Short-Half-Life Chemicals: Maternal Exposure and Offspring Health Consequences—The Case of Synthetic Phenols, Parabens, and Phthalates
Abstract
:1. Synthetic Phenols, Parabens, and Phthalates
2. Absorption, Distribution, Metabolism, and Excretion Processes of PPPs
3. Toxicokinetic Models for Adapting Human Exposure Doses to Animal Models
3.1. Estimation of PPP Daily Intake
3.2. Interspecies Extrapolation of PPP Dose
4. Evaluation of Transplacental Transfer of PPPs Using Models
- The most clinically relevant model to evaluate the placental transfer of compounds is the ex vivo human placental perfusion model at term [53]. This enables placental transfer to be assessed by reproducing maternal and fetal circulation in a few hours and taking samples from each compartment. This model offers several advantages, as the placental barrier maintains its structural integrity and the separate perfusion of the maternal and fetal sides reproduces their respective blood flows. However, this physiological approach does not take into account the nonplacental toxicokinetic factors that could contribute to the level of fetal exposure. These factors include the maternal and fetal metabolism, the dynamic structural conditions of the pregnancy, and the physiological changes throughout the pregnancy (the thickness of the trophoblast, uterine flow, and expression of transporters) [54].
- An integrated pregnant sheep model that enables a direct administration and monitoring of xenobiotics over time in both fetal and maternal blood [55]. Because of important physiological similarities between the sheep and human placental functions, this model has contributed to significant advances in prenatal human medicine [56], despite the interspecies differences in the placental structure (the synepitheliochorial versus hemochorial placental structure) and transporters [56,57].
5. Effects of PPPs on Human Placenta from Epidemiological Data and In Vitro Models and on Fetoplacental Growth from Animal Models
5.1. Epidemiological Data (Table 1)
Population | Placental Outcomes | Studied Compounds | Sample Type, Number, and Timing | Main Results | References | |||
---|---|---|---|---|---|---|---|---|
N = 2723 women–child pairs Recruitment: May 2013–September 2014 Country: China | Placental weight (calculated), PFR, chorionic plate area, disk eccentricity | MMP, MEP, MBP, ∑LMWP, MEHP, MEOHP, MEHHP, ∑DEHP | One spot urine sample per trimester | GM of three trimesters/T1/T2/T3 Placental weight: MMP ↑*/↓*/↑*/↑* MEP ↓*/↑*/↓*/↓* MBP ↑*/↑*/↑*/↑ ∑LMWP ↑*/↑*/↑*/↑* MEHP ↑*/↓*/↑*/↑* MEOHP ↑*/↑*/↑*/↑* MEHHP ↑*/↓*/↑*/↑* ∑DEHP ↑*/↓*/↑*/↑* Boys/girls stratification (on GM of three trimesters) Boys/girls Placental weight: MMP ↑*/↑* MEP ↑*/↓* MBP ↑*/↑* LMWP ↑*/↑* MEHP ↑*/↑* MEOHP ↓*/↑* MEHHP ↑*/↑* DEHP ↑*/↑* | PFR: MMP ↑*/↓*/↑*/↑ MEP ↓/↑/↓/↑ MBP ↑*/↑/↑*/↑* ∑LMWP ↑*/↑/↑*/↑* MEHP ↑*/↓*/↓/↑* MEOHP ↑/↑*/↑*/↑* MEHHP ↑*/↓*/↑*/↑* ∑DEHP ↑*/↓*/↑*/↑* PFR: MMP ↑*/↑* MEP ↓*/↑* MBP ↑*/↑* LMWP ↑*/↑* MEHP ↑*/↑* MEOHP ↑*/↑* MEHHP ↑*/↑* DEHP ↑*/↑* | [79] | ||
N = 2725 (1399 boys and 1326 girls) mother–child pairs Recruitment: May 2013 and September 2014 Country: China | Placental length, thickness, breadth and surface area | MMP, MEP, MBzP, MEHP, MEHHP, MEOHP | One maternal spot urine sample per trimester | T1/T2/T3 Only chemicals with at least one significant results are shown Overall Placental breadth: MBP ↑*/↓/↑* LMWP ↑*/↓/↓ Placental thickness: MMP ↓/↑*/↓ MBP ↓/↑*/↑* MEOHP ↑/↑*/↑ MEHHP ↓/↑*/↑ LMWP ↓/↑*/↑ HMWP ↓/↑*/↑ | Boys Placental breadth: MBP ↑*/↓/↑* LMWP ↑*/↓/↓ Placental thickness: MMP ↓/↑*/↑ MBP ↑*/↑/↑* MEOHP ↓/↑*/↑ MEHHP ↓/↑*/↑* LMWP ↓/↑*/↑* HWMP ↓/↑*/↑ MEHP ↓/↑*/↑* | GirlsPlacental breadth:MMP ↑*/↑/↑MBP ↑*/↑/↓LMWP ↑*/↑/↑Placental thickness:MBP ↑*/↑/↑*MEOHP ↑*/↑/↓ | [84] | |
N = 473 mother–infant (only boys) pairs Recruitement: April 2003–March 2006 Country: France | Placental weight, PFR | MCPP, MBP, MiBP, MBzP, MEP, cx-MiNP, MCOP, MEHP, MEHHP, MEOHP, MECPP, 2,4-DCP, 2,5-DCP, n-BuP, BP-3, BPA, EtP, MeP, PrP, TCS | One maternal spot urine sample collected between 23 and 29 gestational weeks | Penalized effects: BP3 ↑ Placental weight TCS ↓ Placental weight ∑PB ↑ Placental weight MCOP ↓ PFR cx-MiNP ↓ Placental weight/↓ PFR | Unpenalized effects: BP3 ↑ Birthweight/↑ Placental weight TCS ↓ Placental weight ∑PB ↑ Placental weight cx-MiNP ↓ Placental weight/↓ PFR MCOP ↓ PFR | [36] | ||
132 mother–child pairs Subfertile population Recruitement: 2005–2006 Country: USA | Placental weight assessed at birth | MEP, MBP, MiBP, MBzP, MEHP, MEHHP, MEOHP, MECPP, MCPP, MCOP, cx-MiNP | Paternal and maternal spot urine samples collected: (1) at recruitment (mother and father); (2) at each fertility treatment cycle (two spots for the mother and one for the father); (3) one spot per trimester of the pregnancy (mother) | [p-value] MEP ↑ Placental weight [0.80]/↓ FPR [0.02] | [80] | |||
N = 207 women–child pairs, recruited between October 2011 and September 2012 Chongqing (Southwest China) Recruitement: October 2011–September 2012 Country: China | Placental weight at birth | DMP, DEP, DMEP, DBP, DEEP, DiBP, DPP, BMPP, DBEP, DCHP, DnHP, BBP, DEHP, DnOP, DNP | Cord blood sample | No effect on placental weight or volume | [81] | |||
N = 142 mother–newborn pairs Recruitement: December 2014–December 2016 Country: Belgium | Placental weight at birth | MeP, EtP, PrP, n-BuP | Placenta sample | [p-value] In both sexes: EtP ↓ Placental weight [0.11] ∑Parabens ↓ Placental weight [0.08] | In boys: EtP ↓ Placental weight [0.24] ∑Parabens ↓ Placental weight [0.23] | In girls:EtP ↓ Placental weight [0.02] ∑ Parabens ↓ Placental weight [0.03] | [77] | |
N = 657 mother–child pairs Recruitment: 2004–2006 Country: Spain | Placental weight at birth | BPA, DEHP (∑ of MEHP, MEHHP, MEOHP, MECPP), MBzP, LMWP (∑ of MEP, MiBP, MBP | Two spot urine samples collected at 12 ± 1.7 and 32 ± 1.4 weeks of gestation | In boys: MBZP ↑ Placental weight | In girls: MBZP ↓ Placental weight | [75] | ||
N = 130 mother–child pairs Recruitment: 2006–2008 Country: USA | Placental weight, fetal weight, head circumference, abdominal circumference, and femur length | 2,4-DCP, 2,5-DCP, BP-3, n-BuP, EtP, MeP, PrP, TCS, BPS, TRCB | One spot urine sample | Inverse associations were observed between average 2,4- and 2,5-DCP concentrations and birth weight z-scores in males Inverse associations between average TCS exposure over pregnancy and estimated fetal weight combined with birth weight in repeated measures models in males | [76] | |||
SEPAGES cohort N = 484 pregnant women Recruitment: 2014–2017 Country: France | Placental weight, PFR, placental thickness, and placental vascular resistance | 4 parabens, 2 bisphenols, triclosan, benzophenone-3, 13 phthalate metabolites, and 2 non-phthalate plasticizer metabolites | Repeated urine samples collected during the second and third trimesters of pregnancy | Several phthalate metabolites were negatively associated with placental outcomes MBzP: ↓ placental weight and PFR (T2 and T3 trimesters) Negative associations with placental weight and PFR for males only (T3 trimester) MBP: ↓ placental vascular resistance (T2 and T3 trimesters) Σ DiNP: ↓ placental vascular resistance (T3 trimester), ↓ placental weight and PFR in males only No associations between phenols and placental outcomes | [82] | |||
SEPAGES cohort N = 484 pregnant women Recruitment: 2014–2017 Country: France | Fetal biparietal diameter, femur length, head and abdominal circumferences measured by ultrasound, newborn weight, length, and head circumference measured at birth | 13 phthalates, and 1,2-cyclohexane dicarboxylic acid and diisononyl ester (DiNCH) metabolite | Repeated urine samples collected during the second and third trimesters of pregnancy | MiBP: ↑ biparietal diameter, and head and abdominal circumferences at T2 trimester MBP: ↑ estimate fetal weight, and head and abdominal circumferences in males Mixture of phthalate/DiNCH metabolites: ↑estimate fetal weight (T3 trimester) | [83] |
5.2. Effects of PPPs on Human Placental Methylation
5.3. Effects of PPPs on Human Placental Function Using In Vitro Models
5.4. Effects of Phenols and Parabens on Fetoplacental and Neonatal Outcomes Using Animal Models (Table 2)
Animal Model | Chemicals | Dose Administered | Exposure Route | Exposure Duration | Observation Stage | Function Studied | Fetoplacental Outcomes | Additional Outcomes | Reference |
---|---|---|---|---|---|---|---|---|---|
Mouse | BPA | 0.002 mg/kg bw/d | Oral gavage | GD6.5-17.5 | GD18.5 | Placental function | Peroxisome proliferator-activated receptor alpha and gamma (PPARα, PPARγ) and Aryl hydrocarbon receptor (AhR) mRNA expression: no effect RAR-related orphan receptor gamma (RORγ) mRNA expression: BPA ↓ (♀) Estrogen receptor beta (Erβ) and LXRα mRNA expression: BPA ↑ (♂) Progesterone receptor (PR) mRNA expression: BPA ↑ (♂)/↓ (♀) Placental expression of 6 non-nuclear receptor protein mRNAs: BPA ↓ (♂)/↑ (♀) | COUP-TFα, GCNF, SF-1, and PNR mRNA expression: BPA ↓ (♂)/↑ (♀) | [141] |
Mouse | BPA | 0.05 mg/kg bw/d | Oral gavage | GD1-7 | GD5, 8, 10, 12, 14 | Fetoplacental development/placenta and uterine spiral artery structure | Placental areas, thickness, and diameter: no effect Placental weight: BPA ↓ (GD14) Fetal bodyweight: BPA ↓ (♀ GD14) Percentage of intrauterine growth restriction (IUGR): BPA ↑ (40.5% IUGR) Uterine spiral artery wall thickness: BPA ↑ | Implantation number and abortion rates: no effect Implantation sizes: BPA ↓ (GD12) Uterine artery blood velocity values and uterine natural killer cell numbers: no effect Uterine spiral artery smooth muscle actin staining and wall-to-lumen ratio: BPA ↑ | [136] |
Mouse | BPA | 0.5 or 50 mg/kg bw/d | Oral gavage | GD1-11 | GD12 | Fetoplacental development/placental structure | Placental diameter and embryo length: BPA ↑ (50) Right forelimbs length: BPA ↓ (0.5)/↑ (50) Yolk sac length, first somite longitudinal–transversal diameter, and first branchil arch longitudinal–transversal diameter ratios: BPA ↑ (0.5)/↓ (50) Trophoblast giant cell degeneration and necrosis: BPA ↑ Spongiotrophoblast layer: BPA ↓ (50) Maternal blood space area: BPA ↑ (50)/↓ (0.5) Displacement of β-catenin from membrane to nucleus in the spongiotrophoblast and the labyrinthine cells: BPA ↑ (0.5) Numbers of differentially expressed genes (DEGs): 582 (0.5)/701 (50) Numbers of significant gene clusters: BPA (0.5 (11)/50: (13)) Gene cluster involvement: vascular/blood vessel development, nucleotide binding, embryonic morphogenesis and proteolysis, peptidase activity, progesterone-mediated oocyte maturation, gap junction pathways, chromosome organization, and chordate embryonic development | [138] | |
Mouse | BPA | 0, 2, 20, or 200 mg/kg bw/d | Oral gavage | GD13-16 | GD17 | Placental function | Placental CRH mRNA expression: BPA ↑ (200) Placental CYP19 mRNA expression: no effect Placental cAMP-response element-binding protein (CREB) level: BPA ↑ Preterm delivery: BPA ↑ | Plasma CRH, estradiol, and testosterone concentrations: BPA ↑ (20, 200) Protein kinase C ζ/λ phosphorylated forms: BPA ↑ Protein kinase C delta (PKCδ) phosphorylated forms: BPA ↑ (200) | [149] |
Mouse | BPA | 0, 0.4, 4, 40, or 400 µM BPA in drinking water | Orally (drinking water) | GD7-17 | GD13, 16 and 17 | Placental structure and function | Mean fetal and placental weight, litter size, and placental-to-bodyweight ratio: no effect Placental vessel area: BPA ↓ Trophoblast invasion-related gene expression: BPA ↑ (TIMP1, TIMP2)/↓ (MMP2, MMP9, WNT2) Number of differentially expressed genes related to placental epigenetic modifications: BPA ↑ (8)/↓ (2) | Dams systolic blood pressure: BPA ↑ (4, 40, 400) Dams glomerular atrophy: BPA ↑ Maternal bodyweight: no effect | [140] |
