Biogenic Punica granatum Flower Extract Assisted ZnFe2O4 and ZnFe2O4-Cu Composites for Excellent Photocatalytic Degradation of RhB Dye
Abstract
:1. Introduction
2. Experimental
2.1. Materials
2.2. Preparation of Fe2O3, ZnO, ZnFe2O4 and ZnFe2O4-Cu
2.3. Characterization
2.4. Photocatalytic Activity of ZnFe2O4-Cu
3. Results and Discussions
3.1. X-ray Diffraction Analysis
3.2. FT-IR Analysis
3.3. UV-Vis DRS Study
3.4. X-ray Photoelectron Spectroscopy (XPS) Analysis
3.5. SEM and EDS Analysis
3.6. TEM Analysis
3.7. Photoluminescence (PL) Study
3.8. Nitrogen Gas Physisorption Studies
3.9. ZnFe2O4-Cu Nanocomposite as a Photocatalyst for RhB Dye Degradation
3.9.1. Effect of Photocatalyst Dosage
3.9.2. Effect of RhB Dye Concentration
3.9.3. Role of pH on RhB Photodegradation
3.9.4. Recyclability Tests
3.9.5. Effect of Addition of Scavengers
3.9.6. Mechanism of Photodegradation of RhB by ZnFe2O4-Cu Nanomaterials
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- DalCorso, G.; Fasani, E.; Manara, A.; Visioli, G.; Furini, A. Heavy Metal Pollutions: State of the Art and Innovation in Phytoremediation. Int. J. Mol. Sci. 2019, 20, 3412. [Google Scholar] [CrossRef]
- Wilkinson, J.L.; Boxall, A.B.A.; Kolpin, D.W.; Leung, K.M.Y.; Lai, R.W.S.; Wong, D.; Ntchantcho, R.; Pizarro, J.; Mart, J.; Echeverr, S.; et al. Pharmaceutical Pollution of the World’s Rivers. Proc. Natl. Acad. Sci. USA 2022, 119, e2113947119. [Google Scholar] [CrossRef] [PubMed]
- Rafiq, A.; Ikram, M.; Ali, S.; Niaz, F.; Khan, M.; Khan, Q.; Maqbool, M. Photocatalytic Degradation of Dyes Using Semiconductor Photocatalysts to Clean Industrial Water Pollution. J. Ind. Eng. Chem. 2021, 97, 111–128. [Google Scholar] [CrossRef]
- Neaţu, Ş.; Maciá-Agulló, J.A.; Garcia, H. Solar Light Photocatalytic CO2 Reduction: General Considerations and Selected Bench-Mark Photocatalysts. Int. J. Mol. Sci. 2014, 15, 5246–5262. [Google Scholar] [CrossRef]
- Gola, D.; Kriti, A.; Bhatt, N.; Bajpai, M.; Singh, A.; Arya, A.; Chauhan, N.; Srivastava, S.K.; Tyagi, P.K.; Agrawal, Y. Silver Nanoparticles for Enhanced Dye Degradation. Curr. Res. Green Sustain. Chem. 2021, 4, 100132. [Google Scholar] [CrossRef]
- Mittal, S.; Roy, A. Fungus and Plant-Mediated Synthesis of Metallic Nanoparticles and Their Application in degradation of dyes. In Photocatalytic Degradation of Dyes; Shah, M., Dave, S., Das, J., Eds.; Elsevier: Amsterdam, The Netherlands, 2021; pp. 287–308. [Google Scholar]
- Dave, S.; Khan, A.M.; Purohit, S.D.; Suthar, D.L. Application of Green Synthesized Metal Nanoparticles in the Photocatalytic Degradation of Dyes and Its Mathematical Modelling Using the Caputo-Fabrizio Fractional Derivative without the Singular Kernel. J. Math. 2021, 2021, 9948422. [Google Scholar] [CrossRef]
- Mehta, M.; Sharma, M.; Pathania, K.; Jena, P.K.; Bhushan, I. Degradation of Synthetic Dyes Using Nanoparticles: A Mini Review. Environ. Sci. Pollut. Res. 2021, 28, 49434–49446. [Google Scholar] [CrossRef]
- Sharma, G.; Kumar, A.; Sharma, S.; Naushad, M.; Prakash Dwivedi, R.; ALOthman, Z.A.; Mola, G.T. Novel Development of Nanoparticles to Bimetallic Nanoparticles and Their Composites: A Review. J. King Saud Univ. Sci. 2019, 31, 257–269. [Google Scholar] [CrossRef]
- Paszkiewicz, M.; Gołąbiewska, A.; Rajski, Ł.; Kowal, E.; Sajdak, A.; Zaleska-Medynska, A. Synthesis and Characterization of Monometallic (Ag, Cu) and Bimetallic Ag-Cu Particles for Antibacterial and Antifungal Applications. J. Nanomater. 2016, 2016, 6. [Google Scholar] [CrossRef]
- Crawley, J.W.M.; Gow, I.E.; Lawes, N.; Kowalec, I.; Kabalan, L.; Catlow, C.R.A.; Logsdail, A.J.; Taylor, S.H.; Dummer, N.F.; Hutchings, G.J. Heterogeneous Trimetallic Nanoparticles as Catalysts. Chem. Rev. 2022, 122, 6795–6849. [Google Scholar] [CrossRef] [PubMed]
- Moradnia, F.; Taghavi Fardood, S.; Ramazani, A.; Gupta, V.K. Green Synthesis of Recyclable MgFeCrO4 Spinel Nanoparticles for Rapid Photodegradation of Direct Black 122 Dye. J. Photochem. Photobiol. A Chem. 2020, 392, 4–9. [Google Scholar] [CrossRef]
- Nasrollahzadeh, M.; Sajjadi, M.; Iravani, S.; Varma, R.S. Trimetallic Nanoparticles: Greener Synthesis and Their Applications. Nanomaterials 2020, 10, 1784. [Google Scholar] [CrossRef] [PubMed]
