The Variation in Chemical Composition and Source Apportionment of PM2.5 before, during, and after COVID-19 Restrictions in Zhengzhou, China
Abstract
:1. Introduction
2. Methods
2.1. Observation Site and Instruments
2.2. PMF Model
3. Results
3.1. Weather Conditions and Air Pollutants
3.2. Chemical Compositions of PM2.5
3.3. Nitrate and Sulfate Formations over the Three Years
3.4. Sources during the Three Periods
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chang, Y.; Huang, R.-J.; Ge, X.; Huang, X.; Hu, J.; Duan, Y.; Zou, Z.; Liu, X.; Lehmann, M. Puzzling haze events in China during the coronavirus (COVID-19) shutdown. Geophys. Res. Lett. 2020, 47, e2020GL088533. [Google Scholar] [CrossRef]
- Le, T.H.; Wang, Y.; Liu, L.; Yang, J.N.; Yung, Y.L.; Li, G.H.; Seinfeld, J.H. Unexpected air pollution with marked emission reductions during the COVID–19 outbreak in China. Science 2020, 369, 702. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Zhao, Y.L.; Fu, H.B.; Chen, J.M.; Peng, M.; Wang, C.Y. Substantial changes in gaseous pollutants and chemical compositions in fine particles in the North China Plain during the COVID-19 lockdown period: Anthropogenic vs. meteorological influences. Atmos. Chem. Phys. 2021, 21, 8677–8692. [Google Scholar] [CrossRef]
- Pei, Z.; Han, G.; Ma, X.; Su, H.; Gong, W. Response of major air pollutants to COVID–19 lockdowns in China. Sci. Total Environ. 2020, 743, 140879. [Google Scholar] [CrossRef]
- Shi, X.Q.; Brasseur, G.P. The response in air quality to the reduction of Chinese economic activities during the COVID-19 outbreak. Geophys. Res. Lett. 2020, 47, e2020GL088070. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.C.; Wu, R.; Liu, L.; Yuan, Y.; Liu, C.G.; Ho, S.S.H.; Ren, H.H.; Wang, Q.Y.; Lv, Y.; Yan, M.Y.; et al. Differential health and economic impacts from the COVID-19 lockdown between the developed and developing countries: Perspective on air pollution. Environ. Pollut. 2022, 293, 118544. [Google Scholar] [CrossRef]
- Chen, H.; Huo, J.; Fu, Q.; Duan, Y.; Xiao, H.; Chen, J. Impact of quarantine measures on chemical compositions of PM2.5 during the COVID–19 epidemic in Shanghai, China. Sci. Total Environ. 2020, 743, 140758. [Google Scholar] [CrossRef]
- Huang, G.Y.; Sun, K. Non-negligible impacts of clean air regulations on the reduction of tropospheric NO2 over East China during the COVID-19 pandemic observed by OMI and TROPOMI. Sci. Total Environ. 2020, 745, 141023. [Google Scholar] [CrossRef]
- Sun, Y.; Lei, L.; Zhou, W.; Chen, C.; He, Y.; Sun, J.; Li, Z.; Xu, W.; Wang, Q.; Ji, D.; et al. A Chemical Cocktail during the COVID–19 Outbreak in Beijing, China: Insights from Six–Year Aerosol Particle Composition Measurements during the Chinese New Year Holiday. Sci. Total Environ. 2020, 742, 140739. [Google Scholar] [CrossRef]
- Xie, X.D.; Hu, J.L.; Qin, M.M.; Guo, S.; Hu, M.; Ji, D.S.; Wang, H.L.; Lou, S.R.; Huang, C.; Liu, C.; et al. Particle Phase State and Aerosol Liquid Water Greatly Impact Secondary Aerosol Formation: Insights into Phase Transition and Role in Haze Events. Atmos. Chem. Phys. 2023, 23, 10563–10578. [Google Scholar] [CrossRef]