Mouse | BPA | 200 mg/kg bw/d | Orally (food) | GD-15 to GD12.5 | GD12.5 | Placental function | Placental number of differentially expressed miRNAs: BPA ↑ (22)/↓ (21) Prediction of the number of mRNAs affected by the differentially expressed miRNAs: 142 Tissue-specific gene enrichment based on predicted mRNAs affected by the differential expressed miRNAs: thymus, cerebellum, olfactory bulb, brain cortex, E14.5 brain, and heart Pathways affected by the differential expressed miRNAs: neural pathways (neurogenesis, neuron differentiation, and development), cell projection organization, cation transmembrane transport, metal ion transport, and inorganic cation transmembrane transport | [144] | |
Mouse | BPA | 10 mg/kg bw/d BPA | Subcutaneous injections | GD0-GD7 | GD10, GD12, PND0-56 | Placental structure | Number of embryos and survival rate: BPA ↓ Placental size and proportion of placental decidua basalis: BPA ↓ (GD12) Proportion of placental metrial gland: BPA ↑ Proportion of placental labyrinth area, intervillous spaces, and alignment of trophoblast giant cells: BPA ↓ | Uterine weight, uterine-to-bodyweight ratio, and glycogen-containing cells: BPA ↓ | [137] |
Mouse | BPA | 5, 10, or 40 mg/kg bw/d | Subcutaneous injections | GD0.5-5.5 | GD14.5 | Placenta structure and function | Labyrinthine area and decidua ITGβ1 and ITGα5 protein levels: BPA ↑ Placental MMP9 and MMP2 protein level: BPA ↑ Placental TIMP3 protein level: BPA ↓ Phosphorylated Akt and ERK level: BPA ↑ (5, 40) Labyrinthine area proportion and intervillous spaces: BPA ↓ Spongiotrophoblast layer in the placenta: BPA ↓ (10, 40) Presence of large vacuoles in the placenta: BPA ↑ | - | [139] |
Rat | BPA | 0.0025, 0.025, or 0.25 mg/kg bw/d | Orally (drinking water) | GD-30 to GD20-22 | GD20-22 | Fetoplacental development and uterine artery | Fetal weight: BPA ↑ (2.5) Placental weight and placenta-to-bodyweight ratio: BPA ↓ (2.5, 250) | Uterine artery diameter and uterine artery relaxation: BPA ↓ Uterine artery gene expression: BPA ↓ (PPARγ/ERα)/↑ (ERβ/VEGF/COX-2) | [133] |
Rat | BPA | 0.0025, 0.025, or 0.25 mg/kg bw/d | Orally (drinking water) | GD-30 to GD20 | GD20 | Fetoplacental development/placental metabolism | Fetal weight at birth: BPA ↑ (2.5) Placental weight: BPA ↓ (2.5, 250) Placental efficiency: BPA ↑ Glucose transporter 1 (GLUT1) placental expression: BPA ↑ (2.5, 250) | Non-pregnant rats bodyweight: BPA ↑ (25, 250) 3-week pregnancy bodyweight: BPA ↓ (2.5) | [148] |
Rat | BPA | 200, 400, or 600 mg/kg bw/d | Subcutaneous injections | GD17-19 | PND5 | Maternal and fetal uteri gene expression | Postnatal uterine calbindin-D9K (CaBP-9k) and Estrogen receptor alpha (Erα) mRNA expression: ↑ (600) Placental passage of BPA Rapid BPA absorption and distribution in maternal uteri | Maternal uterine CaBP-9k mRNA expression: BPA ↑ (600) Maternal uterine CaBP-9k protein expression: BPA ↑ Maternal uterine Erα mRNA expression: no effect Induction of CaBP-9k protein in the endometrium of the maternal uterus: BPA ↑ | [147] |
Sheep | BPA | 0.5 mg/kg bw/d | Subcutaneous injections | GD30-90 | GD65, 90 | Placental function | Fetal weight and placental efficiency: BPA ↓ (GD65) Placental expression of inflammatory genes: BPA ↓ (GD65: TNF)/↑ (GD65: IL8/GD90: IL1β) Placental expression of vascularization genes: BPA ↓ (GD90) Placental expression of steroidogenic metabolism and signaling genes: BPA ↑ (GD65: CYP17, CYP19 and ESR2)/↓ (GD90: CYP17) Placental expression of IGF family: BPA ↓ (GD65: IGF1R)/↑ (GD65: IGF2R, IGFBP1, IGFBP3/GD90: IGFBP2, IGFBP3 and IGFBP4) Placental oxidative stress markers and placentome triglycerides and collagen accumulation: BPA ↑ (GD90) Placental antioxidant genes expression: BPA ↑ (GD65) DNA methyltransferase: BPA ↑ (GD65: DNMT3A) Histone deacetylase: BPA ↑ (GD65: HDAC2 and HDAC1) | [134] | |
Sheep | BPA | 5 mg/kg bw/d | Subcutaneous injections | GD40-110 | GD110 | Placental function/fetal development | Placentome total weight, fetal weight, and placental efficiency: BPA ↓ Relative and protein expression level of Bcl-2: BPA ↓ Apoptosis rate and relative mRNA and protein expression of caspase-3, 8, and 9: BPA ↑ Mitochondrial reactive oxygen species (ROS) production: BPA ↑ ATP content and mitochondrial complex activities: BPA ↓ mRNA and protein relative expression of antioxidant-related genes and protein: BPA ↓ mRNA and protein relative expression of endoplasmic reticulum stress: BPA ↑ | [135] | |
Mouse | BPA, BPS | 200 mg/kg bw/d | Orally (food) | GD-15 to GD12.5 | GD12.5 | Placental structure, function, and metabolism | Number of fetuses and placental oestrone, corticosterone, testosterone and progesterone (P4) concentration: no effect Percentage of male conceptus: BPA ↑ Numbers of differentially expressed genes (DEGs): BPS (11)/BPA (3) Pathways enrichment: Wnt signaling pathway, chemokine signaling pathway, and amino acid metabolism Placental dopamine concentration and percentage of dopamine-positive trophoblast giant cells: BPA ↑/BPS ↑ Placental serotonin concentration and percentage of serotonin-positive trophoblast giant cells: BPA ↓/BPS ↓ Placental estradiol (E2) concentration: BPA ↓ Spongiotrophoblast zone to trophoblast giant cell area ratio: BPA ↓/BPS ↓ | Maternal gestational weight, success of pregnancy, and number of implantation sites: no effect D-fructose, sophorose and glycolic acid concentration: BPA ↓ Docosahexaenoic acid (DHA) concentration: BPA ↓/BPS ↓ Stearic acid and palmitic acid concentration: BPS ↓ D-ribose concentration: BPS ↑ | [151] |
Sheep | BPA, BPS | 0.5 mg/kg bw/d | Subcutaneous injections | GD30 to GD100 | GD120 | Placental function | Endocrine function (pregnancy-associated glycoprotein 1 (PAG1), pregnancy-specific protein B (PSPB), P4): BPS ↓ Placental morphology: no effect Syncytialization: BPS ↓ (E-cadherin)/BPS ↑ (GCM1) Expression of genes involved in trophoblast fusion: BPS ↓ | [150] | |
Rat | BPA, DEHP | 0.005 mg/kg bw/d BPA, 5 or 7.5 mg/kg bw/d DEHP, or both (mix) | Oral gavage | GD6-21 | GD6 (abortion and weight), PND1 to 24 weeks | Fetal development | Chest circumference: DEHP ↑ (5)/DEHP + BPA ↑ (5)/DEHP ↓ (7.5)/DEHP + BPA ↓ (7.5) Crown-to-rump length: BPA ↑/BPA + DEHP ↑ (5) Heart weight: BPA + DEHP ↑ (♂: 7.5) | Abortion rate: BPA + DEHP ↑ Thymus weight: BPA ↓ (♂)/DEHP ↓ (♂: 7.5) Thymus apoptosis: BPA + DEHP ↑ (7.5) | [158] |
Mouse | BPA, OP | 50 mg/kg bw/d | Subcutaneous injections | GD11.5-16.5 | GD17.5 | Placental function | Placental calcium transporter channels: OP ↓ (Trpv6 protein level)/OP ↑ (Pmca1 mRNA and protein levels), BPA ↑ (Pmca1 mRNA and protein levels) Placental copper transporter channel expression: OP ↓ (Crt1 mRNA and protein levels/ATP7A mRNA and protein levels)/BPA ↓ (Crt1 mRNA and protein levels/ATP7A mRNA and protein levels) Placental iron transporter channel expression: OP ↓ (Heph mRNA)/BPA ↓ (Heph mRNA and protein levels) Fetal serum cation levels: BPA ↓/OP ↓ (calcium and copper) | [145] | |
Rat | BPA, OP, NP | 200, 400, or 600 mg/kg bw/d | Subcutaneous injections | GD20 | Placental function | Placental CaBP-9k mRNA expression: BPA ↑ (200) Extraembryonic membrane CaBP-9k mRNA expression: OP ↓ (400/600)/NP ↓ (600) Placental CaBP-9k protein expression: OP ↑ (200)/NP ↑ (200)/BPA ↑ (400, 600) Extraembryonic membrane CaBP-9k protein expression: OP ↓ (400, 600) Fetal uterus CaBP-9k mRNA expression: OP ↑ (400, 600)/NP ↑ (400, 600)/BPA ↑ (600) | Maternal uterus CaBP-9k mRNA expression: OP/NP ↑ (600) Maternal uterus CaBP-9k protein level: BPA ↑/OP ↑ (600) | [146] | |
Mouse | BPA, TBBPA | 10 mg/kg bw/d BPA, 0.5 mg/kg bw/d TBBPA | Orally (food) | GD-15-GD16.5 | E6.5-E10.5, E16.5 | Fetoplacental development/placental function | Rate of the hemorrhaging conceptus and fetal loss: BPA ↑/TBBPA ↑ Trophoblast giant cells Ido1 mRNA expression: BPA ↓ | Resorption rate: BPA ↑/TBBPA ↑ Mean Tregs cell number in the maternal spleen: BPA ↓ Mean CD4+ T cell number in the maternal spleen: BPA ↓/TBBPA ↓ Percentage of total Ido1 DNA methylation at CpG sites: BPA ↑ (♂) | [159] |
Mouse | BPA, TCS | 0, 87, 262, 523, or 7858 mg/kg bw/d TCS in a single dose; 0, 523, or 7858 mg/kg bw/d TCS in repeated doses; 61 or 122 mg/kg BW/d BPA; 262 mg/kg BW/d TCS + 61 mg/kg BW/d BPA; 262 mg/kg BW/d TCS + 122 mg/kg BW/d BPA | Subcutaneous injections | GD1-3 | GD6, 17, PND 0, 4, 7, 14, and 21 | Implantation | Number of implantation sites: TCS ↓ (repeated-dose GD6: 523, 7858)/TCS ↓ (single-dose GD2: 7858/GD3: 523, 7858)/TCS + BPA ↓ (GD6: 262 + 122) Percentage of dams with normally developing implantation sites: TCS + BPA ↓ (GD6) Gestational length: BPA + TCS ↑ (262 + 122) Postnatal survival and pup bodyweight: no effect | [152] | |
Mouse | TCS | 1, 4, or 8 mg/kg bw/d | Oral gavage | GD6-18 | GD11-19 | Fetoplacental development/placental function | Number of live fetuses, fetal bodyweight, and placental weight: TCS ↓ (8) Placental size and volume, labyrinthine area volume, and labyrinth cell proliferation activity: TCS ↓ (8) PCNA and CD3 placental expression: TCS ↓ (8) MeAIB placental expression: TCS ↑ (8) MeAIB transporteur activity (SNAT): TCS ↓ (8) Glucose transporter activity: TCS ↓ (8: SNAT1, SNAT4, GLUT1 mRNA) Phosphorylation of Akt-mTOR-p70S6K signaling: TCS ↓ (8) | Triiodothyronine (T3), thyroxine (T4) and P4 levels: TCS ↓ (8) Thyroid-stimulating hormone (TSH) level: TCS ↑ (8) | [155] |
Mouse | TCS | 4 or 8 mg/kg bw/d | Oral gavage | GD6-14 | PND1, 30, 60 | Placenta/metabolism | Numbers of pups, offspring bodyweight, and body mass index: TCS ↓ (8) Body length: no effect | [160] | |
Mouse | TCS | 0, 10, 50, or 100 mg/kg bw/d | Oral gavage | GD7.5-17.5 | GD17.5 | Placental function | Fetal and placental weight: TCS ↓ (50, 100) Placental expression of PPARγ and PPARγ-regulated genes, and ANGPTL4 and MMP9 proteins: TCS ↓ Placental expression of inflammatory genes and IL-1β proteins: TCS ↑ | Uterus size: TCS ↓ (50, 100) | [161] |
Rat | TCS | 75, 150, or 300 mg/kg bw/d | Oral gavage | GD8-PND21 | PND3, PND90 | Fetal development/uterine structure/estrous cycle | Mean of litter weight: TCS ↓ (PND3) Number of estrus cycles and frequency of proestrus phase: TCS ↓ Frequency of metestrus phase: TCS ↑ | Maternal bodyweight: TCS ↓ The papilliferous appearance of the simple columnar luminal epithelium with vacuolization in the uterus: TCS ↑ Uterine cell height and uterine thickness: TCS ↑ Inflammatory infiltrate amount (leukocytes): TCS ↑ (150, 300) T4, T3, and TSH levels: TCS ↑ | [162] |
Sheep | TCS | 0.1 mg/kg bw/d | Direct infusion into the fetal circulation or through administration to the ewe | 2 days between GD120 and GD130 | 3 days after 1st injection | Placental/liver sulfotransferase activity | TCS concentration: Placental concentration > Fetal liver concentration Estrogen sulfotransferase activity in placenta and fetal liver cytosol: TCS ↓ | [153] | |
Mouse | DEHP | 0, 50, or 200 mg/kg bw/d | Oral gavage | GD0-6, GD7-12, GD13-17 | GD18 | Fetoplacental development | Fetal weight: DEHP ↓ Crown–rump length: DEHP ↓ (GD7-12/GD13-17) Placental weight, blood sinusoid area in the labyrinth, and placental cell proliferation: DEHP ↓ (GD7-12) Placental diameter: DEHP ↓ (♂: GD7-12) | [163] | |
Mouse | DEHP | 125, 250, or 500 mg/kg bw/d | Oral gavage | GD1-13 | GD9 and GD13 | Placental development and function | Embryo implantation: DEHP ↓ (500) Fetoplacental weight, placental-to-body-weight ratio, and ectoplacental cone proportion: DEHP ↓ Condensed packed cells of ectoplacental cone: DEHP ↓ (250, 500) Spongiotrophoblast area in the placenta: DEHP ↓ Labyrinth area in placenta: DEHP ↓ (500) Gene expression involved in placental development: DEHP ↓ (GD9-13: Ascl2, Esx1, and Fosl1/500 GD9: Eomes)/↑ (GD13: Eomes and Hand1) Formation of the branched fetal vessel in the labyrinthine area: DEHP ↓ MAPK signaling pathway and phospho-Erk1/2 levels in placenta: DEHP ↑ (GD9/GD13: 500) | Protein levels involved in apoptosis process: DEHP ↑ (GD13: Bax casp-3 and Bax caps-8)/↓ (GD13: Bcl2) Number of Ki-67-positive cells: DEHP ↓ | [164] |
