rates. Fuel 2021, 287, 119463. [Google Scholar] [CrossRef]
- Shen, G.D.; Pu, Y.P.; Cui, Y.F.; Jing, P.P. Easy synthesis of TiO2/g-C3N4 Heterostructure Photocatalyst with Large Surface Area and Excellent Photocatalytic Activity. Ceram. Int. 2017, 43, S664–S670. [Google Scholar] [CrossRef]
- Dai, X.; Xie, M.L.; Meng, S.G.; Fu, X.L.; Chen, S.F. Coupled systems for selective oxidation of aromatic alcohols to aldehydes and reduction of nitrobenzene into aniline using CdS/g-C3N4 photocatalyst under visible light irradiation. Appl. Catal. B Environ. 2014, 158, 382–390. [Google Scholar] [CrossRef]
- Yu, J.G.; Wang, S.H.; Cheng, B.; Zhang, L.; Huang, F. Noble metal-free Ni(OH)2-g-C3N4 composite photocatalyst with enhanced visible-light photocatalytic H2-production activity. Catal. Sci. Technol. 2013, 3, 1782–1789. [Google Scholar] [CrossRef]
- Zhang, Q.K.; Han, F.X.; Yan, Y.H.; Dai, Q.L.; Proctor, G.; Cheah, P.; Avijit, P.; Chandra, R.P.; Kang, N.; Hu, M.G.; et al. Preparation and properties of visible light responsive RGO/In2 TiO5 nanobelts for photocatalytic degradation of organic pollutants. Appl. Surf. Sci. 2019, 485, 547–553. [Google Scholar] [CrossRef]
- Nanda, B.; Pradhan, A.C.; Parida, K.M. A comparative study on adsorption and photocatalytic dye degradation under visible light irradiation by mesoporous MnO2 modified MCM-41 nanocomposite. Micropor. Mesopor. Mat. 2016, 226, 229–242. [Google Scholar] [CrossRef]
- Zhang, Y.G.; Wu, M.Y.; Kwok, Y.H.; Wang, Y.F.; Zhao, W.; Zhao, X.L.; Huang, H.B.; Leung, D.Y.C. In-situ synthesis of heterojunction TiO2/MnO2 nanostructure with excellent performance in vacuum ultraviolet photocatalytic oxidation of toluene. Appl. Catal. B Environ. 2019, 259, 118034. [Google Scholar] [CrossRef]
- Zhu, B.C.; Xia, P.F.; Ho, W.K.; Yu, J.G. Isoelectric point and adsorption activity of porous g-C3N4. Appl. Surf. Sci. 2015, 344, 188–195. [Google Scholar] [CrossRef]
- Wu, W.T.; Zhang, J.Q.; Fan, W.Y.; Li, Z.T.; Wang, L.Z.; Li, X.M.; Wang, Y.; Wang, R.Q.; Zheng, J.T.; Wu, M.B.; et al. Remedying Defects in Carbon Nitride to Improve both Photooxidation and H2 Generation Efficiencies. ACS Catal. 2016, 6, 3365–3371. [Google Scholar] [CrossRef]
- Lin, L.H.; Ou, H.H.; Zhang, Y.F.; Wang, X.C. Tri-s-triazine-Based Crystalline Graphitic Carbon Nitrides for Highly Efficient Hydrogen Evolution Photocatalysis. ACS Catal. 2016, 6, 3921–3931. [Google Scholar] [CrossRef]
- Qiu, P.X.; Chen, H.; Xu, C.M.; Zhou, N.; Jiang, F.; Wang, X.; Fu, Y.S. Fabrication of an exfoliated graphitic carbon nitride as a highly active visible light photocatalyst. J. Mater. Chem. A 2015, 3, 24237–24244. [Google Scholar] [CrossRef]
- Zhao, J.H.; Nan, J.; Zhao, Z.W.; Li, N.; Liu, J.; Cui, F.Y. Energy-efficient fabrication of a novel multivalence Mn3O4-MnO2 heterojunction for dye degradation under visible light irradiation. Appl. Catal. B Environ. 2017, 202, 509–517. [Google Scholar] [CrossRef]
- Li, B.X.; Shao, X.K.; Liu, T.X.; Shao, L.Z.; Zhang, B.S. Construction of metal/WO2.72/rGO ternary nanocomposites with optimized adsorption, photocatalytic and photoelectrochemical properties. Appl. Catal. B Environ. 2016, 198, 325–333. [Google Scholar] [CrossRef]
- Wang, Y.W.; Xiang, L.R.; Li, Z.; Han, J.G.; Guo, H. Sulfite activation by water film dielectric barrier discharge plasma for ibuprofen degradation: Efficiency, comparison of persulfate, mechanism, active substances dominant to pathway, and toxicity evaluation. Sep. Purif. Technol. 2024, 330, 125531. [Google Scholar] [CrossRef]