- Gen, M.S.; Zhang, R.F.; Huang, D.D.; Li, Y.J.; Chan, C.K. Heterogeneous Oxidation of SO2 in Sulfate Production during Nitrate Photolysis at 300 nm: Effect of pH, Relative Humidity, Irradiation Intensity, and the Presence of Organic Compounds. Environ. Sci. Technol. 2019, 53, 8757–8766. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Zhao, B.; Zhou, W.; Shi, H.; Yin, R.; Cai, R.; Yang, D.; Dallenbach, K.; Deng, C.; Fu, Y.; et al. Responses of gaseous sulfuric acid and particulate sulfate to reduced SO2 concentration: A perspective from long–term measurements in Beijing. Sci. Total Environ. 2020, 721, 137700. [Google Scholar] [CrossRef] [PubMed]
- Ma, Q.X.; Wang, W.S.; Wu, Y.F.; Wang, F.; Jin, L.Y.; Song, X.Y.; Han, Y.; Zhang, R.J.; Zhang, D.Z. Haze caused by NOx oxidation under restricted residential and industrial activities in a mega city in the south of North China Plain. Chemosphere 2022, 305, 135489. [Google Scholar] [CrossRef] [PubMed]
- Peng, J.F.; Hu, M.; Shang, D.J. Explosive Secondary Aerosol Formation during Severe Haze in the North China Plain. Environ. Sci. Technol. 2021, 55, 2189–2207. [Google Scholar] [CrossRef] [PubMed]
- Fang, Y.; Ye, C.; Wang, J.; Wu, Y.; Hu, M.; Lin, W.; Xu, F.; Zhu, T. Relative humidity and O3 concentration as two prerequisites for sulfate formation. Atmos. Chem. Phys. 2019, 19, 12295–12307. [Google Scholar] [CrossRef]
- Liu, T.; Clegg, S.L.; Abbatt, J.P.D. Fast oxidation of sulfur dioxide by hydrogen peroxide in deliquesced aerosol particles. Proc. Natl. Acad. Sci. USA 2020, 117, 1354–1359. [Google Scholar] [CrossRef]
- Pandis, S.N.; Seinfeld, J.H.; Pilinis, C. Heterogeneous sulfate production in an urban fog. Atmos. Environ. Part A-Gen. Top. 1992, 26, 2509–2522. [Google Scholar] [CrossRef]
- Ding, J.; Dai, Q.L.; Zhang, Y.F.; Xu, J.; Huangfu, Y.Q.; Feng, Y.C. Air humidity affects secondary aerosol formation in different pathways. Sci. Total Environ. 2021, 759, 143540. [Google Scholar] [CrossRef]
- Li, G.; Bei, N.; Cao, J.; Huang, R.; Wu, J.; Feng, T.; Wang, Y.; Liu, S.; Zhang, Q.; Tie, X.; et al. A possible pathway for rapid growth of sulfate during haze days in China. Atmos. Chem. Phys. 2017, 17, 3301–3316. [Google Scholar] [CrossRef]
- Ma, Q.X.; Wu, Y.F.; Zhang, D.Z.; Wang, X.J.; Xia, Y.J.; Liu, X.Y.; Tian, P.; Han, Z.W.; Xia, X.A.; Wang, Y.; et al. Roles of regional transport and heterogeneous reactions in the PM2.5 increase during winter haze episodes in Beijing. Sci. Total Environ. 2017, 599–600, 246–253. [Google Scholar] [CrossRef]
- Cheng, Y.F.; Zheng, G.J.; Wei, C.; Mu, Q.; Zheng, B.; Wang, Z.B.; Gao, M.; Zhang, Q.; He, K.B.; Carmichael, G.; et al. Reactive nitrogen chemistry in aerosol water as a source of sulfate during haze events in China. Sci. Adv. 2016, 2, 11. [Google Scholar] [CrossRef]
- George, C.; Ammann, M.; D’Anna, B.; Donaldson, D.J.; Nizkorodov, S.A. Heterogeneous photochemistry in the atmosphere. Chem. Rev. 2015, 115, 4218–4258. [Google Scholar] [CrossRef] [PubMed]
- Fu, X.; Wang, T.; Gao, J.; Wang, P.; Liu, Y.; Wang, S.; Zhao, B.; Xue, L. Persistent heavy winter nitrate pollution driven by increased photochemical oxidants in northern China. Environ. Sci. Technol. 2020, 54, 3881–3889. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Ma, Y.L.; Duan, F.K.; Zhu, L.D.; Ma, T.; Yang, S.; Xu, Y.Z.; Li, F.; Huang, T.; Kimoto, T.; et al. Stronger secondary pollution processes despite decrease in gaseous precursors: A comparative analysis of summer 2020 and 2019 in Beijing. Environ. Pollut 2021, 279, 116923. [Google Scholar] [CrossRef] [PubMed]