Rat | DEHP | 500 or 1000 mg/kg bw/d | Oral gavage | GD7-12 | GD20 | Fetal development/placental function | Number of living fetuses: DEHP ↓ Fetus malformation: DEHP ↑ Number of differentially expressed genes (DEGs): DEHP ↑ (500 (1951), 1000 (951))/↓ (500 (1836), 1000 (527)) DEG pathways: steroid biosynthesis, PPAR signaling pathway, amino acid metabolism, lipid and drug metabolism, circadian entrainment, and neuroactive ligand–receptor interaction | Pregnant weight changes at GD18: DEHP ↓ Protein-protein interaction: 2682 interaction pairs and 476 nodes Protein–protein interaction enrichment: olfactory transduction, cell cycle pathways, and neuroactive ligand–receptor interactions | [165] |
Rat | DEHP | 750 or 1500 mg/kg bw/d | Oral gavage | GD0-19 | GD20 | Placental metabolism | PPARα and PPARγ mRNA expression in the labyrinth and the junctional zone: DEHP ↑ PPARα and PPARγ protein expression: DEHP ↑ Essential fatty acid (EFA) transporters in the labyrinth: DEHP ↑ (FAT/CD36, FATP1, HFABP) EFA transporters in the junctional zone: DEHP ↑ (FATP1, HFABP) EFA metabolic enzyme expression: DEHP ↑ (CYP4A1)/↓ (COX-2) Total prostaglandins in the placenta: DEHP ↓ | Arachidonic acid (AA) in fetal and maternal plasma: DEHP ↓ DHA in fetal plasma: DEHP ↓ DHA in maternal plasma: DEHP ↑ AA and DHA maternal–fetal ratio: DEHP ↑ Fetal organ distribution of AA and DHA: DEHP ↓ | [166] |
Rat | DnHP, DCHP | 0, 20, 100, or 500 mg/kg bw/d | Oral gavage | GD6-19 | GD20 | Fetoplacental development | Fetal bodyweight: DnHP ↓ (20, 100)/DnHP ↑ (♂: 500)/DCHP ↓ (♀: 500)/DCHP ↑ (20, 100) Anogenital distance (AGD): DnHP ↓ (♀)/DCHP ↓ (♀) AGD/bodyweight ratio: DnHP ↑ (100)/DnHP ↓ (500)/DCHP ↓ (20, 100) Placental weight: DCHP ↑/DnHP ↑ (20, 100) Placental diameter: DnHP↓/DCHP ↓ Placental index: DnHP ↑/DCHP ↑ Trans-umbilical cord length: DnHP ↓ (20, 100)/DCHP ↑ (500) Cytoplasmic degeneration of trophoblast giant cells: DnHP ↑/DCHP ↑ Number and volume of trophoblast giant cells: DnHP ↑ (100, 500)/DCHP ↑ (500) Degeneration of spongiotrophoblast cells: DCHP ↑ (100, 500) Hemorrhage in the labyrinth and basal zone: DnHP ↑ (100, 500)/DCHP ↑ Vessel formation in the labyrinth: DnHP ↑ (500)/DCHP ↓ Immunostaining of PCNA, PPARγ, ERα, ERβ, and AR: DCHP↓/DnHP↓ | F0 relative kidney and liver weights: DCHP ↑ (20)/DnHP↓ (500) Dams relative organs weights: DCHP ↑ (500) Number of implantation sites: DCHP ↓ (500) Number of live fetuses: DCHP ↓/DnHP ↓ (500) Absolute and relative lengths of bone ossification centers: DCHP ↓/DnHP ↓ Leukocyte, lymphocyte, and monocyte levels: DnHP ↑/DCHP ↑ N-granulocyte levels: DnHP ↓/DCHP ↓ Red blood cell parameters: DnHP ↑ (♂: 500)/DCHP ↑ (♂: 20) | [167] |
Rat | n-BuP | 0, 10, 100, or 1000 mg/kg bw/d | Oral gavage | GD6-19 | GD20 | Fetal development | Litter size, survival rate, number of resorptions, sex ratio, and fetal bodyweight: no effect | Dams bodyweight and bodyweight changes: no effect Dams bodyweight gains: n-BuP ↓ (GD18-20: 1000) Absolute and relative dams feed consumption: n-BuP ↓ (GD6-20: 1000) | [168] |
Mouse | n-BuP, PrP | 0, 0.05, 0.5, 5,10, 20, 30, and 35 mg/dams n-BuP; 35 or 40 mg/dams PrP | Subcutaneous injections | GD1-4 | PND0, 3, 5 | Fetal development | Skin irritation after injection: n-BuP ↑ (0.5, 5, 10, 20, 30, 35) Litter size, survival rate, litter mass, gestational length, and number of implantation sites: no effect | [169] | |
Rat | DiBP, BP | 600 mg/kg bw/d DiBP or 100 mg/kg bw/d n-BuP | Oral gavage | GD7-19 or GD7-21 | GD19-21 | Fetal metabolism | Plasma leptin level: DiBP ↓/n-BuP ↓ Plasma insulin level: DiBP ↓ Fetal bodyweight: DiBP ↓ (GD19) Liver PPARα mRNA expression: DiBP ↓ (GD19) Liver and testes PPARγ mRNA expression: no effect Fetal anogenital distance: DiBP ↓ (♂)/↑ (♀) | Dams bodyweight gain: no effect Testicular mRNA expression of genes involved in steroid synthesis: DiBP ↓ (GD19: SF-1)/↑ (GD21: aromatase) Testes PPARα mRNA expression: DiBP ↓ (GD19) Ovaries mRNA expression of genes involved in steroid synthesis: no effect 17α-hydrolase (P450c17) and PPARγ protein level in Leydig cells, and testicular testosterone production and level: DiBP ↓ (GD19/GD21) | [170] |
Rat | EtP, n-BuP | 100, 200, or 400 mg/kg bw/d | Subcutaneous injections | GD7-21 | GD21 | Placental function | Number of fetuses, fetus weight, and fetus organ weight: no effect | Maternal weight: no effect | [157] |
Mouse | EtP, PrP | 0, 400, 800, or 1600 mg/kg bw/d EtP, and 0, 625, 1250, or 2500 mg/kg bw/d PrP | Oral gavage | GD1 to GD5-7 or to GD8-9 | GD5, GD7-8, GD10 | Implantation/endocrine function | Marker expression of decidualization: EtP ↓ (1600)/PrP ↓ (2500) ER and PR expression: EtP ↓ (1600)/PrP ↓ (2500) Rate of F1 litter size < 7: EtP ↑ (1600)/PrP ↑ (2500) | Implantation rate: EtP ↓/PrP↓ Uterus weight: EtP ↓ (800, 1600)/PrP↓ (2500) E2 and P4 serum levels: EtP ↑ (1600)/PrP ↑ (2500) | [171] |
6. Effects of PPPs on Offspring Health after Birth from Epidemiological Data and Using Animal Models
6.1. Effects of PPPs on Obesity
6.1.1. Epidemiological Data (Table 3)
Population | Class | Chemicals | Sampling Type, Number, and Timing | Timing of Outcome and Outcome of Interest | Model | Sex-Specific Analyses | Main Findings | Reference |
---|---|---|---|---|---|---|---|---|
INMA Spain N = 470 | Phenols and Phthalates | MEP, MBP, MiBP, MBzP, OH-MiNP, MECPP, MEHHP, MEOHP, MEHP, MCMHP, BPA | Urine N = 2 first and third trimesters | 7 years old Body mass index (BMI) z-scores | Uni-pollutant and multi-pollutant using PCA | Yes; p-values for interaction >0.2; | Compared to the first tertile, 7OHMMeOP was inversely associated with the BMI z-score in the third tertile and MECPP was inversely associated with overweight in both the second and the third tertiles of exposure. In the PCA analysis, nonsignificant negative associations were observed with the zBMI for exposure to the phthalate factor (factor 2) in tertile 3 and tertile 2 compared with tertile 1. | [113] |
CHAMACOS California, USA N = 309 | Phenols, Phthalates, and Parabens | MEP, DEP, MBP, DBP, MiBP, DiBP, MBzP, BBP, DEHP, MEHP, MEHHP, MEOHP, MECPP, DiNP, MCOP, cx MiNP, DiDP, MCPP, MeP, PrP, TCS, 2,4-DCP, 2,5-DCP, BP-3, BPA | Urine N = 2 2 prenatal visits | 5 years old BMI z-score and overweight/obesity status | Uni-pollutant and multi-pollutant using BKMR | - | Urinary concentrations of MEP, cx-MiNP, and propylparaben were consistently associated with an increased BMI z-score and overweight/obesity status. | [172] |
Raine Study Australia N = 410 | Phthalates | MEP, MiBP, MBP, MBzP, MEHP, MECPP, MCMHP, MCPP, MiNP, MCOP, MiDP, ΣMBP, ∑DEHP, ∑DiNP, ∑LMW, ∑HMW, ∑all.phth.metab | Serum N = 2 18 and 34 gestational weeks (GWs) | From birth and up to 20 years of age, longitudinal BMI z-scores, and DEXA at 20 years | Uni-pollutant, and linear mixed models with an interaction term between the phthalate level and age group (0–2, 2–11, and 11–20 years) | - | Compared to the lowest tertile: Childhood BMI was positively associated with the middle tertile of MiBP and adolescent BMI is positively associated with the middle tertile of MiBP and ∑LMW. For fat mass, the highest tertile of MECPP had a lower total fat percentage at 20 years of age. Participants whose mothers had detectable MiDP levels had a higher total fat percent at 20 years of age than those with undetectable MiDP levels. For lean mass, there was a positive association with detectable MCOP levels and an inverse association with the middle or highest tertiles of MEHP and the middle tertile of MiNP or ∑DiNP. | [190] |
EDEN France N = 520 | Phthalates | MEP, MBP, MiBP, ΣLMW, MECPP, MEHHP, MEOHP, MEHP, ΣDEHP, MBzP, MCOP, MCPP, cx-MiNP, ΣHMW | Urine N = 1 between 22 and 29 GWs | Measures at birth and 5 years, prediction at 1, 3, and 5 years Birth weight, BMI, and Jenss–Bayley modeling approach of weight | Uni-pollutant | Only boys | No association between phthalate metabolite concentration and postnatal longitudinal weight. Positive association between MEP and weight and BMI at 5 years old, and weight velocity. Positive association between MBzP and weight at 2 years old and weight velocity at early ages. | [194] |
ELEMENT Mexico N = 223 | Phthalates | MEP, MBP, MiBP, MCPP, MBzP, MECPP, MEHHP, MEHP, MEOHP, ΣDEHP | Urine N = 3 one sample per trimester | Around 10 and 13 years old Skinfold thickness, BMI-for-age z–score; waist circumference (WC) | Uni-pollutant, generalized estimating equation models with repeated-measures outcome | Yes, all analyses were sex-stratified | Among females, positive association between MBP T1, and BMI and MiBP T1, with the 3 outcomes. Negative association between MBzP T2 and skinfold thickness. Among males, only MBzP T2 was positively associated with BMI and waist circumference. | [195] |
MIREC study Canada N = 719 mother–child pairs | Phenols | BPA | Urine N = 1 first trimester (mean 12.1 GWs [6.3 to 15]) | Average 3.5 years old (range: 1.9–6.2) weight, height, waist/hip circumference, and subscapular/triceps skinfold thickness | Uni-pollutant, linear regression | Yes | BPA was positively associated with the waist-to-hip ratio among all children. Among girls, BPA was positively associated with the waist circumference (while null in boys) and the subscapular skinfold thickness (while almost inversely in boys). | [181] |
Mount Sinai USA N = 180 | Phthalates | MEP, MBP, MiBP, MCPP, MBzP, ∑DEHP | Urine N = 1 T3 trimester (25–40 GWs) | Each follow-up visit scheduled at approximately ages 4–5.5 (mean, 4.9), 6 (mean, 6.2), and 7–9 (mean, 7.8) years old Fat mass | Linear mixed-models with random intercepts to account for multiple observations per child; Bayesian modeling framework | Yes | No significant association between using continuous chemicals. In tertiles, compared with the lowest ∑DEHP tertile, the fat mass was 3.06% (95% CIs: –5.99, –0.09%) lower in the highest tertile. | [200] |
The Mount Sinai Children’s Environmental Health Study (MSSM), CCCEH, HOME USA N = 180 | Phthalates | MEP, MBP, MiBP, MCPP, MBzP, ∑DEHP | Urine N = 1 third trimester (20–40 GWs) | At follow-up visits scheduled for approximately ages 4– 5.5, 6 and 7–9 years old (MSSM), 5 and 7 years old (CCCEH), and 4, 5, and 7–9 years old (HOME) BMI z-score and overweight/obese status | Bayesian modeling framework | Yes | MCPP was associated with increased odds of overweight/obese status overall. MEP was associated with lower BMI z-scores among girls. | [187] |
Odense Child cohort Denmark N = 312 | Parabens | MeP, EtP, PrP, b-BuP, BzP | Urine N = 1 around 28 GWs (median 28.7 GWs) | 7 years old BMI z-score, total fat, android fat, and gynoid fat | Uni-pollutant, linear regression | Yes, all analyses stratified by gender | Only n-BuP was positively associated with the total and android (visceral and subcutaneous) fat percentage among boys. | [185] |
TIDES USA N = 780 | Phthalates | MEP, MBP, MiBP, MCPP, MCOP, cx-MiNP, MBzP, ∑DEHP | Urine N = 2 around 11 and 32 GWs | Birth, 1, 3, 4, and 6 years old Weight and BMI | 1—Linear mixed-model with repeated growth measures; 2—Group-based trajectory (patterns of weight or BMI change over time) | Yes, differences by sex for weight models but not BMI models | MEP, MBzP, MiBP, and MBP were all inversely associated with weight and BMI at birth. MCPP and MBP were positively associated with BMI at 3 years old. MEP, MBzP, MCPP, and MCOP were positively associated with BMI at 4 years old. | [192] |