- Forouzesh, M.; Ebadi, A.; Aghaeinejad-Meybodi, A. Degradation of metronidazole antibiotic in aqueous medium using activated carbon as a persulfate activator. Sep. Purif. Technol. 2019, 210, 145–151. [Google Scholar] [CrossRef]
- Huang, D.L.; Li, J.; Zeng, G.M.; Xue, W.J.; Chen, S.; Li, Z.H.; Deng, R.; Yang, Y.; Cheng, M. Facile construction of hierarchical flower-like Z-scheme AgBr/Bi2WO6 photocatalysts for effective removal of tetracycline: Degradation pathways and mechanism. Chem. Eng. J. 2019, 375, 121991. [Google Scholar] [CrossRef]
- Ding, C.M.; Zhu, Q.R.; Yang, B.; Petropoulos, E.; Xue, L.H.; Feng, Y.F.; He, S.Y.; Yang, L.Z. Efficient photocatalysis of tetracycline hydrochloride (TC-HCl) from pharmaceutical wastewater using AgCl/ZnO/g-C3N4 composite under visible light: Process and mechanisms. J. Environ. Sci. 2023, 126, 249–262. [Google Scholar] [CrossRef] [PubMed]
- Zhao, W.; Li, Y.J.; Zhao, P.S.; Zhang, L.L.; Dai, B.L.; Xu, J.M.; Huang, H.B.; He, Y.L.; Dennis, Y.C. Novel Z-scheme Ag-C3N4/SnS2 plasmonic heterojunction photocatalyst for degradation of tetracycline and H2 production. Chem. Eng. J. 2021, 405, 126555. [Google Scholar] [CrossRef]
- Zhu, X.; Wang, Y.T.; Guo, Y.; Wan, J.Z.; Yan, Y.; Zhou, Y.X.; Sun, C. Environmental-friendly synthesis of heterojunction photocatalysts g-C3N4/BiPO4 with enhanced photocatalytic performance. Appl. Surf. Sci. 2021, 544, 148872. [Google Scholar] [CrossRef]
- Jing, H.C.; Ou, R.P.; Yu, H.B.; Zhao, Y.H.; Lu, Y.; Huo, M.X.; Huo, H.L.; Wang, X.Z. Engineering of g-C3N4 nanoparticles/WO3 hollow microspheres photocatalyst with Z-scheme heterostructure for boosting tetracycline hydrochloride degradation. Sep. Purif. Technol. 2021, 255, 117646. [Google Scholar] [CrossRef]
- Zhao, W.; Li, J.; She, T.T.; Ma, S.S.; Cheng, Z.P.; Wang, G.X.; Zhao, P.S.; Wei, W.; Xia, D.H.; Dennis, Y.C. Study on the Photocatalysis Mechanism of the Z-Scheme Cobalt Oxide Nanocubes/Carbon Nitride Nanosheets Heterojunction Photocatalyst with High Photocatalytic Performances. J. Hazard. Mater. 2021, 402, 123839. [Google Scholar] [CrossRef]
- Du, C.Y.; Zhang, Z.; Tan, S.Y.; Yu, G.L.; Chen, H.; Zhou, L.; Yu, L.; Su, Y.H.; Zhang, Y.; Deng, F.F.; et al. Construction of Z-scheme g-C3N4 / MnO2 /GO ternary photocatalyst with enhanced photodegradation ability of tetracycline hydrochloride under visible light radiation. Environ. Res. 2021, 200, 111427. [Google Scholar] [CrossRef] [PubMed]
- Xue, W.J.; Huang, D.L.; Li, J.; Zeng, G.M.; Deng, R.; Yang, Y.; Chen, S.; Li, Z.H.; Gong, X.M.; Li, B. Assembly of AgI nanoparticles and ultrathin g-C3N4 nanosheets codecorated Bi2WO6 direct dual Z-scheme photocatalyst: An efficient, sustainable and heterogeneous catalyst with enhanced photocatalytic performance. Chem. Eng. J. 2019, 373, 1144–1157. [Google Scholar] [CrossRef]
- Nguyen, M.D.; Nguyen, T.B.; Thamilselvan, A.; Nguyen, T.G.; Kuncoro, E.P.; Doong, R.A. Fabrication of visible-light-driven tubular F, P-codoped graphitic carbon nitride for enhanced photocatalytic degradation of tetracycline. J. Environ. Chem. Eng. 2021, 10, 106905. [Google Scholar] [CrossRef]
- Su, Y.Y.; Yang, Y.X.; Jiang, W.X.; Han, J.G.; Guo, H. A novel strategy of peracetic acid activation by dielectric barrier discharge plasma for bisphenol a degradation: Feasibility, mechanism and active species dominant to degradation pathway. Chem. Eng. J. 2023, 476, 146469. [Google Scholar] [CrossRef]
- Jiang, W.X.; Han, J.G.; Guo, H. Highlight the plasma-generated reactive oxygen species (ROSs) dominant to degradation of emerging contaminants based on experiment and density functional theory. Sep. Purif. Technol. 2024, 330, 125309. [Google Scholar] [CrossRef]