- Thi, T.T.H.; Suys, E.J.A.; Lee, J.S.; Nguyen, D.H.; Park, K.D.; Truong, N.P. Lipid-Based Nanoparticles in the Clinic and Clinical Trials: From Cancer Nanomedicine to COVID-19 Vaccines. Vaccines 2021, 9, 359. [Google Scholar] [CrossRef] [PubMed]
- Basavegowda, N.; Baek, K.H. Multimetallic Nanoparticles as Alternative Antimicrobial Agents: Challenges and Perspectives. Molecules 2021, 26, 912. [Google Scholar] [CrossRef]
- Basavegowda, N.; Mishra, K.; Lee, Y.R. Trimetallic FeAgPt Alloy as a Nanocatalyst for the Reduction of 4-Nitroaniline and Decolorization of Rhodamine B: A Comparative Study. J. Alloys Compd. 2017, 701, 456–464. [Google Scholar] [CrossRef]
- Venkatesh, N. Metallic Nanoparticle: A Review. Biomed. J. Sci. Tech. Res. 2018, 4, 3765–3775. [Google Scholar] [CrossRef]
- Ghiuță, I.; Cristea, D.; Munteanu, D. Synthesis Methods of Metallic Nanoparticles-an Overview. Bull. Transilv. Univ. Braşov 2017, 10, 133–140. [Google Scholar]
- Marinescu, L.; Fica, D.; Oprea, O.; Marin, A.; Ficai, A.; Andronescu, E.; Holban, A.-M. Optimized Synthesis Approaches of Metal Nanoparticles with Antimicrobial Applications. J. Nanomater. 2020, 2020, 6651207. [Google Scholar] [CrossRef]
- Ying, S.; Guan, Z.; Ofoegbu, P.C.; Clubb, P.; Rico, C.; He, F.; Hong, J. Green Synthesis of Nanoparticles: Current Developments and Limitations. Environ. Technol. Innov. 2022, 26, 102336. [Google Scholar] [CrossRef]
- Singh, J.; Dutta, T.; Kim, K.H.; Rawat, M.; Samddar, P.; Kumar, P. “Green” Synthesis of Metals and Their Oxide Nanoparticles: Applications for Environmental Remediation. J. Nanobiotechnol. 2018, 16, 84. [Google Scholar] [CrossRef]
- Verma, V.; Al-Dossari, M.; Singh, J.; Rawat, M.; Kordy, M.G.M.; Shaban, M. A Review on Green Synthesis of TiO2 NPs: Synthesis and Applications in Photocatalysis and Antimicrobial. Polymers 2022, 14, 1444. [Google Scholar] [CrossRef]
- Poudel, D.K.; Niraula, P.; Aryal, H.; Budhathoki, B.; Phuyal, S.; Marahatha, R.; Subedi, K. Plant-Mediated Green Synthesis of Ag NPs and Their Possible Applications: A Critical Review. J. Nanotechnol. 2022, 2022, 2779237. [Google Scholar] [CrossRef]
- Vasudevan, M.; Perumal, V.; Karuppanan, S.; Ovinis, M.; Bothi Raja, P.; Gopinath, S.C.B.; Immanuel Edison, T.N.J. A Comprehensive Review on Biopolymer Mediated Nanomaterial Composites and Their Applications in Electrochemical Sensors. Crit. Rev. Anal. Chem. 2022, 1–24. [Google Scholar] [CrossRef] [PubMed]
- Kulkarni, S.R.; Saptale, S.P.; Borse, D.B.; Agarwal, A.D. Green Synthesis of Ag Nanoparticles Using Vitamin C (Ascorbic Acid) in a Batch Process. In Proceedings of the International Conference on Nanoscience, Engineering and Technology (ICONSET 2011), Chennai, India, 28–30 November 2011; pp. 88–90. [Google Scholar]
- Sathishkumar, P.; Gu, F.L.; Zhan, Q.; Palvannan, T.; Mohd Yusoff, A.R. Flavonoids Mediated ‘Green’ Nanomaterials: A Novel Nanomedicine System to Treat Various Diseases—Current Trends and Future Perspective. Mater. Lett. 2018, 210, 26–30. [Google Scholar] [CrossRef]
- Lahiri, D.; Nag, M.; Sheikh, H.I.; Sarkar, T.; Edinur, H.A.; Pati, S.; Ray, R.R. Microbiologically-Synthesized Nanoparticles and Their Role in Silencing the Biofilm Signaling Cascade. Front. Microbiol. 2021, 12, 636588. [Google Scholar] [CrossRef]
- Adeyemi, J.O.; Oriola, A.O.; Onwudiwe, D.C.; Oyedeji, A.O. Plant Extracts Mediated Metal-Based Nanoparticles: Synthesis and Biological Applications. Biomolecules 2022, 12, 627. [Google Scholar] [CrossRef]
- El Shafey, A.M. Green Synthesis of Metal and Metal Oxide Nanoparticles from Plant Leaf Extracts and Their Applications: A Review. Green Process. Synth. 2020, 9, 304–339. [Google Scholar] [CrossRef]
- Zangeneh, H.; Zinatizadeh, A.A.L.; Habibi, M.; Akia, M.; Hasnain Isa, M. Photocatalytic Oxidation of Organic Dyes and Pollutants in Wastewater Using Different Modified Titanium Dioxides: A Comparative Review. J. Ind. Eng. Chem. 2015, 26, 1–36. [Google Scholar] [CrossRef]
- Huang, F.; Yan, A.; Zhao, H. Influences of Doping on Photocatalytic Properties of TiO2 Photocatalyst. In Semiconductor Photocatalysis—Materials, Mechanisms and Applications; IntechOpen: London, UK, 2016; pp. 31–80. [Google Scholar]
- Folawewo, A.D.; Bala, M.D. Nanocomposite Zinc Oxide-Based Photocatalysts: Recent Developments in Their Use for the Treatment of Dye-Polluted Wastewater. Water 2022, 14, 3899. [Google Scholar] [CrossRef]