Ma’anshan Birth Cohort (MABC) China N = 990 | Phthalates | MMP, MEP, MBP, ΣLMW, MBzP, MEHP, MEOHP, MEHHP, ΣDEHP, ΣHMW | Urine N = 3 each trimester | Birth, 3, 6, and 9 months, and 1, 1.5, 2, 2.5, 3, 4, 5, and 6 years old BMI for age z-scores | Uni-pollutant (linear/logistic regression and GEE with repeated measurement) and multi-pollutant (quantile g-computation and BKMR) | Only girls | Pregnancy means ΣLMW and MBzP were negatively associated with BMI z-score at birth. Pregnancy means ΣDEHP was positively associated with BMI z-score at 3 months. Trajectories of BMI z-score was associated with first-trimester exposure to MEP (negative association) and MEOHP (positive association), and positively associated with third-trimester exposures to MEP, MBP, ΣLMW, and MEHP. Mixtures analyses did not find any significant associations. | [201] |
INMA Spain N = 1015 | Phenols, Parabens, and Phtalates | MEP, MBP, MBzP, DEHP, MeP, EtP, PrP, n-BuP, BP-3, BPA | Urine N= 2 first (mean 13 GWs) and third (mean 33 GWs) trimesters | 11 years old BMI z-scores | Uni-pollutants (generalized additive mixed models); multi-pollutant (BKMR) | Yes | BP-3 was associated with a higher BMI. In girls, the overall mixture trended with a higher BMI. | [174] |
HELIX project European cohort including France, Greece, Lithuania, Norway, Spain, and the UK N = 1301 | 45 ED compounds | Among them, 7 high-molecular-weight phthalate metabolites (HMWPs), including 4 (DEHP) metabolites, 2 DiNP metabolites, and 1 metabolite of BBP; 3 low-molecular-weight phthalate metabolites (LMWPs); 4 parabens; 3 phenols | Urine and blood samples during pregnancy N = 1134 | 6 to 11 years old | Associations were assessed using Bayesian weighted quantile sum regressions applied to mixtures for each chemical | Yes | ΣLMW and ΣHMW of phthalates: ↓ MetS risk score. Association of prenatal MnBP levels with ↓ child MetS risk score. Phenols and parabens: no association with the MetS risk score. | [202] |
China N = 436 | Parabens | MeP, EtP, PrP, n-BuP, BzP | Urine N = 1 3 years old | 3 years old Weight and BMI | Uni-pollutant generalized linear models | Yes | Among all and among boys: urinary EtP concentrations were positively associated with weight z-scores. Nothing significant among girls. | [186] |
Sheyang Mini Birth Cohort Study China N = 430 | Phenols | BPA | Urine N = 1 delivery day | 7 years old Weight, WC, skinfold thickness, and risk of general and central obesity | Uni-pollutant, generalized linear regression models, and multivariable logistic regression models | Yes, no significant interaction | Positive associations with the waist circumference. Higher risk of central obesity in the second and third tertiles of BPA compared to the first tertile. | [182] |
CHAMACOS California, USA N = 345 | Phthalates | MEP, MBP, MiBP, MCPP, MCOP, cx-MiNP, MBzP, ∑DEHP | Urine N = 2 around 14 and 26.9 GWs, averaged for analyses | 5, 7, 9, 10.5, and 12 years old Overweight/obesity, BMI z-score, WC z-score, and percent body fat | Uni-pollutant, GEE with repeated outcomes | Yes | MEP, MBzP, and ΣDEHP were associated with a 20–30% increase in the odds of overweight/obesity at each age point in both boys and girls. MBP was associated with a 30–40% increase in odds in boys only. Consistent positive associations of MEP with BMI, waist circumference, and percent body fat at each time point. ΣDEHP associated with increased waist circumference at 5 years old. MBP, MiBP, MBzP, MCOP, and cx-MiNP were associated with increased waist circumference at 7 and 9 years old. | [193] |
CHAMACOS California, USA N = 402 | Phenols | BPA | Urine N = 2 first (mean 13.8 GWs) and second (mean 26.4 GWs) trimesters | 2, 3.5, 5, 7, and 9 years BMI, WC, percent body fat, and obesity | Uni-pollutant, association with outcomes at 9 years: linear/logistic regressions. Association with longitudinal outcomes: GEE | Yes | Association was not significant among all, while there was a negative association among girls (significant negative association with BMI, body fat, and risk of overweight/obesity), and null associations among boys. Longitudinal analysis showed a negative association with the BMI z-score among girls. | [180] |
CHAMACOS California, USA N = 335 | Phthalates | MBP, MEP, MiBP, MBzP, cx-MiNP, MCOP, MCPP, MEHP, MEHHP, MECPP, MEOHP | Urine N = 2 around 14 and 26.9 GWs, averaged for analyses | 11 follow-up visits between 2 and 14 years old BMI trajectories | PCA | Yes | MEP-positive association with BMI through 12 years. | [197] |
HOME USA N = 220 | Phenols | TCS | Urine N = 2 around 16 and 26 GWs | 8 years old Weight, WC, and body fat percentage | Uni-pollutant, linear regression | yes, all p-values = 0.37 | No significant association. | [203] |
PROGRESS Mexico N = 514 | Phthalates | ΣDEHP, ΣDiBP, ΣDiNP, ΣDBP, MBzP, MECPTP, cx-MiNP, MCPP, MEP | Urine N = 2 s and third trimesters | 4, 6 and 8 years old Child adiposity was categorized into 3 trajectories | Uni-pollutant (linear and multinomial logistic regressions) and mixture (quantile G-computation) | Yes | In comparison to the “low-stable” group, ΣDEHP was associated with greater odds of being in the “high–high” trajectory, ΣDiNP was associated with greater odds of being in the “low–high” trajectory, and cx-MiNP was associated with lower odds of being in the “low–high” trajectory. No mixture effects. | [199] |
EDC Cohort Republic of Korea N = 481 | Phthalates | MEHHP, MEOHP, ΣDEHP, MBP | Urine N = 1 second trimester (mean 20.3 GWs) | 6 years old BMI z-score, percentage of fat mass, and FMI | Uni-pollutant, linear regressions | Yes | MEHHP and MnBP were inversely associated with the BMI z-score among girls. All chemicals measured were inversely associated with skeletal muscle index among all children and among girls (not among boys). | [204] |
MOCEH Study Republic of Korea N = 788 | Phenols | BPA | Urine N = 1 third trimester | Birth, and 6, 12, 24, 36, 60, and 72 months Weight z-score and z-score of weight for length | Uni-pollutant, linear regression for each outcome, and LMM for growth from 6 to 72 months | Yes | BPA was positively associated with the weight z-score at birth among all children and among boys, while positively associated among girls at 24, 36, 60, and 72 months. BPA was positively associated with the z-score of weight for length among all children and among girls at birth, 6, 36, 60, and 72 months. In the longitudinal analysis, BPA was positively associated with the z-score of weight for length among all children and among girls. | [183] |
Human cohort conducted at Wuhan, China N = 814 | Phthalates | MECPP, MEHHP, MEOHP, MEHP, ∑DEHP | Urine N = 3 each trimester | Birth, 6, 12, and 24 months old Weight, ponderal index (PI), and BMI | Uni-pollutant—mixed linear models | Yes | MECPP and MEOHP were positively related to the average weight z-scores in male offspring. DEHP levels at T3 were positively related to 6-month and 12-month BMI z-scores among all children and boys. DEHP levels at T1 were positively associated with BMI z-scores at 24 months among boys. | [189] |
CCCEH USA N = 424 | Phthalates | MEHP, MEHHP, MECPP, MEOHP, MCPP, MiBP, MBP, MBzP, MEP | Urine N = 1 third trimester | 5 (only BMI) and 7 years old BMI z-scores, percentage body fat, fat mass index, and WC | Analyses by DEHP component and non-DEHP component; GEE for BMI analyses, linear regression for other outcomes | Yes | Non-DEHP components were negatively associated with all outcomes of interest among boys. | [205] |
German LIFE Child cohort study, Germany N = 164 | Phthalates | MBzP, MEHP, MEHHP, MEOHP, MECPP, MCIOP, oxo-MiNP, OH-MiNP, ∑LMW, ∑HMW | Urine N = 1 late pregnancy (24 or 36 GWs) | Birth, 1 and 2 years old Weight and BMI | Uni-pollutant, robust linear regression | Yes | ∑HMW was negatively associated with birth weight in all children and among girls (not boys). | [206] |
Shanghai Obesity and Allergy Birth Cohort Study, China N = 218 | Phenols | BPA | Urine N = 1 late pregnancy | 2 years old Weight, mid-upper-arm circumference (MUAC), and skinfold thickness (triceps, subscapular, and abdominal) | Uni-pollutant, linear regression | Yes, all analyses stratified by gender | No differences were found in any adiposity measures. | [176] |
EDEN France N = 520 | Phenols and Parabens | 2,4-DCP, 2,5-DCP, BPA, BP-3, TCS, MeP, EtP, PrP, n-BuP | Urine N= 1 between 22 and 29 GWs | 6 months, 1, 2, and 3 years old Birth measurement and postnatal Jenss growth trajectories | Uni-pollutant | Only boys | Parabens were positively associated with weight at birth; remained for 3 years for methylparaben. | [178] |
HOME, USA N = 219 | Phthalates | ∑DEHP, MCPP, MBP, MiBP, MEP, MBzP | Urine N = 2 around 16 and 26 GWs | 8 years BMI, WC, and percent body fat | Uni-pollutant, 2 samples averaged for prenatal exposure estimation | Yes | MBzP was negatively associated with the BMI z-score. MBzP was negatively associated with body fat when adjusted for creatinine. | [196] |
Rhea Study, Greece N = 230 | Phthalates | MEP, MBP, MiBP, MBzP, MEHP, MEHHP MEOHP, ΣDEHP | Urine N = 1 first trimester | 4 and 6 years Weight, BMI, WC, and skinfold thickness | Uni-pollutant, GAMs to explore shape GEE for associations with repeated outcomes | Yes | Only MnBP was associated with a change in waist-to-height ratio at ages from 4 to 6 years old. | [198] |
Rhea Study, Greece N = 235 | Phenols | BPA | Urine N = 1 first trimester | Birth (weight), from 6 to 4 years old (BLI, at 4 years for other outcomes) Weight, BMI, WC, skinfold thickness | Uni-pollutant, first GAM to explore the shape of the relationships, then linear regressions; mixed effects linear regression model for BMI trajectories | Yes | No significant association, but patterns of BMI trajectories differed between boys and girls (only visually; not tested). | [179] |
INMA-Sabadell Spain N = 391 | Phthalates | ΣHMW, ΣLMW | Urine N = 2 first (around 13 GWs) and third trimesters (around 34 GWs) | From birth to 6 months old for weight gain, and 1, 4, and 7 years old for BMI Weight and BMI | Uni-pollutant and one multi-pollutant model simultaneously adjusted for ΣHMW and ΣLMW; GAMs to explore shape GEE for associations with repeated outcomes | Yes | ΣHMW was inversely associated with the weight gain z-score (from 0 to 6 months) and BMI z-scores at 4 and 7 years old among boys, while associations tended to be positive among girls. Zero associations among all children. | [191] |
HELIX Spain N = 1301 | Phenols, Parabens, and Phthalates | MEP, MiBP, MBP, MBzP, MEHP, MEHHP, MEOHP, MECPP, OH-MiNP, oxo-MiNP, ΣDEHP, EtP, PrP, n-BuP, BP-3, BPA, TCS | Urine N= 2 first and third trimesters | One visit between 6 and 11 years old Weight and BMI | Uni-pollutant and DSA | Not with phenols and phthalates | No significant association. | [173] |
China N = 850 | Phenols | TCS | Urine N = 3 one sample per trimester | 6 months, 1 and 2 years old z-scores of weight | Uni-pollutant trimester-specific expo and average of expo T1-T2-T3 | Yes | Prenatal exposure (mean expo) to triclosan was associated with elevated 2-year-old weight z-score in all and in girls. Exposure during T1 and T2 was associated with increased weight at 2 years old. | [184] |
ELEMENT Mexico N = 249 | Phenols and Phthalates | BPA, MBP, MBzP, MCPP, MEP, MiBP, MEHP, MECPP, MEHHP, MEOHP, ΣDEHP, ΣHMW, ΣLMW | Urine N= 1 third trimester | One single visit between 8 and 14 years old BMI z-score, WC, and the sum of skinfolds | Uni-pollutant, linear regression | Yes, all p-values of sex interaction > 0.2 | Only MBzP was negatively associated with the BMI z-score. | [177] |