- Liu, P.F.; Ye, C.; Xue, C.Y.; Zhang, C.L.; Mu, Y.J.; Sun, X. Formation mechanisms of atmospheric nitrate and sulfate during the winter haze pollution periods in Beijing: Gas–phase, heterogeneous and aqueous–phase chemistry. Atmos. Chem. Phys. 2020, 20, 4153–4165. [Google Scholar] [CrossRef]
- Khoder, M.I. Atmospheric conversion of sulfur dioxide to particulate sulfate and nitrogen dioxide to particulate nitrate and gaseous nitric acid in an urban area. Chemosphere 2002, 49, 675–684. [Google Scholar] [CrossRef]
- Wang, G.H.; Zhang, R.Y.; Gomez, M.E. Persistent sulfate formation from London fog to Chinese haze. Proc. Natl. Acad. Sci. USA 2016, 113, 13630–13635. [Google Scholar] [CrossRef]
- Lin, Y.C.; Zhang, Y.L.; Fan, M.Y.; Bao, M.Y. Heterogeneous formation of particulate nitrate under ammonium-rich regimes during the high-PM2.5 events in Nanjing, China. Atmos. Chem. Phys. 2020, 20, 3999–4011. [Google Scholar] [CrossRef]
- Fan, C.; Li, Y.; Guang, J.; Li, Z.; Elnashar, A.; Allam, M.; de Leeuw, G. The impact of the control measures during the COVID-19 outbreak on air pollution in China. Remote Sens. 2020, 12, 1613. [Google Scholar] [CrossRef]
- Feng, S.Z.; Jiang, F.; Wang, H.M.; Wang, H.K.; Ju, W.M.; Shen, Y.; Zheng, Y.H.; Wu, Z.; Ding, A.J. NOx emission changes over China during the COVID-19 epidemic inferred from surface NO2 observations. Geophys. Res. Lett. 2020, 47, e2020GL090080. [Google Scholar] [CrossRef]
- Liang, Y.X.; Gui, K.; Che, H.Z.; Li, L.; Zheng, Y.; Zhang, X.T.; Zhang, X.D.; Zhang, P.; Zhang, X.Y. Changes in aerosol loading before, during and after the COVID-19 pandemic outbreak in China: Effects of anthropogenic and natural aerosol. Sci. Total Environ. 2023, 857, 159435. [Google Scholar] [CrossRef]
- Tian, J.; Wang, Q.Y.; Zhang, Y.; Yan, M.Y.; Liu, H.K.; Zhang, N.N.; Ran, W.K.; Cao, J.J. Impacts of primary emissions and secondary aerosol formation on air pollution in an urban area of China during the COVID-19 lockdown. Environ. Inter. 2021, 150, 106426. [Google Scholar] [CrossRef]
- Zhang, Q.Q.; Pan, Y.P.; He, Y.X.; Walters, W.W.; Ni, Q.Y.; Liu, X.Y.; Xu, G.Y.; Shao, J.L.; Jiang, C.L. Substantial nitrogen oxides emission reduction from China due to COVID-19 and its impact on surface ozone and aerosol pollution. Sci. Total Environ. 2021, 753, 142238. [Google Scholar] [CrossRef]
- Lian, X.B.; Huang, J.P.; Huang, R.J.; Liu, C.W.; Wang, L.N.; Zhang, T.H. Impact of city lockdown on the air quality of COVID-19-hit of Wuhan city. Sci. Total Environ. 2020, 742, 140556. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Zhang, J.; Du, R.G.; Teng, X.M.; Hu, R.; Yuan, Q.; Tang, S.S.; Ren, C.H.; Huang, X.; Xu, L.; et al. Chemistry of Atmospheric Fine Particles during the COVID–19 Pandemic in a Megacity of Eastern China. Geophys. Res. Lett. 2021, 48, e2020GL091611. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.F.; Li, J.Y.; Ye, J.H.; Zhao, Y.; Wu, J.Z.; Hu, J.L.; Liu, D.T.; Nie, D.Y.; Shen, F.Z.; Huang, X.P.; et al. Fast sulfate formation from oxidation of SO2 by NO2 and HONO observed in Beijing haze. Nat. Commun. 2020, 11, 2844. [Google Scholar] [CrossRef] [PubMed]
- Chang, X.; Zheng, H.T.; Zhao, B.; Yan, C.; Jiang, Y.Q.; Hu, R.L.; Song, A.J.; Dong, Z.X.; Li, S.Y.; Li, Z.Q.; et al. Drivers of High Concentrations of Secondary Organic Aerosols in Northern China during the COVID-19 Lockdowns. Environ. Sci. Technol. 2023, 57, 5521–5531. [Google Scholar] [CrossRef]