- Harinee, S.; Muthukumar, K.; James, R.A.; Arulmozhi, M.; Dahms, H.U.; Ashok, M. Bio-Approach ZnO/Ag Nano-Flowers: Enhanced Photocatalytic and Photoexcited Anti-Microbial Activities towards Pathogenic Bacteria. Mater. Today Sustain. 2022, 18, 100133. [Google Scholar] [CrossRef]
- Ong, C.B.; Ng, L.Y.; Mohammad, A.W. A Review of ZnO Nanoparticles as Solar Photocatalysts: Synthesis, Mechanisms and Applications. Renew. Sustain. Energy Rev. 2018, 81, 536–551. [Google Scholar] [CrossRef]
- Abebe, B.; Murthy, H.C.A.; Amare, E. Enhancing the Photocatalytic Efficiency of ZnO: Defects, Heterojunction, and Optimization. Environ. Nanotechnology, Monit. Manag. 2020, 14, 100336. [Google Scholar]
- Mochane, M.J.; Motloung, M.T.; Mokhena, T.C.; Mofokeng, T.G. Morphology and Photocatalytic Activity of Zinc Oxide Reinforced Polymer Composites: A Mini Review. Catalysts 2022, 12, 1439. [Google Scholar] [CrossRef]
- Tadic, M.; Panjan, M.; Damnjanovic, V.; Milosevic, I. Magnetic Properties of Hematite (α-Fe2O3) Nanoparticles Prepared by Hydrothermal Synthesis Method. Appl. Surf. Sci. 2014, 320, 183–187. [Google Scholar] [CrossRef]
- Elshypany, R.; Selim, H.; Zakaria, K.; Moustafa, A.H.; Sadeek, S.A.; Sharaa, S.I.; Raynaud, P.; Nada, A.A. Elaboration of Fe3O4/ZnO Nanocomposite with Highly Performance Photocatalytic Activity for Degradation Methylene Blue under Visible Light Irradiation. Environ. Technol. Innov. 2021, 23, 101710. [Google Scholar] [CrossRef]
- Sharma, S.; Dutta, V.; Raizada, P.; Hosseini-bandegharaei, A. An Overview of Heterojunctioned ZnFe2O4 Photocatalyst for Enhanced Oxidative Water Purification. J. Environ. Chem. Eng. 2021, 9, 105812. [Google Scholar]
- Jeyarani, W.J.; Tenkyong, T.; Bachan, N.; Kumar, D.A.; Shyla, J.M. An Investigation on the Tuning Effect of Glucose-Capping on the Size and Bandgap of CuO Nanoparticles. Adv. Powder Technol. 2016, 27, 338–346. [Google Scholar] [CrossRef]
- Ahmadi, M.; Seyed Dorraji, M.S.; Hajimiri, I.; Rasoulifard, M.H. The Main Role of CuO Loading against Electron-Hole Recombination of SrTiO3: Improvement and Investigation of Photocatalytic Activity, Modeling and Optimization by Response Surface Methodology. J. Photochem. Photobiol. A Chem. 2021, 404, 112886. [Google Scholar] [CrossRef]
- Chopra, H.; Bibi, S.; Islam, F.; Ahmad, S.U.; Olawale, O.A.; Alhumaydhi, F.A.; Marzouki, R.; Baig, A.A.; Emran, T.B. Emerging Trends in the Delivery of Resveratrol by Nanostructures: Applications of Nanotechnology in Life Sciences. J. Nanomater. 2022, 2022, 1–17. [Google Scholar]
- Guo, Y.; Guo, Y.; Tang, D.; Liu, Y.; Wang, X.; Li, P.; Wang, G. Sol-Gel Synthesis of New ZnFe2O4/Na-Bentonite Composites for Simultaneous Oxidation of RhB and Reduction of Cr(VI) under Visible Light Irradiation. J. Alloys Compd. 2019, 781, 1101–1109. [Google Scholar] [CrossRef]
- Wang, W.; Guo, S.; Zhang, D.; Yang, Z. One-Pot Hydrothermal Synthesis of Reduced Graphene Oxide/Zinc Ferrite Nanohybrids and Its Catalytic Activity on the Thermal Decomposition of Ammonium Perchlorate. J. Saudi Chem. Soc. 2019, 23, 133–140. [Google Scholar] [CrossRef]
- Renukadevi, S.; Pricilla Jeyakumari, A. Rational Design of ZnFe2O4/g-C3N4 Heterostructures Composites for High Efficient Visible-Light Photocatalysis for Degradation of Aqueous Organic Pollutants. Inorg. Chem. Commun. 2020, 118, 108047. [Google Scholar] [CrossRef]
- Zhao, H.; Liu, R.; Zhang, Q.; Wang, Q. Effect of Surfactant Amount on the Morphology and Magnetic Properties of Monodisperse ZnFe2O4 Nanoparticles. Mater. Res. Bull. 2016, 75, 172–177. [Google Scholar] [CrossRef]
- Surendra, B.S.; Nagaswarupa, H.P.; Hemashree, M.U.; Khanum, J. Jatropha Extract Mediated Synthesis of ZnFe2O4 Nanopowder: Excellent Performance as an Electrochemical Sensor, UV Photocatalyst, and Antibacterial Activity. Chem. Phys. Lett. 2020, 739, 136980. [Google Scholar] [CrossRef]
- Melgarejo-Sánchez, P.; Núñez-Gómez, D.; Martínez-Nicolás, J.J.; Hernández, F.; Legua, P.; Melgarejo, P. Pomegranate Variety and Pomegranate Plant Part, Relevance from Bioactive Point of View: A Review. Bioresour. Bioprocess. 2021, 8, 1–29. [Google Scholar] [CrossRef]