SEPAGES cohort France N = 484 pregnant women Recruitment: 2014–2017 | Phenols, Parabens, and Phthalates | 4 phenols, 4 parabens, 7 phthalates, and 1 non-phthalate plasticizer | Weekly pooled urine samples collected from the mother during T2 and T3 trimesters | BMI, height, weight, and head circumference at 3 and 36 months of age | Associations with individual chemicals using adjusted linear regression and mixtures of chemicals using a Bayesian kernel machine regression model | Yes | BP at T2: ↓ BMI and weight at 36 months of age. BP at T3: ↓ height at 36 months of age. BPS at T2: ↑ BMI, weight, and height at 3 and 36 months of age (tendance). BPS at T3: ↑ BMI, weight, and head circumference at 3 months of age (tendance). ΣDEHP at T3: ↑ BMI and weight at 3 months of age. ΣDiNP at T2: stratification for child sex, ↑ of head circumference in males, and ↓ in females at 3 and 36 months of age. | [175] |
6.1.2. Maternal Exposure to PPPs and Metabolic Outcomes in Experimental Models (Table 4)
Animal Model | Chemicals | Dose Administered | Exposure Route | Exposure Duration | Observation Stage | Function Studied | Metabolic Postnatal Outcomes | Additional Outcomes | Reference |
---|---|---|---|---|---|---|---|---|---|
Mouse | BPA | 0.01, 10 mg/kg bw/d | Oral route (food) | Paternal exposure (12 weeks from 5 weeks of age) | 0–20 weeks F1 | Metabolism | Glucose tolerance and body composition: no effect Glucose tolerance at 4 and 7 months of age: BPA ↓ (♀) | Insulin-dependent glucose disposal in post-pubertal: BPA ↑ (0.01) Glucose tolerance (6 months) and glucose disposal (1 year): BPA ↓ Glucose accumulation: BPA ↑ | [214] |
Mouse | BPA | 500 mg/kg bw/d | Oral administration | GD8-GD14 | PND56 | Reproduction/fertility | Mortality at birth: BPA ↑ Serum testosterone, FSH, and LH level: BPA ↓ (PND56) Serum estradiol level: BPA ↑ (PND56) Bax protein expression in Leydig cells, ovaries, and testis: BPA ↑ Ovaries and testis Bcl-2 protein expression: BPA ↓ | Number of mature spermatozoids: BPA ↓ (♂) Number of granular cells: BPA ↓ (♀) | [248] |
Mouse | BPA | 0.01, 0.1 mg/kg bw/d | Subcutaneous injections | GD9-16 | PND1-21 + 6 months | Glucose homeostasis | Bodyweight at birth and PND21: BPA ↑ (0.01)/↓ (0.1) Bodyweight at 3 months of age: BPA ↓ (♀) Insulin sensitivity and glucose tolerance: BPA ↓ (♂: 6 months of age) Serum insulin level: BPA ↑ (♂) Serum glycerol level: BPA ↑ (♂: 0.1) Glucose-stimulated insulin secretion and islets insulin secretion: BPA ↑ (0.01) Global intracellular calcium entry after glucose stimulation: BPA ↑ Pancreatic β-cell area: no effect Pancreatic β-cell proliferation: BPA ↓ (♂) | Litter size: no effect Maternal glucose intolerance and total mean area under the curve of glucose tolerance: BPA ↑ (0.01) Akt phosphorylation in the maternal liver after insulin stimulation: BPA ↓ (0.01) Insulin and TG serum level: BPA↑ Plasma glycerol and leptin level: BPA ↑ Maternal bodyweight 3–4 months after delivery: BPA ↑ Food intake: no effect | [222] |
Mouse | BPA | 5 mg/kg bw/d | Oral gavage | GD1-20 | PND5-3 weeks of age | Metabolism | Bodyweight: BPA ↓ Serum lipid parameters: BPA ↓ (♂) Serum glucose level: BPA ↑ (♂) Liver number of differentially expressed genes (DEGs): 855 Liver Cyp51 (sterol 14-α demethylase) expression (DEG common): BPA ↑ GSEA-enriched pathways: lipid metabolism (lipid transport/fatty acid metabolism/cholesterol biosynthesis)/energy metabolism (biological oxidation/tricarboxylic acid cycle) Liver peroxisome proliferator-activated receptor (PPAR) signaling and arachidonic acid pathways enrichment: BPA ↓ Liver number of differentially methylated CpGs (DMCs) in males: 476 Number of transcription factor (TFs) differentially expressed in the liver: 14 (Esr1, Esrra, Hnfl1a, Pparg, Tcf21, and Srebf1) Liver differentially expressed transcription factor involvement: estrogen and PPAR signaling | Number of differentially expressed genes (DEGs): 86 (adipose tissue)/93 (hypothalamus) Cyp51 expression (DEG common): BPA ↑ (hypothalamus)/↓ (adipose tissue) Number of DMCs in males: 5136 (adipose tissue)/104 (hypothalamus) Top DMC-enriched processes: intracellular and extracellular communication and signaling-related pathways | [249] |
Mouse | BPA | 0.01, 10 mg/kg bw/d | Oral route (food) | GD-14 to PND21 | PND7, 14, and 21 weeks of age | Metabolism | F2 and F3 bodyweight: no effect Obesity phenotype: BPA ↑ (♂ F2, F3) Body composition: no effect (♀) Glucose tolerance and insulin sensitivity: no effect (♂ F3) Glucose-stimulated insulin secretion: BPA ↑ (♂ F3: 0.01) β-cell mass and proliferation: BPA ↓ (♂ F3: 0.01) | Proinflammatory cytokine levels: BPA ↓ (IL-1β and IL-12p70) Immunostaining of CD3 (T lymphocyte markers) and F4/80 (macrophage markers) in the pancreas: BPA ↑ (♂ F3) Transforming growth factor-beta 1 (TGF-β)1 level: BPA ↑ (10) F2 maternal metabolic milieu: no effect | [213] |
Mouse | BPA | 0.1, 1, or 10 mg/L | Oral route (drinking water) | GD0-PND21 | 7 to 28 weeks of age | Metabolism | Mean insulitis grade and number of diabetic mice: BPA ↑ (10) Offspring’s number, fetal bodyweight, and sex ratio: no effect Number of regulatory T cells: BPA ↑ (♀: 10) Number of F4/80-positive tissue-resident macrophages in pancreatic islets: BPA ↓ (♀: 10) | Activated caspase-3-positive, insulin-positive, and glucagon-positive apoptotic cells in pancreatic islets: BPA ↑ Number of apoptotic cells: BPA ↑ LPS-induced interleukin secretion from splenocytes: BPA ↑ (10) IL-2 secretion: BPA ↓ (1, 10) | [228] |
Mouse | BPA | 0.01 mg/kg bw/d | Subcutaneous injections | GD9-16 | PND0 and 30 | Pancreatic function | Pancreatic β-cell area, mass, and proliferation: BPA ↑ (♀) | [212] | |
Mouse | BPA | 0.01, 0.1 mg/kg bw/d | Subcutaneous injections | GD9-16 | PND30 | Retinoid signaling pathway | ATRA (all-trans-retinoic-acid) hepatic concentration: BPA ↑ (0.01) Expression of genes involved in ATRA biosynthesis: BPA ↑ (0.01: Adh1, Aox1, and Cyp1a2) Expression of genes involved in storage and metabolization of retinoids and ATRA biotransformation: no effect Expression of genes involved in the disposition of retinoid metabolites: BPA ↑ (0.1: Bcrp)/↓ (Mrp3) Expression of nuclear receptors modulated retinoid-dependant signaling in hepatic cells: BPA ↑ (0.01: Fgf21)/↓ (0.1: Rxr-β) | [223] | |
Mouse | BPA | 0.01, 0.1 mg/kg bw/d | Subcutaneous injections | GD9-16 | PND0, 21, 30, and 120 | Pancreatic function | Bodyweight: BPA ↓ (PND0/PND21: 0.1)/↑ (PND21-30) Bodyweight gain: BPA ↓ (PND0-21)/↑ (PND21-30) Non-fasting plasma insulin, plasma leptin, and C-peptide level: BPA ↑ Insulin release: BPA ↑ Glucose-stimulated insulin secretion and pancreatic insulin content: BPA ↓ (0.01) Number and expression of DEGs in the islets of Langerhans: BPA ↑ (325)/↓ (330) Pancreatic β-cell mass: BPA ↑ (PND0/PND21/PND30)/↓ (0.1: 4 months) Pancreatic percentage of β-cell area: BPA ↑ (PND30: 10) β-cell proliferation and apoptosis: BPA↑ (PND30) | DEGs involvement: cell cycle/mitosis/cell division | [221] |
Mouse | BPA | 10, 100, or 1000 nM | Oral route (drinking water) | GD0-PND21 | PND21, 42 | Spleen immune response | Litter size, birth weight, survival rate, and sex ratio: no effect Weaning weight: BPA ↑ (PND21: 10)/↑ (PND35: 1000) T helper 17 cell (Th17) cell frequency in spleen: BPA ↑ (♀: 100, 1000/♂: 1000) RORγt expression: BPA ↑ (♀: 100, 1000/♂: 1000) IL-17 and IL-21 production level by Th17 cells: BPA ↑ Serum IL-6 and IL-23 levels: BPA ↑ Serum TGF-β level: no effect | Gestational weight: no effect | [224] |
Mouse | BPA | 0.00005, 0.05, or 50 mg/kg food/d | Oral route (food) | GD-14 to PND21 | 6 months of age | Inflammatory mediators/asthma | Bone marrow-derived mass cell (BMMC) cysteinyl leukotriene secretion: BPA ↑ BMMC prostaglandin D2 production: ↑ (50) BMMC tumor necrosis factor-alpha (TNFα) secretion: BPA ↑ IL-13 level: BPA ↑ (50) IL-4, IL-5, and IL-6 levels and histamine release: no effect BMMC DNA methylation level: BPA ↓ (50) | - | [225] |
Mouse | BPA | 0.01, 10 mg/kg bw/d | Oral route (food) | GD-14 to PND21 | GD9.5-10.5, GD16.5-17.5, PND1, 14, 21, 28, and 98-117 | Metabolism | Fetal bodyweight at PND1, 14, and 21: BPA ↓ (♂: 0.01) Fetal bodyweight at PND28 and food intake: no effect Bodyweight between PND98 and 117: BPA ↑ (♂: 0.01) Body fat content between PND98 and PND 117: BPA ↑ (♂) Bone mineral density and content: BPA ↓ (♂: 10) Insulin level: BPA ↑ (♂: 0.01) Glucose intolerance and basal rate of insulin release: BPA ↑ (♂: 10) Maximal glucose-stimulated insulin release: BPA ↓ (♂: 0.01) | F2 total insulin-like growth factor 2 (Igf2) mRNA expression: BPA ↑ (10) Bodyweight and fat: no effect Glucose intolerance: BPA ↑ (♂: 10) Insulin secretion: no effect Body fat content at PND98 to 117: BPA ↑ (♂: 10) Islets glucose-stimulated insulin secretion: BPA ↓ (0.01) | [226] |
Mouse | BPA | 0.006, 0.06, or 0.6 mg/kg bw/d | Subcutaneous capsule | GD9 to at least 3 weeks | PND2, 21, and 3 to 12 weeks of age | Glucose metabolism | Bodyweight at weaning and 5 weeks: BPA ↓ (♂: 0.006) Bodyweight gain between 3 and 5 weeks: BPA ↑ (♂: 0.006)/↓ (♂: 0.06) Bodyweight gain between 5 and 12 weeks: BPA ↑ (♂: 0.6) Bodyweight at 12 weeks and food intake: no effect Glucose intolerance: BPA ↑ Blood glucose level: BPA ↓ (♂: 0.6) Percent change relative to baseline in blood glucose level 30 min after glucose injection (GTT): BPA ↑ (♂: 0.06/0.6) Percent change relative to baseline in blood glucose level 60 min after GTT: BPA ↑ (♂) | [211] | |
Mouse | BPA | 0.003, 0.01, 0.03, 0.1, 0.3, 1, or 3 mg/kg bw/d | Oral route (food) | GD-14 to PND21 | PND21, and 5 to 23 weeks of age | Metabolism | Litter size, sex ratio, and survival rate: no effect Bodyweight: BPA ↑ (♂ from 6 weeks)/↓ (♀ 8 weeks) Bodyweight gain, body length, femur length and weight, and relative liver weight: no effect Glucose tolerance: no effect Liver weight: BPA ↑ (♂)/↓ (♀) Interscapular, perigonadal, perirenal, and caudal subcutaneous fat pad weights: BPA ↓ (♀) Perirenal white adipose tissue adipocyte size: BPA ↑ (♂)/↓ (♀) Histopathological liver examination: no effect Circulating glucagon level: BPA ↓ Insulin level: no effect Adiponectin, leptin, free fatty acid, and TG levels: BPA ↓ (♀) | Mortality: no effect Dams bodyweight, bodyweight gain, and food consumption: no effect Brown adipose tissue ucp1 expression: BPA ↑ (♀) Muscle weight: BPA ↓ (♀) Histopathological quadriceps femoris muscle and thyroid gland examination: no effect Histopathological pancreatic islets and adrenal examination: no effect | [227] |
Mouse | BPA | 0.00005, 0.05, or 50 mg/kg diet | Oral route (food) | GD-14 to PND21 | 3, 6, 9, and 10 months of age | Metabolism | Litter size, survival rate and sex ratio: no effect Fetal wean weight: BPA ↓ (0.00005) Food intake: BPA ↑ (♀ 6 months) Bodyweight and body fat mass: BPA ↑ (♀ 6 months: 0.05) Mean baseline glucose and insulin level: BPA ↓ (♀: 50) Mean adiponectin level: BPA ↑ (♀: 0.05) | Oxygen consumption: BPA ↑ (♀ 3 months: 50/♀ 6 months: 0.05, 50/♀ 9 months: 0.00005/♂ 9 months: 0.05, 50) Oxygen consumption corrected for lean body mass: BPA ↑ Carbon dioxide production level: BPA ↑ (♀ 9 months: 0.00005/♀ 6 months: 50/♂ 3 months: 0.05, 50) Respiratory exchange ratio: no effect | [229] |