- Duan, J.; Huang, R.J.; Chang, Y.H. Measurement report of the change of PM2.5 composition during the COVID-19 lockdown in urban Xi’an: Enhanced secondary formation and oxidation. Sci. Total Environ. 2021, 791, 148126. [Google Scholar] [CrossRef]
- Li, Y.; Han, Z.W.; Song, Y.; Li, J.W.; Sun, Y.L.; Wang, T.T. Impacts of the COVID-19 lockdown on atmospheric oxidizing capacity and secondary aerosol formation over the Beijing-Tianjin-Hebei region in Winter-Spring 2020. Atmos. Environ 2023, 295, 119540. [Google Scholar] [CrossRef]
- Du, H.Y.; Li, J.; Wang, Z.F.; Yang, W.Y.; Chen, X.S.; Wei, Y. Sources of PM2.5 and its responses to emission reduction strategies in the Central Plains Economic Region in China: Implications for the impacts of COVID-19. Environ. Pollut. 2021, 288, 117783. [Google Scholar] [CrossRef]
- Yang, J.R.; Wang, S.B.; Zhang, R.Q.; Yin, S.S. Elevated particle acidity enhanced the sulfate formation during the COVID-19 pandemic in Zhengzhou, China. Environ. Pollut. 2022, 296, 118716. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Walker, J.T.; Geron, C. Chromatography related performance of the Monitor for AeRosols and GAses in ambient air (MARGA): Laboratory and field-based evaluation. Atmos. Meas. Tech. 2017, 10, 3893–3908. [Google Scholar] [CrossRef]
- Stieger, B.; Spindler, G.; Fahlbusch, B.; Müller, K.; Grüner, A.; Poulain, L.; Thöni, L.; Seitler, E.; Wallasch, M.; Herrmann, H. Measurements of PM10 ions and trace gases with the online system MARGA at the research station Melpitz in Germany—A five-year study. J. Atmos. Chem. 2018, 75, 33–70. [Google Scholar] [CrossRef]
- Wu, C.; Wu, D.; Yu, J.Z. Estimation and Uncertainty Analysis of Secondary Organic Carbon Using 1 Year of Hourly Organic and Elemental Carbon Data. J. Geophys. Res. Atmos. 2019, 124, 2774–2795. [Google Scholar] [CrossRef]
- Li, Z.Y.; Liu, J.J.; Zhai, Z.; Liu, C.; Ren, Z.Z.; Yue, Z.Y.; Yang, D.Y.; Hu, Y.; Zheng, H.; Kong, S.F. Heterogeneous changes of chemical compositions, sources and health risks of PM2.5 with the “Clean Heating” policy at urban/suburban/industrial sites. Sci. Total Environ. 2023, 854, 158871. [Google Scholar] [CrossRef]
- Zhou, H.J.; Liu, T.; Sun, B.; Tian, Y.L.; Zhou Xj Hao, F.; Chun, X.; Wan, Z.Q.; Liu, P.; Wang, J.W.; Du, D.L. Chemical characteristics and sources of PM2.5 in Hohhot, a semi-arid city in northern China: Insight from the COVID-19 lockdown. Atmos. Chem. Phys. 2022, 22, 12153–12166. [Google Scholar] [CrossRef]
- Hao, Q.; Jiang, N.; Zhang, R.Q.; Yang, L.M.; Li, S.L. Characteristics, sources, and reactions of nitrous acid during winter at an urban site in the Central Plains Economic Region in China. Atmos. Chem. Phys. 2020, 20, 7087–7102. [Google Scholar] [CrossRef]
- Zhang, R.J.; Jing, J.; Tao, J.; Hsu, S.-C.; Wang, G.; Cao, J.; Lee, C.S.L.; Zhu, L.; Chen, Z.; Zhao, Y.; et al. Chemical characterization and source apportionment of PM2.5 in Beijing: Seasonal perspective. Atmos. Chem. Phys. 2013, 13, 7053–7074. [Google Scholar] [CrossRef]
- Cui, Y.; Ji, D.S.; Maenhaut, W.; Gao, W.K.; Zhang, R.J.; Wang, Y.S. Levels and sources of hourly PM2.5-related elements during the control period of the COVID-19 pandemic at a rural site between Beijing and Tianjin. Sci. Total Environ. 2020, 744, 140840. [Google Scholar] [CrossRef]
- Zheng, H.; Kong, S.; Chen, N.; Yan, Y.; Liu, D.; Zhu, B.; Xu, K.; Cao, W.; Ding, Q.; Lan, B.; et al. Significant changes in the chemical compositions and sources of PM2.5 in Wuhan since the city lockdown as COVID-19. Sci. Total Environ. 2020, 739, 140000. [Google Scholar] [CrossRef]