- Shaygannia, E.; Bahmani, M.; Zamanzad, B.; Rafieian-Kopaei, M. A Review Study on Punica granatum L. J. Evid.-Based Complement. Altern. Med. 2016, 21, 221–227. [Google Scholar] [CrossRef]
- Kurutas, E.B. The Importance of Antioxidants Which Play the Role in Cellular Response against Oxidative/Nitrosative Stress: Current State. Nutr. J. 2016, 15, 1–22. [Google Scholar] [CrossRef]
- Lungulescu, E.M.; Setnescu, R.; Pătroi, E.A.; Lungu, M.V.; Pătroi, D.; Ion, I.; Fierăscu, R.C.; Șomoghi, R.; Stan, M.; Nicula, N.O. High-Efficiency Biocidal Solution Based on Radiochemically Synthesized Cu-Au Alloy Nanoparticles. Nanomaterials 2021, 11, 3388. [Google Scholar] [CrossRef] [PubMed]
- Muhamad, M.S.; Salim, M.R.; Lau, W.-J. Surface Modification of SiO2 Nanoparticles and Its Impact on the Properties of PES-Based Hollow Fiber Membrane. RSC Adv. 2015, 5, 58644–58654. [Google Scholar] [CrossRef]
- Thomas, S.; Kalarikkal, N.; Abraham, A.R. (Eds.) Design, Fabrication, and Characterization of Multifunctional Nanomaterials. In Micro and Nano Technologies; Elsevier: Amsterdam, The Netherlands, 2022; pp. 543–556. [Google Scholar]
- Mohan, R.; Ghosh, M.P.; Mukherjee, S. Large Exchange Bias Effect in NiFe2O4/CoO Nanocomposites. Mater. Res. Express 2018, 5, 035029. [Google Scholar] [CrossRef]
- Makuła, P.; Pacia, M.; Macyk, W. How To Correctly Determine the Band Gap Energy of Modified Semiconductor Photocatalysts Based on UV-Vis Spectra. J. Phys. Chem. Lett. 2018, 9, 6814–6817. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Qin, X.F.; Meng, Y.F.; Guo, Z.L.; Yang, L.X.; Ming, Y.F. Hydrothermal Synthesis and Characterization of α-Fe2O3 Nanoparticles. Mater. Sci. Semicond. Process. 2013, 16, 802–806. [Google Scholar] [CrossRef]
- Lassoued, A.; Dkhil, B.; Gadri, A.; Ammar, S. Control of the Shape and Size of Iron Oxide (α-Fe2O3) Nanoparticles Synthesized through the Chemical Precipitation Method. Results Phys. 2017, 7, 3007–3015. [Google Scholar] [CrossRef]
- Almeida, T.P.; Fay, M.; Zhu, Y.; Brown, P.D. Process Map for the Hydrothermal Synthesis of R-Fe2O3 Nanorods. J. Phys. Chem. C 2009, 113, 18689–18698. [Google Scholar] [CrossRef]
- Németh, Z.; Szekeres, G.P.; Schabikowski, M.; Schrantz, K.; Traber, J.; Pronk, W.; Hernádi, K.; Graule, T. Enhanced Virus Filtration in Hybrid Membranes with MWCNT Nanocomposite. R. Soc. Open Sci. 2019, 6, 181294. [Google Scholar] [CrossRef]
- Ghanbarnezhad, S.; Baghshahi, S.; Nemati, A.; Mahmoodi, M. Preparation, Magnetic Properties, and Photocatalytic Performance under Natural Daylight Irradiation of Fe3O4-ZnO Core/Shell Nanoparticles Designed on Reduced GO Platelet. Mater. Sci. Semicond. Process. 2017, 72, 85–92. [Google Scholar] [CrossRef]
- Xu, Y.; Liang, Y.; Jiang, L.; Wu, H.; Zhao, H.; Xue, D. Preparation and Magnetic Properties of ZnFe2O4 Nanotubes. J. Nanomater. 2011, 2011, 12274–12278. [Google Scholar] [CrossRef]
- Huerta-Aguilar, C.A.; Diaz-Puerto, Z.J.; Tecuapa-Flores, E.D.; Thangarasu, P. Crystal Plane Impact of ZnFe2O4-Ag Nanoparticles Influencing Photocatalytical and Antibacterial Properties: Experimental and Theoretical Studies. ACS Omega 2022, 7, 33985–34001. [Google Scholar] [CrossRef]
- Abd Elkodous, M.; Kawamura, G.; Tan, W.K.; Matsuda, A. Facile One-Pot Preparation of Cu/CuO/Cu2O Heterojunction for Photocatalytic Applications. Mater. Lett. 2022, 323, 132606. [Google Scholar] [CrossRef]
- Jiang, X.; Ren, X.; Chen, R.; Ma, F.; He, W.; Zhang, T.; Wen, Y.; Shi, L.; Ren, L.; Liu, H.; et al. Cobalt(II)-Complex Modified Ag Electrode for Efficient and Selective Electrochemical Reduction of CO2 to CO. J. Electroanal. Chem. 2023, 949, 117860. [Google Scholar] [CrossRef]
- Andrade, A.B.; Ferreira, N.S.; Valerio, M.E.G. Particle Size Effects on Structural and Optical Properties of BaF2 Nanoparticles. RSC Adv. 2017, 7, 26839–26848. [Google Scholar] [CrossRef]
- Bezrodna, T.; Puchkovska, G.; Shymanovska, V.; Baran, J.; Ratajczak, H. IR-Analysis of H-Bonded H2O on the Pure TiO2 Surface. J. Mol. Struct. 2004, 700, 175–181. [Google Scholar] [CrossRef]
- Aji Udhaya, P.; Bessy, T.C.; Meena, M. Antibacterial Activity of Nickel and Magnesium Substituted Ferrite Nanoparticles Synthesized via Self-Combustion Method. Mater. Today Proc. 2019, 8, 169–175. [Google Scholar] [CrossRef]