Rat | BPA | 0.05 or 5 mg/kg bw/d | Oral gavage | GD3 to GD18 | PND21 and PND60 | Lipid metabolism | Total lipid content: BPA ↓ (♀ PND21: 5) Lipid accumulation and TG level: BPA ↓ (♀ PND21) PLS-DA analysis: separations of control, low-BPA-, and high-BPA-dose exposed groups Changes in several lipid classes: BPA ↑ (FA, acylcarnitine, cholesterol ester, monoacylglycerol, TG, monogalactosyl diacylglycerol, sphingomyelin, cardiolipin, phosphatidylserine, phosphatidylglycerol, and sulfatide) Total free fatty acid and acylcarnitine level: BPA ↑ (PND21) Level of total monoacylglycerol: BPA↑ (♂ PND21/♀ PND21: 0.05) Level of total cholesterol ester: BPA ↑ (♀ PN21: 5) Lipogenesis: BPA ↑ (♀ PND1)/↓ (♂ PND1 to PND21) Ceramide and phosphatidylcholine level: BPA ↓ (♀ PND21) Cardiolipin level: BPA ↓ (♀ PND21)/↑ (♂ PND21: 0.05) Sulfatide level: BPA ↑ (♀ PND21 and PND60) Total sphingomyelin, phosphatidylglycerol level: BPA ↑ (♂ PND21) Digalactosyl and sulfoquinovosyl diacylglycerol level: BPA ↑ (♀ PND60) Phosphatidylethanolamine level: BPA ↓ (♂ PND60) Gpd1 gene expression involved in glycerophospholipid metabolism: BPA ↓ (♀) Gnpat gene expression involved in glycerophospholipid metabolism: BPA ↓ (♂) Bodyweight: BPA ↑ (♀ PND1) | PUFAs: BPA ↑ (PND21) MUFAs (C15:1 and C18:1): BPA ↑ (♂ PND21) Saturated very-long-chain FAs (C32:0 and C34:0): BPA↓ (♂ PND21: 0.05/♀ PND21: 5) Unsaturated very-long-chain FAs (C36:4): BPA ↓ (♀ PND21) Potential biomarkers for prenatal BPA exposure: ♀ (8 genes, 9 FAs, 1 cholesterol ester, 19 TG, 3 diacylglyceryl-trimethylhomoserine, 1 ceramide, and 1 phosphatidylcholine)/♂ (30 genes, 1 FA, 1 TG, 1 phosphatidylmethanol, 2 phosphatidylcholine, and 4 phosphatidylethanolamine) | [215] |
Rat | BPA | 0.05 or 5 mg/kg bw/d | Oral gavage | GD3-18 | PND1, 13, 21, 30, and 60 | Liver metabolism | Bodyweight: BPA ↑ (♀ PDN1-PND60/♂ PND13, PND21-PND30/♂ PND60: 5) Liver weight: BPA ↑ (♀ PND21)/↓ (♂ PND21) Relative spleen weight: BPA ↑ (♀ PND1) Relative heart weight: BPA ↑ (♀ PND1)/↓ (♀ PND60) Relative kidney weight: BPA ↓ (♀ PND60) Number of DEGs: 1239 (♀ PND1: 0.05)/1672 (♀ PND1: 5)/1250 (♂ PND1: 0.05)/722 (♂ PND1: 5)/217 (♀ PND21: 0.05)/337 (♀ PND21: 5)/326 (♂ PND21: 0.05)/443 (♂: PND21: 5) Principal component analysis: a clear distinction between exposed and control PDN1 males, between exposed and control PND1 females, between exposed and control groups, between high-BPA exposed and control PDN21 females, between exposed and control PND21 males, and between PND21 males and females Number of differentially expressed proteins (DEPs): 101 (♀ PND1)/188 (♂ PND1, PND21: 0.05)/204 (♂ PND1: 5)/176 (♀ PND21: 0.05)/159 (♀ PND21: 5)/137 (♂ PND21: 5) Number of enriched pathways common from DEGs and DEPs in both sexes: 30 (♀ > ♂) Top pathways enriched: fatty acid degradation, steroid hormone biosynthesis, and PPAR signaling pathways Enriched diseases: fatty liver, diabetes, obesity, and cardiovascular diseases TC and cholesteryl ester levels: BPA ↑ (♀ PND60: 0.05) HDL cholesterol level: BPA ↑ (♀ PND60: 0.05/♂ PND60: 5) LDL cholesterol level: BPA ↓ (♂ PND60: 0.05) | Anogenital distance (AGD): BPA ↑ Anogenital index (AGI): BPA ↑ (♀ PND21) | [216] |
Rat | BPA | 0, 0.05, 0.5, or 5 mg/kg bw/d | Oral gavage | GD5-19 | PND1, 21 and 56 | Lipid metabolism | Bodyweight: BPA ↓ (♀ PND56: 0.5) Liver-to-bodyweight ratio: BPA ↑ (♀: 0.05/♀: 0.5) Serum TG and TC level: BPA ↑ TG liver level: BPA ↑ TC liver level: BPA ↑ (PND21) Liver fatty acid oxidation-related gene expression: BPA ↓ (PND21 PPARα/PND21 CPT1α: 5/PND56 PPARα: 0.5, 5) Liver fatty acid oxidation-related protein expression: BPA ↓ (PND21 PPARα CPT1α: 5/PND56 PPARα 0.5, 5/PND56 CPT1α: 5) Liver fatty acid synthesis-related gene expression: BPA ↑ (SREBP-1, ACC1, FAS, SCD-1) Liver fatty acid synthesis-related protein expression: BPA ↑ (SREBP-1, SCD-1) | Liver mTOR mRNA expression: BPA ↑ (PND21: 0.05/PND56: 5) Liver mTOR protein expression: BPA ↑ (PND21/PND56: 0.5, 5) Liver CRTC2 mRNA expression: BPA ↑ (PND21/PND56: 0.05, 0.5) Liver CRTC2 phosphorylation level: BPA ↑ (0.5, 5) | [250] |
Sheep | BPA | 0.05, 0.5, or 5 mg/kg bw/d | Subcutaneous injections | GD30-90 | GD68, 6, 14, 15, 19, 21 weeks, and 13 months of age | Metabolism | Fasting glucose level: BPA ↑ (6 weeks: 0.05) Cumulative insulin and insulin/glucose ratio responses: BPA ↑ (13 months: 0.5) Acute insulin response: BPA ↑ (0.5) Glucose tolerance: no effect (15 months) Bodyweight, total fat, visceral fat, and subcutaneous fat: no effect Visceral adipose tissue cell area and diameter: BPA ↑ (♀) Subcutaneous adipose tissue marker of macrophage infiltration CD68 expression: BPA ↑ | [217] | |
Sheep | BPA | 0.5 mg/kg bw/d | Subcutaneous injections | GD30 to GD100 | 21 months F1 | Liver and muscle metabolic function | Number of differentially expressed (DEGs) genes in the liver: BPA ↓ (138)/↑ (56) Top 10 DEGs in the liver: BPA ↓ (WFDC2, MSLN, MMP7, COLEC12, and SLC44A4)/↑ (CCDC152 and three other genes with yet-to-be-identified roles, including thioredoxin-like protein 1, putative olfactory receptor 3A4, and elongation factor 1-beta-like) Number of enriched gene pathways in the muscle and liver: 157 Pathways enriched in the muscle and liver: mitochondrial, extracellular matrix-related, and oxidative phosphorylation pathways Enriched pathways in the liver: the response to oxidative stress, lipid biosynthetic process, endoplasmic reticulum, and Golgi apparatus structure and function Number of differentially expressed lncRNAs in the liver: BPA ↓ (49)/↑ (28) Number of differentially expressed miRNAs in the liver: BPA ↓ (6)/↑ (8) Number of differentially expressed snoRNAs in the liver: BPA ↓ (63)/↑ (64) Number of differentially expressed snRNAs in the liver: BPA ↓ (15)/BPA ↑ (40) Top 10 of miRNAs in liver: BPA ↑ (MIR200B, MIR409, MIR125B, MIR543, MIR25, MIR22, and MIR191)/↓ (MIR26B and MIR154A) Potential biomarkers of prenatal BPA impact in the liver: BPA ↓ (4 lncRNAs)/↑ (5 lncRNAs) | Number of differentially expressed genes in the muscle: BPA ↑ (80)/↓ (32) Top 10 dysregulated genes in muscle: BPA ↓ (multidrug resistance-associated protein 4-like genes, ATP-binding cassette subfamily C member 4-like gene, two uncharacterized genes, high mobility group protein 20A-like gene, and 40S ribosomal protein S3a pseudogene)/↑ (HBB) Pathways enriched in the muscle: RNA biosynthetic process, immune function, and collagen synthetic gene pathways Number differentially expressed lncRNAs in the muscle: BPA ↑ (6) Number of differentially expressed snoRNAs in the muscle: BPA ↓ (47)/↑ (18) | [219] |
Sheep | BPA | 0.05, 0.5, or 5 mg/kg bw/d | Subcutaneous injections | GD30-90 | 21 months F1 | Metabolism | Liver IL-1β, IL-6, and chemokine (C-C) ligand 2 expression: BPA ↓ Liver CD68 (macrophage marker) expression: BPA ↑ Liver TNF-α expression: BPA ↑ (0.05) Visceral adipose tissue IL-1β expression: BPA ↑ Visceral adipose tissue CCL2 expression: BPA ↑ (5) Liver oxidative stress marker 3-nitrotyrosine level: BPA ↑ Visceral adipose tissue 3-nitrotyrosine level: BPA ↑ (5) Liver and visceral adipose tissue lipid peroxidation marker Thiobarbituric acid reactive substances (TBARS) level: BPA ↑ (5) Liver antioxidant (GSR) mRNA expression: BPA ↓ (0.5, 5) Liver antioxidant superoxide dismutases 1 (SOD1) mRNA expression: BPA ↓ (0.05, 0.5) Liver SOD2 mRNA expression: BPA ↑ (0.05) Visceral adipose tissue glutathione reductase (GSR) and Cyp19 mRNA expression: BPA ↑ (0.5, 5) Liver GSR activity: BPA ↑ (5) Plasma TG content and high-molecular-weight adiponectin level: no effect Hepatic TG content: BPA ↑ (0.5, 5) Plasma low-molecular-weight adiponectin level: BPA ↓ (5) Visceral adipose tissue Cyp17 mRNA level: BPA ↑ (5) Visceral adipose tissue AR mRNA expression and CYP17 and estrogen receptor 1 (ESR1) protein level: no effect Visceral adipose tissue AR protein expression: BPA ↓ (5) Visceral adipose tissue estrogen receptor 2 (ESR2) protein level: BPA ↓ (0.5, 5) Visceral adipose tissue Esr1 mRNA expression: BPA ↑ | Skeletal muscle IL-6 expression: BPA ↑ Skeletal muscle CD38 expression: BPA ↑ (0.5, 5) Skeletal muscle IL1B expression: BPA ↑ (0.5) Skeletal muscle 3 nitrotyrosine and TBARS levels: BPA ↑ (0.05, 0.5) Skeletal muscle SOD1 mRNA expression: BPA ↓ (5) Skeletal muscle GSR mRNA expression: BPA ↓ Skeletal muscle SOD2 mRNA expression: BPA ↑ (0.05) Skeletal muscle GSR activity: BPA ↓ (0.5) Muscular TG content: BPA ↑ (0.5, 5) | [218] |
Sheep | BPA | 0.5 mg/kg bw/d | Subcutaneous injections | GD30 to GD100 | 21 months F1 | Cardiovascular function | Lung, kidney, and adrenal weight: BPA ↓ Heart rate and blood pressure: no effect | Cardiac failure gene expression in the left ventricle: BPA ↑ (ANP, COL1A1) Cardiac failure gene expression in the right ventricle: BPA ↑ (ANP)/↓ (COLA1) | [251] |
Sheep | BPA | 0.05, 0.5, or 5 mg/kg bw/day | Subcutaneous injections | GD30-GD90 | GD65, GD90, 21 months F1 | Pancreas | Fetal weight: no effect (GD65, GD90) Pancreas weight: no effect (GD65, GD90) Pancreas/fetal weight: no effect (GD65, GD90) Pancreatic islet insulin: BPA 0.5 ↓ (GD90) Beta-cell size: no effect Beta-cell count: BPA 0.5 ↓ (GD90) Pancreatic islet glucagon: no effect (GD60, GD90), BPA 0.05 ↑ (adult F1) Alpha-cell size: BPA 0.5 ↑ (GD90), BPA 0.05 ↑ (adult F1) Alpha-cell count: BPA 0.5 ↑ (GD90) Alpha-to-Beta-cell count: BPA 0.5 ↑ (GD90), BPA 0.05 ↑ (adult F1) Islet collagen accumulation: 0.05 ↑ (adult F1) Pancreatic apoptosis: no effect (GD65, GD90, and adult F1) Gene expression of apoptotic and cell proliferation markers: no effect (GD65, GD90, and adult F1) Fibrosis gene expression: BPA ↓ ACT1 (GD65) | [220] | |
Rat | BPS | 0.01, 0.05 mg/kg bw/d | Oral gavage | GD1-PND21 | PND21, PND160-180 | Metabolism, endocrine system | Plasma triacylglycerol and thyroxine (T4) level: BPS ↓ (♂ PND21: 0.05) Plasma25-hydroxyvitamin D (25(OH)D) level at PND21 and 180: BPS ↑ (♀: 0.05) Food intake: BPS ↓ PND180 visceral fat mass: BPS ↓ (♂) PND180 brown adipose tissue lipid droplets: BPS ↓ (650: ♀) Preference for high-fat diet over high-sugar diet: BPS ↑ Plasma triacylglycerol level: BPS ↑ (♂ PND180: 0.05) Plasma total triiodothyronine (T3) level: BPS ↓ (♂ PND180: 0.05) PND180 plasma free T4 level: BPS ↓ (♀) | Plasma testosterone level: BPS ↓ (0.05) Plasma progesterone level: BPS ↓ (♀ PND180: 0.01) | [210] |
Mouse | BPA, BPS, BPF | 0.005, 0.05 mg/kg bw/d | Oral route | GD15-PND21 | PND70 | Intestinal and systemic immune response | Bodyweight: BPF ↓ (0.05: PND70) Litter size: BPA ↓ (0.05)/BPS ↓ (0.005) Fecal immunoglobulin A (IgA) level: BPA ↓ (♀: 0.05) Lipocalin fecal level: BPS ↑ Plasmatic immunoglobulin G (IgG) level: BPA ↓ (♀)/BPS ↓ (♀)/BPF ↓ (♀) Total IgA level: no effect T helper 1 (Th1) subpopulation in the lamina propria: BPA ↑ (♀: 0.005) Th1 frequency in the spleen: BPA ↑ (♀: 0.05)/BPF ↑ (♀: 0.05) Intestinal Th17 frequency: BPA ↑ (0.05)/BPF ↑ (0.05) Small intestine lamina propria cell T cell receptor (TCR)-stimulated IL-17 secretion: BPA ↑ (0.05) T cell frequency in siLP and at systemic level: BPA ↓ (0.05) Principal component analysis: a higher dose BPA- and BPF-exposed groups were the most distant ones and were well separated from the control group/The higher dose BPS-exposed group was less distant to the control group/The high-dose BPA exposed group differed from the control group in terms of the IFN-γ and IL-17 levels and Treg frequency/BPF-exposed groups differed to the control in term of bodyweight and plasmatic IgA level | Plasma-specific anti-E. coli IgG: BPS ↑ (0.05) Plasma-specific anti-E. coli IgA: no effect | [209] |
Mouse | BPA + NP, OP or IsoBP | 5, 50, or 500 mg/kg bw/d | Oral gavage | GD1-21 | PND1, and 21 and 41 | Fetal development | Survival rate: BPA + OP ↓ (5) Sex ratio: BPA + OP ↓ (50)/BPA + IsoBP (5, 500) Bodyweight: BPA + OP ↓ (♀)/BPA + NP ↓ (♀)/BPA + IsoBP ↓ (♀) Pituitary and liver weight: BPA + OP ↑ (♀: 5, 500)/BPA + IsoBP ↑ (♀: 5, 50) Adrenal weight: BPA + OP ↑ (5, 500)/BPA + IsoBP ↑ (♀: 5, 50) Kidney weight: BPA + OP ↑ (♀: 5, 500)/BPA + IsoBP ↑ (♀: 5, 50)/BPA + IsoBP ↓ (♂: 5, 500) | Dams gestational day times: BPA + IsoBP ↓/BPA+ NP ↓ (50, 500)/BPA + OP (50, 500) Spleen and reproductive organs weight: no effect Thyroid weight: BPA + NP ↓ (♂)/BPA + OP ↓ (♂: 50)/BPA + IsoBP ↓ (♂: 5/50) | [233] |