- Liu, H.; Tian, H.; Zhang, K.; Liu, S.; Cheng, K.; Yin, S.; Liu, Y.; Liu, X.; Wu, Y.; Liu, W.; et al. Seasonal variation, formation mechanisms and potential sources of PM2.5 in two typical cities in the Central Plains Urban Agglomeration, China. Sci. Total Environ. 2019, 657, 657–670. [Google Scholar] [CrossRef] [PubMed]
- Kong, S.F.; Li, L.; Li, X.X.; Yin, Y.; Chen, K.; Liu, D.T.; Yuan, L.; Zhang, Y.J.; Shan, Y.P.; Ji, Y.Q. The impacts of firework burning at the Chinese Spring Festival on air quality: Insights of tracers, source evolution and aging processes. Atmos. Chem. Phys. 2015, 15, 2167–2184. [Google Scholar] [CrossRef]
- Tian, Y.; Zhang, Y.; Liang, Y.; Niu, Z.; Xue, Q.; Feng, Y. PM2.5 source apportionment during severe haze episodes in a Chinese megacity based on a 5-month period by using hourly species measurements: Explore how to better conduct PMF during haze episodes. Atmos. Environ. 2020, 224, 117364. [Google Scholar] [CrossRef]
- Hong, Y.; Xu, X.; Liao, D.; Zheng, R.; Ji, X.; Chen, Y.; Xu, L.; Li, M.; Wang, H.; Xiao, H.; et al. Source apportionment of PM2.5 and sulfate formation during the COVID-19 lockdown in a coastal city of southeast China. Environ. Pollut. 2021, 286, 117577. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Ding, A.; Gao, J.; Zheng, B.; Zhou, D.; Qi, X.; Tang, R.; Wang, J.; Ren, C.; Nie, W.; et al. Enhanced secondary pollution offset reduction of primary emissions during COVID–19 lockdown in China. Natl. Sci. Rev. 2020, 8, nwaa137. [Google Scholar] [CrossRef]
- Ma, Q.X.; Wu, Y.F.; Fu, S.L.; Zhang, D.Z.; Han, Z.W.; Zhang, R.J. Pollution severity-dependent aerosol light scattering enhanced by inorganic species formation in Beijing haze. Sci. Total Environ. 2020, 719, 137545. [Google Scholar] [CrossRef]
Main Components | Formulas | References |
---|---|---|
Secondary inorganic aerosols (SIAs) | SO42− + NO3− + NH4+ | [27] |
Primary organic aerosol (POA) | ρ[POA] = 1.6 × ρ[EC] × (ρOC/ρEC)min | [36] |
Secondary organic aerosol (SOA) | ρ[SOA] = 1.6×(ρ[OC] − ρ[POC]) | [43] |
The conversion ratios of SO2 to sulfate (SOR) | [SO42−]/([SO42−] + [SO2]) | [37] |
The conversion ratios of NOx to nitrate (NOR) | [NO3−]/([NO3−] + [NO] + [NO2]) | [13] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, J.; Cai, A.; Wang, W.; He, K.; Zou, S.; Ma, Q. The Variation in Chemical Composition and Source Apportionment of PM2.5 before, during, and after COVID-19 Restrictions in Zhengzhou, China. Toxics 2024, 12, 81. https://doi.org/10.3390/toxics12010081
Huang J, Cai A, Wang W, He K, Zou S, Ma Q. The Variation in Chemical Composition and Source Apportionment of PM2.5 before, during, and after COVID-19 Restrictions in Zhengzhou, China. Toxics. 2024; 12(1):81. https://doi.org/10.3390/toxics12010081
Chicago/Turabian StyleHuang, Jinting, Aomeng Cai, Weisi Wang, Kuan He, Shuangshuang Zou, and Qingxia Ma. 2024. "The Variation in Chemical Composition and Source Apportionment of PM2.5 before, during, and after COVID-19 Restrictions in Zhengzhou, China" Toxics 12, no. 1: 81. https://doi.org/10.3390/toxics12010081
APA StyleHuang, J., Cai, A., Wang, W., He, K., Zou, S., & Ma, Q. (2024). The Variation in Chemical Composition and Source Apportionment of PM2.5 before, during, and after COVID-19 Restrictions in Zhengzhou, China. Toxics, 12(1), 81. https://doi.org/10.3390/toxics12010081