- Anbuvannan, M.; Ramesh, M.; Viruthagiri, G.; Shanmugam, N.; Kannadasan, N. Synthesis, Characterization and Photocatalytic Activity of ZnO Nanoparticles Prepared by Biological Method. Spectrochim. Acta—Part A Mol. Biomol. Spectrosc. 2015, 143, 304–308. [Google Scholar] [CrossRef] [PubMed]
- Sharif, M.; Ansari, F.; Malik, A.; Ali, Q.; Hasan, Z.; Khan, N.U.H. Fourier-Transform Infrared Spectroscopy, Antioxidant, Phytochemical and Antibacterial Screening of N-Hexane Extracts of Punica granatum, A Medicinal Plant. Genet. Mol. Res. 2018, 19, gmr16039989. [Google Scholar]
- Suja Pandian, R.; Yuvaranjani, V. Fourier Transform-Infrared Spectroscopic Studies on Edible Punica granatum Flowers. Indo Am. J. Pharm. Res. 2018, 8, 557–560. [Google Scholar]
- Jain, S.; Shah, J.; Negi, N.S.; Sharma, C.; Kotnala, R.K. Significance of Interface Barrier at Electrode of Hematite Hydroelectric Cell for Generating Ecopower by Water Splitting. Int. J. Energy Res. 2019, 43, 4743–4755. [Google Scholar] [CrossRef]
- Khan, S.H.; Suriyaprabha, R.; Pathak, B.; Fulekar, M.H. Photocatalytic Degradation of Organophosphate Pesticides (Chlorpyrifos) Using Synthesized Zinc Oxide Nanoparticle by Membrane Filtration Reactor under UV Irradiation. Front. Nanosci. Nanotechnol. 2015, 1, 23–27. [Google Scholar] [CrossRef]
- Sarala, E.; Madhukara Naik, M.; Vinuth, M.; Rami Reddy, Y.V.; Sujatha, H.R. Green Synthesis of Lawsonia Inermis-Mediated Zinc Ferrite Nanoparticles for Magnetic Studies and Anticancer Activity against Breast Cancer (MCF-7) Cell Lines. J. Mater. Sci. Mater. Electron. 2020, 31, 8589–8596. [Google Scholar] [CrossRef]
- Matloubi Moghaddam, F.; Doulabi, M.; Saeidian, H. Controlled Microwave-Assisted Synthesis of ZnFe2O4 Nanoparticles and Their Catalytic Activity for O-Acylation of Alcohol and Phenol in Acetic Anhydride. Sci. Iran. 2012, 19, 1597–1600. [Google Scholar] [CrossRef]
- Kumar, S.; Ohlan, A.; Kumar, P.; Verma, V. Improved Electromagnetic Interference Shielding Response of Polyaniline Containing Magnetic Nano-Ferrites. J. Supercond. Nov. Magn. 2020, 33, 1187–1198. [Google Scholar] [CrossRef]
- Shafiey Dehaj, M.; Zamani Mohiabadi, M. Experimental Study of Water-Based CuO Nanofluid Flow in Heat Pipe Solar Collector. J. Therm. Anal. Calorim. 2019, 137, 2061–2072. [Google Scholar] [CrossRef]
- Saeed, M.; Muneer, M.; Haq, A.; Akram, N. Photocatalysis: An Effective Tool for Photodegradation of Dyes—A Review. Environ. Sci. Pollut. Res. 2022, 29, 293–311. [Google Scholar] [CrossRef] [PubMed]
- Suresh, R.; Vijayaraj, A.; Giribabu, K.; Manigandan, R.; Prabu, R.; Stephen, A.; Thirumal, E.; Narayanan, V. Fabrication of Iron Oxide Nanoparticles: Magnetic and Electrochemical Sensing Property. J. Mater. Sci. Mater. Electron. 2013, 24, 1256–1263. [Google Scholar] [CrossRef]
- Suresh, R.; Sandoval, C.; Ramírez, E.; Álvarez, Á.; Mansilla, H.D.; Mangalaraja, R.V.; Yáñez, J. Solid-State Synthesis and Characterization of α-Fe2O3@ZnO Nanocomposites with Enhanced Visible Light Driven Photocatalytic Activity. J. Mater. Sci. Mater. Electron. 2018, 29, 20347–20355. [Google Scholar] [CrossRef]
- Shams, S.; Sheibanizadeh, Z.; Khalaj, Z. Ternary Nanocomposite of ZnFe2O4/α-Fe2O3/ZnO.; Synthesis via Coprecipitation Method and Physical Properties Characterization. Appl. Phys. A Mater. Sci. Process. 2021, 127, 2–9. [Google Scholar] [CrossRef]
- Behera, A.; Kandi, D.; Majhi, S.M.; Martha, S.; Parida, K. Facile Synthesis of ZnFe2O4 Photocatalysts for Decolourization of Organic Dyes under Solar Irradiation. Beilstein J. Nanotechnol. 2018, 9, 436–446. [Google Scholar] [CrossRef]
- Zhang, R.; Yang, X.; Zhang, D.; Qiu, H.; Fu, Q.; Na, H.; Guo, Z.; Du, F.; Chen, G.; Wei, Y. Water Soluble Styrene Butadiene Rubber and Sodium Carboxyl Methyl Cellulose Binder for ZnFe2O4 Anode Electrodes in Lithium Ion Batteries. J. Power Sources 2015, 285, 227–234. [Google Scholar] [CrossRef]
- Hou, Y.; Li, X.Y.; Zhao, Q.D.; Quan, X.; Chen, G.H. Electrochemical Method for Synthesis of a ZnFe2O4/TiO2 Composite Nanotube Array Modified Electrode with Enhanced Photoelectrochemical Activity. Adv. Funct. Mater. 2010, 20, 2165–2174. [Google Scholar] [CrossRef]
- Chen, Z.P.; Fang, W.Q.; Zhang, B.; Yang, H.G. High-Yield Synthesis and Magnetic Properties of ZnFe2O4 Single Crystal Nanocubes in Aqueous Solution. J. Alloys Compd. 2013, 550, 348–352. [Google Scholar] [CrossRef]