Rat | BPA, DEHP | 5 µg/kg bw/d (BPA) and/or 5µg and 7.5 mg/kg bw/d (DEHP) | Oral administration | GD6-GD21 | PND1, 7, 14, and 21, PND21 to PND84, PND112, and PND168 | Fetal development/food intake | Maternal gestational weight gain: no effect Post-weaning bodyweights, and food and water intakes: no effect Heart weight: BPA + DEHP ↑ (♂: 7.5) Relative thymus weight: BPA ↓ (♂)/DEHP ↓ (♂: 7.5) Cortex apoptotic index: BPA + DEHP ↑ (7.5) Medulla apoptotic index: BPA + DEHP (♀: 7.5) | Abortion rate: BPA + DEHP ↑ Gestational index: DEHP ↓ (7.5)/BPA + DEHP ↓ Litter size and PND21 pup weight and sex ratio: no effect Crown-to-rump length: BPA ↑/BPA+ DEHP ↑ (5) Chest circumference: DEHP ↑ (5)/DEHP + BPA ↑ (5)/DEHP ↓ (7.5)/DEHP+ BPA ↓ (7.5) | [158] |
Mouse | TCS | 4, 8 mg/kg bw/d | Oral gavage | GD6-14 | PND1, 30, and 60 | Placenta/metabolism | Bodyweight gain: TCS ↑ (PND5, PND30, PND60: 8) Visceral fat-to-bodyweight ratio and adipocyte size: TCS ↑ (PND30: 8) Fasting plasma glucose and serum insulin level: TCS ↑ (PND60) Areas under the curve of glucose and insulin tolerance test: TCS ↑ (PND60) The phenotype of insulin resistance and hyperphagic obesity: TCS ↑ Cumulated food intake within 4 days: TCS ↑ (PND30) Food intakes normalized by bodyweight: TCS ↑ (PND30) Oxygen consumption: no effect | [160] | |
Rat | TCS | 1 mg/kg food | Oral route (food) | GD14-PND20 | PND1 to 8 months | Food intake/metabolism | Bodyweight: TCS ↓ (♂ 2 months)/↑ (♂ 4 months/♀ 8 months) Food intake: TCS ↑ (5 months) Liver weight and liver-to-bodyweight ratio: TCS ↑ (♂ 4 months) Serum cholesterol level and glucose concentration: TCS ↑ (8 months) | Npy and Agrp hypothalami mRNA expression (involved in the appetite regulatory network): TCS ↑ (♂) | [230] |
Rat | TCS | 10, 50 mg/kg bw/d | Oral gavage | GD0-PND21 | 3, 21, and 52 offspring’s weeks of age | Metabolism/microbiota | Glucose clearance: TCS ↓ (52 weeks: 50) Blood glucose level: TCS ↑ (21 weeks: 50/3 and 52 weeks: 10) Serum HDL cholesterol level: TCS ↑ (52 weeks/21 weeks: 50) Serum leptin level: TCS ↑ (52 weeks) TG and LDL cholesterol level: TCS ↑ (21 and 52 weeks) Hepatic glycogen level: TCS ↓ (52 weeks/21 weeks: 50) Number of DEGs: 709 (21 weeks: 10), 699 (52 weeks: 10), 473 (21 weeks: 50), and 1103 (52 weeks: 50) Involvement of DEGs: lipid metabolic process, fatty acid metabolic process, cellular glucuronidation, linoleic acid metabolism, glycolysis/gluconeogenesis, lipid and carbohydrate metabolism, arachidonic acid metabolism, and biosynthesis of unsaturated fatty acids | Alpha diversity of the microbial community in gut microbiota: TCS ↓ (50) Alpha diversity among gut microbiome and abundance of Bacteroides in the microbiota: TCS ↑ (50) Abundance of Verrucomicrobia and level of Akkermansia muciniphila in the microbiota: TCS ↓ | [231] |
Mouse | DEHP | 10–12, 55–64, and 119–145 mg/kg bw/d | Oral route (food) | GD18 | Fatty acid metabolism | α-linolenic acid level: DEHP ↑ (10–12) Palmitoleic acid level: DEHP ↑ (55–64, 119–145) Oleic acid level: DEHP ↑ (119–145) Fads mRNA expression (conversion EFA into LC-PUFA): DEHP ↑ (119–145: PPARα null mice) | Linoleic and oleic acid level: DEHP ↓ (55–64, 119–145) α-linolenic and eicosapentaenoic acid level: DEHP ↓ Palmitic acid level: DEHP ↓ (10–12, 55–64) | [252] | |
Mouse | DEHP | 0.2, 2, or 20 mg/kg bw/d | Oral gavage | GD-7 to GD21 | 12 weeks of age | Metabolism | Bodyweight at 12 weeks of age: DEHP ↑ (♂: 0.2) ↑ (♂: 0.2) White adipocyte hypertrophy: DEHP ↑ (0.2) Plasma TC, TG, LDL, and HDL cholesterol levels: DEHP ↑ (0.2) Lipid deposition in liver cells at 12 weeks of age: DEHP ↑ (0.2) Number of liver DEGs: DEHP ↑ (♂: 0.2: (932))/↓ (♂: 0.2 (794)) DEGs involvement: metabolism-related pathways (fatty acid metabolism pathway) Hepatic thiamine and D-glucuronic acid level: DEHP ↓ (0.2) Hepatic glucose-6-phosphate and N-acethylglutamic acid level: DEHP ↑ (0.2) The area under the curve of the glucose tolerance test: DEHP ↑ (0.2) Plasmatic glucose level: DEHP ↑ (♂: 0.2) Hepatic Slc2a2 expression involved in hepatic glucose secretion and hepatocyte blood glucose uptake: DEHP ↑ (0.2) Hepatic Slc19a2 expression involved in thiamine transport: DEHP ↓ (0.2) Cumulative food intake: no effect Bodyweight gain at 12 weeks of age: DEHP ↑ (0.2) | Expression of thermogenic genes: DEHP ↓ (0.2 (Ucp1, Cidea, Adrb3)) Differentially generated metabolites involvement: ascorbate and aldarate metabolism, phenylalanine, tyrosine and tryptophane biosynthesis, and thiamine metabolism | [238] |
Mouse | DEHP | 25 mg/kg chow/d (5 mg/kg bw/d) | Oral route (food) | GD-14 to PND21 | 5 months of age | Cardiac DNA methylome | Mortality, litter size, sex ratio, bodyweight, and relative heart weight ratio: no effect Heart DMC and differentially methylated region (DMR): DEHP ↑ DEHP pathways enrichment about hypermethylated DMCs: receptor binding (♀)/neurotransmitter transport (♀)/smooth muscle differentiation (♀)/histone demethylation (♀)/insulin signaling (♀)/meiosis (♀)/glucose transport (♂) DMC and DMR mapped gene differentially methylated in human heart failure: DEHP ↑ Common genes involved in cardiac fibrosis and development or contribute to sex differences in ischemia–reperfusion injury: PRKCE (♀)/SPRY1 (♀)/GJA5 (♀)/ECE1 (♀)/SMAD7 (♂)/DNMT3A (♂) | [253] | |
Mouse | DEHP | 250 mg/kg bw/d | Oral gavage | GD0-PND21 | PND21 | Skeletal muscle development | Bodyweight change: DEHP ↓ Ratios of quadriceps, gastrocnemius, and tibialis anterior muscle weights to tibia lengths: DEHP ↓ Average tibialis anterior myofiber cross-sectional areas: DEHP ↓ Muscle proteolytic marker (MuRF1 and atrogin 1) expression: DEHP ↑ Muscle myogenesis marker (MyoD and Myogenin) expression: DEHP ↓ | [254] | |
Mousse | DEHP | 30 mg/kg bw/d | Oral administration | GD-28 to PND28 | 8 weeks of age | Metabolism | Diastolic arterial, systolic, and mean blood pressure: DEHP ↑ Heart rate: no effect Bodyweight: DEHP ↑ White and brown adipose tissue-to-bodyweight ratio: DEHP ↑ White adipose tissue adipocyte size: DEHP ↑ Brown adipose tissue adipocyte number: DEHP ↑ Serum cholesterol level and liver cholesterol content: DEHP ↑ Serum TG and glucose level: no effect LDLR, SR-B1, CYP7A1, and ABCG5 hepatic protein expression: DEHP ↓ LRP-1 hepatic protein expression: no effect | Aorta phosphorylated eNOSthr497: DEHP ↑ Aorta phosphorylated eNOSSer1179 and eNOSSer635: DEHP ↓ Aorta AT1R protein expression: DEHP ↑ Aorta AT2R protein expression: no effect | [236] |
Rat | DEHP | 300, 600 mg/kg bw/d | Oral gavage | PND21 to 24 weeks (males) | 25 weeks | Metabolism | Accumulation of DEHP in fat and serum: DEHP ↑ (long-term) Bodyweight changes: DEHP ↑ (24 weeks) TC, TG, ASAT, ALAT, and high-density lipoprotein levels: DEHP ↑ (24 weeks)) Liver-to-bodyweight ratio: DEHP ↑ (300) Lipid droplets in the form of subcircular vacuoles in the liver: DEHP ↑ Degenerative and necrotic tubular epithelial cells along with fat vacuoles in the liver: DEHP ↑ (600) Separated ellipses of the principal component analysis of the serum metabolic profiling between control and exposed groups Cell necrosis, and fatty and vacuole degeneration in the liver cytoplasm: DEHP ↑ UDPGT mRNA expression: DEHP ↓ D1 mRNA expression: DEHP ↑ | [255] | |
Rat | DEHP | 0.75 mg/kg bw/d | Oral gavage | GD6-PND70 | PND0-70 | Lipid metabolism | Bodyweight: DEHP ↑ (GD6-PND21)/↓ (GD6-PND70) TG blood level: DEHP ↓ (GD6-PND21) ALAT blood level: DEHP ↑ (GD6-PND70) TG hepatic level: DEHP ↑ Small lipid droplets in hepatocytes: DEHP ↑ TG-related gene expression: DEHP ↑ (GD6-PND21: AGPAT1, DGAT1/GD6-PND70: ACSL1, PNPLA2, MGAT1, DGAT1, and PPARα)/↓ (GD6-PND21: SREBP-1c and GPAT) TG-related protein expression: DEHP ↑ (GD7-PND21 and GD6-PND70: DGAT1)/↓ (GD-PND70: SREBP-1c) | [240] | |
Rat | DEHP | 300 mg/kg bw/d | Oral gavage | GD14-PND0 | PND60, 200 | Blood pressure/heart rate | Systolic blood pressure: DEHP ↓ (nighttime) Diastolic arterial pressure: DEHP ↓ (low-sodium diet) Heart rate: no effect Aldosterone level: DEHP ↓ (normal salt diet) | Locomotor activity during daytime: DEHP ↓ (PND60) Locomotor activity during night-time: DEHP ↓ | [256] |
Rat | DEHP | 20, 50, 100, 300, and 750 mg/kg bw/d | Oral gavage | GD14-PND0 | PND60 | Metabolism | Circulating aldosterone concentration: DEHP ↓ (100, 300, 750)/↑ (♀: 300) Corticosterone and adrenocorticotropin hormone (ACTH) level: no effect Estradiol level: DEHP ↓ (♀: 300) Liver-made angiotensinogen (Agt) and renin (Ren1) mRNA level: no effect Adrenal morphology: no effect Adrenal weight: DEHP ↓ (750) Adrenal AGTR1a mRNA level: DEHP ↓ (300) Adrenal AGTR1b mRNA level: DEHP ↓ Adrenal AGTR2 mRNA level: DEHP ↓ (750, 950) Kidney AGTR2 mRNA level: no effect Adrenal and kidney Agtrap mRNA level: DEHP ↓ Adrenal AGTR1A and AGTR1B protein level: DEHP ↓ (300, 750) Adrenal aldosterone gene synthase (Cyp11b2) mRNA level: DEHP ↓ (500, 750) TG, TC, HDL, and LDL cholesterol levels: no effect Adrenal cholesterol uptake receptor (LDLR) mRNA level: DEHP ↑ Heart LDLR mRNA level: DEHP ↓ (300)/↑ (750) Adrenal HMG-CoA reductase and synthase (Hmgcr and Hmgcs1) and insulin-induced gene 1 (Insig1) mRNA level: DEHP ↑ Heart Hmgcr, Hmgcs1, and Insig1 mRNA level: no effect Adrenal lipid-droplet accumulation: DEHP↑ | Circulating testosterone concentration: DEHP ↓ (100, 300, 750) Sodium, potassium, chloride, calcium, and angiotensin II (AT II) level: no effect | [257] |
Rat | DEHP | 0.75 mg/kg bw/d | Oral administration | GD6-PND21 or/and PND22-70 | PND70 | Metabolism | Serum insulin and TG levels: DEHP ↓ (GD6-PND21) Serum leptin and adiponectin levels: no effect White adipose tissue PPARγ mRNA and protein expression levels: DEHP ↑ | [242] | |
Rat | DEHP | 10 or 100 mg/kg bw/d | Oral gavage | GD9-PND21 | PND80 | Glucose metabolism | Fasting blood glucose level and insulin resistance: DEHP ↑ Serum ASAT, ALAT, alkaline phosphatase, urea, and creatinine levels: DEHP ↑ Serum insulin concentration: DEHP ↑ Hepatic glycogen concentration and glucogen synthase activity: DEHP ↓ Molecules involved in insulin signaling in the liver: DEHP ↓ (Insulin receptor beta (IRβ), IRβTyr1162, insulin receptor substrate 1 (IRS1), IRS1Tyr632, β-Arrestin, Akt, AktSer473/100: c5rc protein, AktThr308) Targets of insulin signal transduction: DEHP ↑ (GSK3β, FoxO1)/↓ (GSK3βSer9, FoxO1Ser256) Liver G-6-Pase and PEPCK (enzymes involved in gluconeogenesis) mRNA expression: DEHP ↑ Birth weight: DEHP ↓ (♂) | Serum testosterone and estradiol concentration: DEHP ↓ | [245] |
Rat | DEHP | 1, 10, or 100 mg/kg bw/d | Oral gavage | GD9-21 | PND60 | Pancreatic function | Fasting blood glucose level: DEHP ↑ Serum insulin concentration: DEHP ↓ Glucose and insulin intolerance: DEHP ↑ Body and pancreatic wet weight: DEHP↓ Insulin autocrine action in endocrine pancreas: DEHP ↓ (PND60) Plasma membrane insulin receptor beta (InsRβ) protein level: DEHP ↓ IRS-2 protein level: DEHP ↓ Endocrine pancreas Akt protein level: DEHP ↓ (PND60) Islets ex vivo glucose-stimulated insulin secretion: DEHP ↓ Islets GLUT2 cytosolic and plasma membrane GLUT2 protein level: DEHP ↓ (10, 100) Glucokinase activity: DEHP ↓ | Islets mRNA expression: DEHP ↑ (FoxO1, Atf4, Atf6, Bip, DNMT3a, Cnmt3b, MeCP2, MDB2, mir143, and mir375/10, 100: DNMT1)/↓ (10, 100: GLUT2) Insulin autocrine action in the endocrine pancreas: DEHP ↓ (PND60 pInsRβTyr11162−1163 protein level: DEHP ↓ pIRSTyr632 protein level: DEHP ↓ (♂/♀: 10, 100) pIRSSer636/639 protein level: DEHP ↑ pAktSer473 and pAktThr308 protein level: DEHP ↓ pAktTyr315/316/312 protein level: DEHP ↓ (10, 100) Islets protein level: DEHP ↑ (FoxO1)/↓ (MafA, Pdx1, Pax4 and Pax6 and HNF4-α) | [244] |