- Kaviyarasu, K.; Magdalane, C.M.; Manikandan, E.; Jayachandran, M.; Maaza, M. Well-Aligned Graphene Oxide Nanosheets Decorated with Zinc Oxide Nanocrystals for High Performance Photocatalytic Application. Int. J. Nanosci. 2015, 14, 8064. [Google Scholar] [CrossRef]
- Khan, M.H.; Bae, H.K.; Jung, J.Y. Tetracycline degradation by ozonation in the aqueous phase: Proposed degradation intermediates and pathway. J. Hazard. Mater. 2010, 181, 659–665. [Google Scholar] [CrossRef]
- Song, C.; Guo, B.B.; Sun, X.F.; Wang, S.G.; Li, Y.T. Enrichment and degradation of tetracycline using three-dimensional graphene/MnO2 composites. Chem. Eng. J. 2019, 358, 1139–1146. [Google Scholar] [CrossRef]
- Cheng, J.; Xie, Y.R.; Wei, Y.; Xie, D.R.; Sun, W.B.; Zhang, Y.; Li, M.H.; An, J.T. Degradation of tetracycline hydrochloride in aqueous via combined dielectric barrier discharge plasma and Fe–Mn doped AC. Chemosphere 2022, 286, 131841. [Google Scholar] [CrossRef]
- Ren, J.Y.; Song, H.Z.; Guo, H.; Yao, Z.Z.; Wei, Q.; Jiao, K.Q.; Li, Z.Y.; Zhong, C.C.; Wang, J.; Zhen, Y.Z. Removal of chloramphenicol in water by an improved water falling film dielectric barrier discharge reactor: Performance, mechanism, degradation pathway and toxicity evaluation. J. Clean. Prod. 2021, 325, 129332. [Google Scholar] [CrossRef]
Photocatalyst (g L−1) | TC Concentration (mg L−1) | Light Source Type | Volumes Tested | Time (min) | Removal (%) | References |
---|---|---|---|---|---|---|
AgCl/ZnO/g-C3N4 (1.0) | 20 mg L−1 | 400–700 nm | 40 ml | 80 min | 92.7% | [56] |
Ag-C3N4/SnS2 (0.4) | 15 mg L−1 | 500 W Xe lamp | 50 ml | 150 min | 94.9% | [57] |
g-C3N4/BiPO4 (1.0) | 20 mg L−1 | 1000 W Xe lamp | 50 ml | 180 min | 97% | [58] |
C3N4/WO3 (0.4) | 10 mg L−1 | 500 W Xe lamp (320–780nm) | 100 ml | 180 min | 79.8% | [59] |
Co3O4/g-C3N4 (0.4) | 15 mg L−1 | 500 W Xe lamp (>420 nm) | 100 ml | 150 min | 92.6% | [60] |
g-C3N4/MnO2 /GO (0.5) | 10 mg L−1 | 300 W Xe lamp (420 nm) | 100 ml | 90 min | 91.4% | [61] |
Ag3PO4/AgBr/g-C3N4(0.5) | 40 mg L−1 | 300 W Xe lamp (>420 nm) | 100 ml | 25 min | 80.2% | [28] |
g-C3N4/Bi2WO6/AgI (0.6) | 20 mg L−1 | >420 nm | 50 ml | 60 min | 91.1% | [62] |
Mn1-CN1 (0.6) | 20 mg L−1 | 300W xenon lamp | 50 ml | 180 min | 96.97% | This study |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, G.; Li, X.; Lu, P.; Guo, H.; Wang, Z.; Zhang, Q.; Li, Y.; Sun, W.; An, J.; Zhang, Z. Z-Type Heterojunction MnO2@g-C3N4 Photocatalyst-Activated Peroxymonosulfate for the Removal of Tetracycline Hydrochloride in Water. Toxics 2024, 12, 70. https://doi.org/10.3390/toxics12010070
Lu G, Li X, Lu P, Guo H, Wang Z, Zhang Q, Li Y, Sun W, An J, Zhang Z. Z-Type Heterojunction MnO2@g-C3N4 Photocatalyst-Activated Peroxymonosulfate for the Removal of Tetracycline Hydrochloride in Water. Toxics. 2024; 12(1):70. https://doi.org/10.3390/toxics12010070
Chicago/Turabian StyleLu, Guanglu, Xinjuan Li, Peng Lu, He Guo, Zimo Wang, Qian Zhang, Yuchao Li, Wenbo Sun, Jiutao An, and Zijian Zhang. 2024. "Z-Type Heterojunction MnO2@g-C3N4 Photocatalyst-Activated Peroxymonosulfate for the Removal of Tetracycline Hydrochloride in Water" Toxics 12, no. 1: 70. https://doi.org/10.3390/toxics12010070
APA StyleLu, G., Li, X., Lu, P., Guo, H., Wang, Z., Zhang, Q., Li, Y., Sun, W., An, J., & Zhang, Z. (2024). Z-Type Heterojunction MnO2@g-C3N4 Photocatalyst-Activated Peroxymonosulfate for the Removal of Tetracycline Hydrochloride in Water. Toxics, 12(1), 70. https://doi.org/10.3390/toxics12010070