- Doiphode, V.; Vairale, P.; Sharma, V.; Waghmare, A.; Punde, A.; Shinde, P.; Shah, S.; Pandharkar, S.; Hase, Y.; Aher, R.; et al. Solution-Processed Electrochemical Synthesis of ZnFe2O4 Photoanode for Photoelectrochemical Water Splitting. J. Solid State Electrochem. 2021, 25, 1835–1846. [Google Scholar] [CrossRef]
- Mondal, P.; Sinha, A.; Salam, N.; Roy, A.S.; Jana, N.R.; Islam, S.M. Enhanced Catalytic Performance by Copper Nanoparticle-Graphene Based Composite. RSC Adv. 2013, 3, 5615–5623. [Google Scholar] [CrossRef]
- de Sousa, P.V.F.; de Oliveira, A.F.; da Silva, A.A.; Lopes, R.P. Environmental Remediation Processes by Zero Valence Copper: Reaction Mechanisms. Environ. Sci. Pollut. Res. 2019, 26, 14883–14903. [Google Scholar] [CrossRef] [PubMed]
- Sharma, Y.; Sharma, N.; Rao, G.V.S.; Chowdari, B.V.R. Li-Storage and Cyclability of Urea Combustion Derived ZnFe2O4 as Anode for Li-Ion Batteries. Electrochim. Acta 2008, 53, 2380–2385. [Google Scholar] [CrossRef]
- Marco, J.F.; Gancedo, J.R.; Gracia, M.; Gautier, J.L.; Ríos, E.; Berry, F.J. Characterization of the Nickel Cobaltite, NiCo2O4, Prepared by Several Methods: An XRD, XANES, EXAFS, and XPS Study. J. Solid State Chem. 2000, 153, 74–81. [Google Scholar] [CrossRef]
- Tovar, M.; Reehuis, M.; Stüßer, N.; Schorr, S. XPS and Voltammetric Studies on Ni1−xCuxCo2O4 Spinel Oxide Electrodes. Acta Crystallogr. Sect. A Found. Adv. 1998, 449, 91–100. [Google Scholar]
- Raja, K.; Jaculine, M.M.; Jose, M.; Verma, S.; Prince, A.A.M.; Ilangovan, K.; Sethusankar, K.; Das, S.J. Sol–Gel Synthesis and Characterization of α-Fe2O3 Nanoparticles. Superlattices Microstruct. 2015, 86, 306–312. [Google Scholar] [CrossRef]
- Baamer, D.F.; Abd El Maksod, I.H. Surface Modification of Zinc Ferrite with Titanium to Be a Photo-Active Catalyst in Commercial LED Light. Catalysts 2023, 13, 1082. [Google Scholar] [CrossRef]
- Matli, P.R.; Zhou, X.; Shiyu, D.; Huang, Q. Fabrication, Characterization, and Magnetic Behavior of Porous ZnFe2O4 Hollow Microspheres. Int. Nano Lett. 2015, 5, 53–59. [Google Scholar] [CrossRef]
- Balayeva, N.O.; Fleisch, M.; Bahnemann, D.W. Surface-Grafted WO3/TiO2 Photocatalysts: Enhanced Visible-Light Activity towards Indoor Air Purification. Catal. Today 2018, 313, 63–71. [Google Scholar] [CrossRef]
- Balayeva, N.O.; Mamiyev, Z. Integrated Processes Involving Adsorption, Photolysis, and Photocatalysis. In Hybrid and Combined Processes for Air Pollution Control; Elsevier: Amsterdam, The Netherlands, 2022; pp. 117–153. [Google Scholar]
- Maruthupandy, M.; Muneeswaran, T.; Vennila, T.; Anand, M.; Cho, W.S.; Quero, F. Development of Chitosan Decorated Fe3O4 Nanospheres for Potential Enhancement of Photocatalytic Degradation of Congo Red Dye Molecules. Spectrochim. Acta—Part A Mol. Biomol. Spectrosc. 2022, 267, 120511. [Google Scholar] [CrossRef] [PubMed]
- Shubha, J.P.; Kavalli, K.; Adil, S.F.; Assal, M.E.; Hatshan, M.R.; Dubasi, N. Facile Green Synthesis of Semiconductive ZnO Nanoparticles for Photocatalytic Degradation of Dyes from the Textile Industry: A Kinetic Approach. J. King Saud Univ.—Sci. 2022, 34, 102047. [Google Scholar] [CrossRef]
- Lal, M.; Sharma, P.; Singh, L.; Ram, C. Photocatalytic Degradation of Hazardous Rhodamine B Dye Using Sol-Gel Mediated Ultrasonic Hydrothermal Synthesized of ZnO Nanoparticles. Results Eng. 2023, 17, 100890. [Google Scholar] [CrossRef]
- Tadjarodi, A.; Imani, M.; Rad, M. Preparation of CdO Rhombus-Like Nanostructure and Its Photocatalytic Degradation of Azo Dyes from Aqueous Solution. Namomater. Nanotechnol. 2014, 4, 4–16. [Google Scholar] [CrossRef]
- Varadavenkatesan, T.; Lyubchik, E.; Pai, S.; Pugazhendhi, A.; Vinayagam, R.; Selvaraj, R. Photocatalytic Degradation of Rhodamine B by Zinc Oxide Nanoparticles Synthesized Using the Leaf Extract of Cyanometra Ramiflora. J. Photochem. Photobiol. B Biol. 2019, 199, 111621. [Google Scholar] [CrossRef]
- Mohammed, M.K.A. Carbon Nanotubes Loaded ZnO/Ag Ternary Nanohybrid with Improved Visible Light Photocatalytic Activity and Stability. Optik 2020, 217, 164867. [Google Scholar] [CrossRef]
- Agarwal, S.; Jangir, L.K.; Rathore, K.S.; Kumar, M.; Awasthi, K. Morphology-Dependent Structural and Optical Properties of ZnO Nanostructures. Appl. Phys. A Mater. Sci. Process. 2019, 125, 553. [Google Scholar] [CrossRef]
- Fernandes, R.J.C.; Magalhães, C.A.B.; Amorim, C.O.; Amaral, V.S.; Almeida, B.G.; Castanheira, E.M.S.; Coutinho, P.J.G. Magnetic Nanoparticles of Zinc/Calcium Ferrite Decorated with Silver for Photodegradation of Dyes. Materials 2019, 12, 3582. [Google Scholar] [CrossRef]
- Ma, H.; Liu, C. A Mini-Review of Ferrites-Based Photocatalyst on Application of Hydrogen Production. Front. Energy 2021, 15, 621–630. [Google Scholar] [CrossRef]
- Zhang, S.; Gong, X.; Shi, Q.; Ping, G.; Xu, H.; Waleed, A.; Li, G. CuO Nanoparticle-Decorated TiO2-Nanotube Heterojunctions for Direct Synthesis of Methyl Formate via Photo-Oxidation of Methanol. ACS Omega 2020, 5, 15942–15948. [Google Scholar] [CrossRef]
- Alotaibi, A.M.; Williamson, B.A.D.; Sathasivam, S.; Kafizas, A.; Alqahtani, M.; Sotelo-Vazquez, C.; Buckeridge, J.; Wu, J.; Nair, S.P.; Scanlon, D.O.; et al. Enhanced Photocatalytic and Antibacterial Ability of Cu-Doped Anatase TiO2 Thin Films: Theory and Experiment. ACS Appl. Mater. Interfaces 2020, 12, 15348–15361. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.Y.; Kang, D.; Jeong, S.; Do, H.T.; Kim, J.H. Photocatalytic Degradation of Rhodamine B Dye by TiO2 and Gold Nanoparticles Supported on a Floating Porous Polydimethylsiloxane Sponge under Ultraviolet and Visible Light Irradiation. ACS Omega 2020, 5, 4233–4241. [Google Scholar] [CrossRef] [PubMed]
- Siddiqui, V.U.; Ansari, A.; Ansari, M.T.; Akram, M.K.; Siddiqi, W.A. Fabrication of a Zinc Oxide/Alginate (ZnO/Alg) Bionanocomposite for Enhanced Dye Degradation and Its Optimization Study. RSC Adv. 2022, 12, 7210–7228. [Google Scholar] [CrossRef] [PubMed]
- González-Crisostomo, J.C.; López-Juárez, R.; Petranovskii, V. Photocatalytic Degradation of Rhodamine B Dye in Aqueous Suspension by ZnO and M-ZnO (M = La3+, Ce3+, Pr3+ and Nd3+) Nanoparticles in the Presence of UV/H2O2 José. Processes 2021, 9, 1736. [Google Scholar] [CrossRef]
- Phattepur, H.; Gowrishankar, B.S.; Nagaraju, G. Synthesis of Gadolinium-Doped TiO2 Thin Films by Sol–Gel Spin Coating Technique and Its Application in Degradation of Rhodamine-B. Indian Chem. Eng. 2019, 61, 167–181. [Google Scholar] [CrossRef]
- Oliveira, T.P.; Marques, G.N.; Macedo Castro, M.A.; Viana Costa, R.C.; Rangel, J.H.G.; Rodrigues, S.F.; dos Santos, C.C.; Oliveira, M.M. Synthesis and Photocatalytic Investigation of ZnFe2O4 in the Degradation of Organic Dyes under Visible Light. J. Mater. Res. Technol. 2020, 9, 15001–15015. [Google Scholar] [CrossRef]
- Zhang, Y.; He, T.; Ding, S.; Li, H.; Song, W.; Ding, J.; Lu, J. Photo-Fenton Degradation of RhB via Transition Metal Oxides Composite Catalyst Fe3O4/CuO under Visible Light Optimized Using Response Surface Methodology. Mater. Technol. 2022, 37, 2347–2359. [Google Scholar] [CrossRef]
- Bayahia, H. High Activity of ZnFe2O4 Nanoparticles for Photodegradation of Crystal Violet Dye Solution in the Presence of Sunlight. J. Taibah Univ. Sci. 2022, 16, 988–1004. [Google Scholar] [CrossRef]
- Bekru, A.G.; Tufa, L.T.; Zelekew, O.A.; Goddati, M.; Lee, J.; Sabir, F.K. Green Synthesis of a CuO-ZnO Nanocomposite for Efficient Photodegradation of Methylene Blue and Reduction of 4-Nitrophenol. ACS Omega 2022, 7, 30908–30919. [Google Scholar] [CrossRef]
- Li, Z.; Chen, H.; Liu, W. Full-Spectrum Photocatalytic Activity of ZnO/CuO/ZnFe2O4 Nanocomposite as a PhotoFenton-Like Catalyst. Catalysts 2018, 8, 557. [Google Scholar] [CrossRef]
- Taufik, A.; Saleh, R. Synthesis of Iron (II,III) Oxide/Zinc Oxide/Copper (II) Oxide (Fe3O4/ZnO/CuO) Nanocomposites and Their Photosonocatalytic Property for Organic Dye Removal. J. Colloid Interface Sci. 2017, 491, 27–36. [Google Scholar] [CrossRef] [PubMed]
- Susanto, I.K.; Taufik, A.; Saleh, R. The Influence of ZnO Components on the Photocatalytic Activity of Fe3O4-CuO-ZnO Nanocomposites. Adv. Mater. Res. 2015, 1123, 227–232. [Google Scholar] [CrossRef]
- Paraguay-Delgado, F.; Hermida-Montero, L.A.; Morales-Mendoza, J.E.; Durán-Barradas, Z.; Mtz-Enriquez, A.I.; Pariona, N. Photocatalytic Properties of Cu-Containing ZnO Nanoparticles and Their Antifungal Activity against Agriculture-Pathogenic Fungus. RSC Adv. 2022, 12, 9898–9908. [Google Scholar] [CrossRef] [PubMed]
- Shekoohiyan, S.; Rahmania, A.; Chamack, M.; Moussavi, G.; Rahmanian, O.; Alipour, V.; Giannakis, S. A Novel CuO/Fe2O3/ZnO Composite for Visible-Light Assisted Photocatalytic Oxidation of Bisphenol A: Kinetics, Degradation Pathways, and Toxicity Elimination. Sep. Purif. Technol. 2020, 242, 2020–2022. [Google Scholar] [CrossRef]
- Shanmugam, P.; Ngullie, R.C.; Meejoo Smith, S.; Boonyuen, S.; Boddula, R.; Pothu, R. Visible-Light Induced Photocatalytic Removal of Methylene Blue Dye by Copper Oxide Decorated Zinc Oxide Nanorods. Mater. Sci. Energy Technol. 2023, 6, 359–367. [Google Scholar] [CrossRef]
- Khalid, A.; Ahmad, P.; Khan, A.; Muhammad, S.; Khandaker, M.U.; Alam, M.M.; Asim, M.; Din, I.U.; Chaudhary, R.G.; Kumar, D.; et al. Effect of Cu Doping on ZnO Nanoparticles as a Photocatalyst for the Removal of Organic Wastewater. Bioinorg. Chem. Appl. 2022, 2022, 9459886. [Google Scholar] [CrossRef]
- Bai, S.; Jiang, J.; Zhang, Q.; Xiong, Y. Steering Charge Kinetics in Photocatalysis: Intersection of Materials Syntheses, Characterization Techniques and Theoretical Simulations. Chem. Soc. Rev. 2015, 44, 2893–2939. [Google Scholar] [CrossRef]
- Chen, Q.; Wang, K.; Gao, G.; Ren, J.; Duan, R.; Fang, Y.; Hu, X. Singlet Oxygen Generation Boosted by Ag–Pt Nanoalloy Combined with Disordered Surface Layer over TiO2 Nanosheet for Improving the Photocatalytic Activity. Appl. Surf. Sci. 2021, 538, 147944. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, L.; Chen, Z.; Hu, J.; Li, S.; Wang, Z.; Liu, J.; Wang, X. Semiconductor Heterojunction Photocatalysts: Design, Construction, and Photocatalytic Performances. Chem. Soc. Rev. 2014, 43, 5234–5244. [Google Scholar] [CrossRef]
- Zhang, Z.; Yates, J.T. Band Bending in Semiconductors: Chemical and Physical Consequences at Surfaces and Interfaces. Chem. Rev. 2012, 112, 5520–5551. [Google Scholar] [CrossRef]
Catalyst | SBET (m2/g) | Pore Diameter (nm) | Pore Volume (cc/g) |
---|---|---|---|
Fe2O3 | 35.277 | 8.764 | 0.252 |
ZnO | 25.166 | 2.783 | 0.081 |
ZnFe2O4 | 68.814 | 15.821 | 0.281 |
ZnFe2O4-Cu | 84.866 | 15.228 | 0.294 |
Photocatalyst | Dye | Light Source | Degradation (%) or Rate Constant of the Reaction (min−1) | Ref. |
---|---|---|---|---|
ZnFe2O4 | Malachite green | Visible light | 0.96 (min−1) | [111] |
Rhodamine B | 0.31 (min−1) | |||
Fe3O4/CuO | Rhodamine B | H2O2/Visible light | 98.9% within 60 min | [112] |
ZnFe2O4 | Crystal violet | Sunlight | 1296 (min−1) | [113] |
CuO-ZnO | Methylene Blue | NaBH4/Visible light | 0.017 min−1 | [114] |
ZnO | 0.0027 min−1 | |||
ZnO/CuO/ZnFe2O4 | Methyl orange | H2O2/Visible light | 67.8% within 360 min | [115] |
Fe3O4/ZnO/CuO | Methylene Blue | Visible light | 0.015 min−1 | [116] |
UV light | 0.009 min−1 | |||
Fe3O4:CuO:5ZnO | Methylene Blue | UV light | 0.0068 min−1 | [117] |
ZnO/Cu2% NPs | Rhodamine B | Visible light | 90.0% within 100 min | [118] |
CuO/Fe2O3/ZnO | Bisphenol A | Visible light | 0.0227 min−1 | [119] |
CuO/ZnO | Methylene Blue | Visible light | 98.5% within 150 min | [120] |
Cu-ZnO | Methylene Blue | UV light | 94% within 120 min | [121] |
ZnFe2O4−Ag | Rhodamine B | H2O2/Visible light | 0.005 min−1 | [62] |
ZnFe2O4-Cu | Rhodamine B | Visible light | 98% within 140 min 0.02864 min−1 | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alshehri, A.; Alharbi, L.; Wani, A.A.; Malik, M.A. Biogenic Punica granatum Flower Extract Assisted ZnFe2O4 and ZnFe2O4-Cu Composites for Excellent Photocatalytic Degradation of RhB Dye. Toxics 2024, 12, 77. https://doi.org/10.3390/toxics12010077
Alshehri A, Alharbi L, Wani AA, Malik MA. Biogenic Punica granatum Flower Extract Assisted ZnFe2O4 and ZnFe2O4-Cu Composites for Excellent Photocatalytic Degradation of RhB Dye. Toxics. 2024; 12(1):77. https://doi.org/10.3390/toxics12010077
Chicago/Turabian StyleAlshehri, Amal, Laila Alharbi, Aiyaz Ahmad Wani, and Maqsood Ahmad Malik. 2024. "Biogenic Punica granatum Flower Extract Assisted ZnFe2O4 and ZnFe2O4-Cu Composites for Excellent Photocatalytic Degradation of RhB Dye" Toxics 12, no. 1: 77. https://doi.org/10.3390/toxics12010077
APA StyleAlshehri, A., Alharbi, L., Wani, A. A., & Malik, M. A. (2024). Biogenic Punica granatum Flower Extract Assisted ZnFe2O4 and ZnFe2O4-Cu Composites for Excellent Photocatalytic Degradation of RhB Dye. Toxics, 12(1), 77. https://doi.org/10.3390/toxics12010077