Rat | DEHP | 600 mg/kg bw/d | Intragastrically administration | GD0-PND21 | 8 and 14 weeks of age | Metabolism | Body and organ weight, body length, food intake, fat pad weight, and ratio: no effect Serum ALAT, TP, ALB, BUN, and creatinine level: ↓Blood lipids content: no effect Insulin level: DEHP ↑ Identification of biomarkers in several metabolic pathways: lipid metabolism pathway, and retinol metabolism pathway | Serum catalase level: ↓ Serum total antioxidant capability, SOD, and malondialdehyde level: no effect T4 level: DEHP ↓ Thyroid-stimulating hormone (TSH) level: DEHP ↑ T3, free triiodothyronine (FT3), and free thyroxine (FT4) level: no effect Potential biomarker metabolites of DEHP exposure: DEHP ↑ (L-allothreonine, creatinine, uric acid, retinyl ester, and L-palmitoylcarnitine)/↓ (glycocholic acid, LysoPC(18:3)) | [247] |
Rat | DEHP | 1, 10, or 100 mg/kg bw/d | Oral gavage | LD1-21, lactational | PND22 | Cardiac metabolism/function | Fetal bodyweight: DEHP ↓ (PND9-22) Fasting blood glucose level: DEHP ↑ (100) GLUT4 protein: DEHP ↓ (PND22) Phosphorylation GLUT4ser488: DEHP ↑ (100) Development of cardiac glucometabolic disorders: DEHP ↑ (♂) | Heart weight and deoxyglucose uptake: DEHP ↓ (PND22) Glucose oxidation in the cardiac muscle: DEHP ↓ (PND22: 10/PND22: 100) InsRβin in the cardiac muscle: DEHP ↓ (♂) IRS1 protein and phosphorylation of Aktser473 in the cardiac muscle: DEHP ↓ (♂: 100) Phosphorylation of IRS1tyr632 in the cardiac muscle: DEHP ↓ (♂: 10/100) | [258] |
Rat | DEHP | 300 mg/kg bw/d | Oral gavage | 12 weeks, postnatal (adult) | adult | Liver metabolism | Bodyweight: no effect Liver weight, viscera coefficients, and hepatic cord disorder expansion: DEHP ↑ ALAT, TC, and HDL-cholesterol levels: DEHP ↑ ASAT, TG, and LDL-cholesterol level: no effect Number of liver differentially expressed genes: DEHP ↑ (130)/↓ (117) Liver-modulated pathways: steroid catabolic process, regulation of intestinal cholesterol absorption, oxidation-reduction process, cholesterol metabolism, primary bile acid biosynthesis, and bile secretion | Liver malondialdehyde content: DEHP ↑ Liver total superoxide dismutase, total antioxidant capacity, and catalase activities: DEHP ↓ Liver GSH-px activities: no effect | [241] |
Rat | DEHP | 30, 300, or 750 mg/kg bw/d | Oral gavage | GD0-PND21 | PND7, 14, and 21 | Thyroid function | Serum total T3 level: no effect Serum total T4 and TSH level: DEHP ↓ (PND7/PND14/PND21: 300, 750) PND 14 and PND21 mRNA level of genes involved in thyroid development: DEHP ↑ (300: NIS, TTF-1/750: NIS, PAX8, and TTF-1) PND14 protein level of the genes involved in thyroid development: DEHP ↑ (300: NIS/750: NIS, PAX8, and TTF-1) PND21 protein level of the genes involved in thyroid development: DEHP ↑ (30: NIS/300: NIS, PAX8, TTF-1/750: NIS, PAX8, TTF-1) mRNA expression and protein level of thyroid peroxidase (TPO; involved in thyroid function): DEHP ↑ (750) | PND14 deiodinases (Dio) mRNA expression: DEHP ↑ (30: Dio2/300: Dio1, Dio2/750: Dio1, Dio2)/↓ (Dio3) PND21 deiodinases mRNA expression: DEHP ↑ (Dio1, Dio2)/↓ (Dio3) Ultrastructure damage of the thyroid: DEHP ↑ | [246] |
Rat | DEHP | 1, 20, 50, 100, or 300 mg/kg bw/d | Oral gavage | GD14-PND0 | GD19, PND3, and 21 and 60 | Metabolism | PND21 number of adrenal glands differentially expressed genes: DEHP ↑ (100 (67), 300 (175)/↓ (100 (238), 300 (252)) PND60 number of adrenal glands differentially expressed genes: DEHP ↑ (100 (213), 300 (331))/↓ (100 (158), 300 (260)) PPAR signaling pathway: DEHP ↓ Steroid biosynthesis pathway: DEHP ↑ (PND60) PPAR-driven gene expression: DEHP ↓ (PND21-60: Adipoq, Pck1, Ucp1, Fabp4/PND21: Lpl, Rxrg, Pparg, Ppargc1b, Srebf1/PND60: Hmgcr, Hmgcs1)/↑ (PND60: Ppard) Differentially expressed gene involvement: lipid metabolism, adipocyte differentiation, adaptive thermogenesis, and gluconeogenesis Cholesterol biosynthesis pathway: DEHP ↑ (PND60: 100, 300) | Immune response pathways: DEHP ↑ MAPK signaling pathway: DEHP ↑ (PND21: 100/PND60: 100, 300) PND60 PPAR nuclear receptors mRNA levels: DEHP ↑ (100, 300 (Ppard))/↓ (Ppara) PND3 PPAR nuclear receptor mRNA level: DEHP ↓ (Pparg) Expression of genes involved in fatty acid, triacylglycerol, and ketone body metabolism: DEHP ↓ (PND21: 100, 300) | [259] |
Rat | DEHP | 0.25, 6.25 mg/kg bw/d | Oral gavage | GD0-PND21 | PND0, 2, 15, and 21 | Kidney development and fetal metabolism | Birth, PND15-21 bodyweight: DEHP ↓ (6.25) Weaning bodyweight: DEHP ↓ Absolute kidney weight: DEHP ↓ (♀ PND15: 6.25)/↑ (♂ PND21: 6.25) Kidney-to-bodyweight ratio: ↓ (♀ PND15: 0.25)/↑ (PND21: 6.25/♂ PND15: 6.25/♂ PND21: 6.25) Creatinine clearance rate: DEHP ↓ Serum creatine and blood urea nitrogen level: DEHP ↑ (♀/♂: 6.25) Renal PPARα protein expression: DEHP ↑ (PND0, PND21: 6.25) Renal PPARγ protein expression: DEHP ↑ (PND0, PND21) Serum renin level: DEHP ↑ (0.25) | Maternal postpartum weight, litter size, and sex ratio: no effect Proportion of cortex in the nephrogenic zone: DEHP ↑ Nephron number: DEHP ↓ Total glomerular volume: DEHP ↑ (♀ PND21: 0.25)/↓ (PND33) Glomerular alterations and tubular damage: DEHP ↑ Serum nitric oxide level: DEHP ↓ | [260] |
Rat | DBP | 850 mg/kg bw/d | Oral perfusion | GD14-18 | PND1, and 18 months of age | Renal development and fibrosis | Bodyweight, kidney size, and kidney-to-bodyweight ratio: DBP↓ (PND1) Renal Foxd1, Wnt11, Pax2, and Gdnf mRNA expression: DBP ↓ (PND1) Renal Bmp4, Cdh11, Ywhab, and Calm1 mRNA expression: DBP ↑ (PND1) Kidney alpha-smooth muscle actin (α-SMA), fibronectin, and TGF-β staining: DBP ↑ (18 months) | Swelling of the glomerular tufts: DBP ↑ (18 months) Tubular atrophy and tubular cell compression: DBP ↑ (18 months) Widening of intertubular spaces and thickening of the tubular basement membrane: DBP ↑ (18 months) Interstitial extracellular matrix accumulation: DBP ↑ (18 months) | [261] |
Rat | DBP | 850 mg/kg bw/d | Oral perfusion | GD12-18 | PND70 | Renal development and fibrosis | Bodyweight: DBP ↓ (♂) Kidney size and kidney-to-bodyweight ratio: DBP ↓ (♂) Renal fibrosis, kidney tubular damage, and atrophy: DBP ↑ (♂) Kidney interstitial extracellular matrix accumulation: DBP ↑ (♂) | Kidney Fgf10, Fgfr2, and AR protein levels: DBP ↓ (♂) Serum testosterone level: DBP ↓ (♂) | [262] |
Rat | DBP | 850 mg/kg bw/d | Oral gavage | GD14-18 | PND1 and 8 weeks of age | Renal development and fibrosis | Fetal bodyweight and survival rate: DBP ↓ Kidney mRNA and protein expression level of RhoA and ROCK1: DBP ↑ (PND1) | Mother and fetal morbidity: no effect Maternal bodyweight gain: DBP ↓ (GD14-18) Gestational length: DBP ↑ | [263] |
Rat | DEHP, DBP | 7, 70, or 700 mg/kg bw/d DEHP—5, 50, or 500 mg/kg bw/d | Oral gavage | GD13—PND21 | PND4, 21, 22, 33, 78, 88, and 90 | Metabolism | Bodyweight from PND16 to 21: DEHP ↑ (700)/DBP ↑ (5) Bodyweight gain from PND29 to 53: DEHP ↑ (♂: 700/♀: 70) Bodyweight: DBP ↑ (♂ PND43: 5) Bodyweight gain from PND57 to 67: DBP ↓ (♂: 50) PND60 bodyweight: DBP ↓ (♀: 50) Adulthood bodyweight, bodyweight gain and mesenteric, retroperitoneal, epididymal, and ovarian fat tissue weight: no effect Fasting plasma glucose concentration: DEHP ↑ (700)/DBP ↑ (500) Plasma cholesterol concentration: DEHP ↑ (♂: 700)/DBP ↑ (♂: 5) Plasma TG level: DBP ↑ (♀: 500) Glucose uptake in response to insulin overload: DEHP ↓ (700) Response to glucose overload: no effect Islets glucose-stimulated insulin secretion: DEHP ↓ (♂: 700)/↑ (♂: 70) | Dams bodyweight gain and organ weight: no effect Litter size and post-implantation loss: no effect AGI: DEHP ↓ (♂: 700) Age of preputial separation: DEHP ↑ (700) Age of puberty: DEHP ↑ (♂: 700/♀: 70, 700)/DBP ↑ (♀: 500) Number of pups with hypospadias and cryptorchidism: DEHP ↑ (700) Reproductive organs weight: no effect | [243] |
Mouse | DEHP, DiNP | DEHP 25 mg/kg chow/d, DiNP 75 mg/kg chow/d or both | Oral route (food) | GD-15 to PND21 | PND21 and 10 months | Liver metabolism | Number of DEGs at PND21: DiNP (♀ (61))/DEHP + DiNP (♀ (1)) Number of pathways enriched: DiNP (♀: 12, such as acetyl-CoA/♂: 15, such as alpha-amino acid and organic acid metabolic processes) Number of dysregulated PPAR target gene expressions involved in enriched pathways: DiNP (♀ (13)/♂ (15)) DNA methylation of Cs promoter: DEHP + DiNP ↓ (♀)/↑ (♂) Cs and Acly liver expression: DEHP + DiNP ↑ (♀) DNA methylation of Acly promoter: DEHP + DiNP ↓ (♀) DNA methylation of Fasn promoter and Fasn liver expression: DiNP ↑ (♀) Hepatic acylcarnitine levels: DEHP ↑/DiNP ↑/DEHP + DiNP ↑ Hepatic acetyl-CoA levels: DEHP + DiNP ↓ (♀: PND21)/↑ (♀: 10 months) | [237] | |
Rat | n-BuP | 10, 100, or 500 mg/kg bw/d | Oral gavage | GD7-PND22 | PND1, 6, 14, 16, 17, 22, and 80-90 | Fetal development/Reproduction | Fetal AGD: n-BuP ↓ (10, 500) Ovary weights: n-BuP ↓ (PND17: 100/500) Ventral prostate, prostate, and seminal vesicle weight: n-BuP ↓ (PND90: 500) Epididymal weight: n-BuP ↑ (PND90: 100) Epididymal sperm count: n-BuP ↓ Testicular Cyp19a1 expression: n-BuP ↓ (PND16) Expression level of germ cell, Sertoli cell, and Leydig cell markers: no effect (PND16) Ventral prostate epithelial area and ratio between epithelium and lumen: n-BuP ↓ (PND22: 100) | Maternal bodyweight and gestational length: no effect Litter size, survival rate, and fetal and postnatal bodyweights: no effect Offspring sexual maturation, and testis and epididymis histological examination: no effect Number of terminal mammary buds: BP ↑ (PND22: 100/500) Distance between breast tissue and lymph nodes: BP ↓ (PND22: 100) | [264] |
Rat | n-BuP | 850 mg/kg bw/d | Intragastric administration | GD14-18 | PND1 | Renal development | Kidney autophagy marker (LC3B, Beclin-1) staining and expression: n-BuP ↑ Kidney HhIP protein and mRNA expression involved in autophagy and hedgehog regulation: n-BuP ↑ mRNA expression of hedgehog signaling pathway-related gene (Gli1, Ptch1): BP ↓ | [265] | |
Mouse | n-BuP | 3.5 µg/week/mouse | Subcutaneous injection | GD0-PND28 | PND28–PND84 | Adipogenesis and food intake regulation | Bodyweight, fat mass, weekly food intake, fasting serum glucose, and leptin level: n-BuP ↑ (♀) Lean mass: n-BuP ↓ (♀) Glucose and insulin tolerances: no effect (PND63) Adipocyte size visceral adipose tissue: BP ↑ (♀) Serum adiponectin, resistin, ghrelin, and insulin level: no effect Adipose tissue expression of glut4, insr, and pparg: no effect | 17β estradiol levels: no effect Hypothalamus lepr mRNA expression: n-BuP ↓ (♀) Hypothalamus pomc mRNA expression: n-BuP ↓ (♀: PND28, PND84) Hypothalamus mc4r, agrp, and insr mRNA expression: no effect Hypothalamus methylation of nPE1: n-BuP ↑ (♀ PND28, PND84) | [234] |
6.2. Effects of PPPs on Cardiometabolic Disorders
6.2.1. Epidemiological Data
6.2.2. Maternal Exposure to PPPs and Cardiovascular Outcomes in Experimental Models
6.3. Effects of PPPs on Gonadal Functions and Fertility in Cohorts and Animal Models
6.3.1. Epidemiological Data
6.3.2. Maternal Exposure to PPPs and Gonadal Effects Using Animal Models
- Male Offspring
- Female Offspring
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Alharbi, H.F.; Algonaiman, R.; Alduwayghiri, R.; Aljutaily, T.; Algheshairy, R.M.; Almutairi, A.S.; Alharbi, R.M.; Alfurayh, L.A.; Alshahwan, A.A.; Alsadun, A.F.; et al. Exposure to Bisphenol A Substitutes, Bisphenol S and Bisphenol F, and Its Association with Developing Obesity and Diabetes Mellitus: A Narrative Review. Int. J. Environ. Res. Public Health 2022, 19, 15918. [Google Scholar] [CrossRef] [PubMed]
- Rolland, M.; Lyon-Caen, S.; Sakhi, A.K.; Pin, I.; Sabaredzovic, A.; Thomsen, C.; Slama, R.; Philippat, C. Exposure to phenols during pregnancy and the first year of life in a new type of couple-child cohort relying on repeated urine biospecimens. Environ. Int. 2020, 139, 105678. [Google Scholar] [CrossRef]
- Ďurovcová, I.; Kyzek, S.; Fabová, J.; Makuková, J.; Gálová, E.; Ševčovičová, A. Genotoxic potential of bisphenol A: A review. Environ. Pollut. 2022, 306, 119346. [Google Scholar] [CrossRef] [PubMed]
- Oliviero, F.; Marmugi, A.; Viguié, C.; Gayrard, V.; Picard-Hagen, N.; Mselli-Lakhal, L. Are BPA Substitutes as Obesogenic as BPA? Int. J. Mol. Sci. 2022, 23, 4238. [Google Scholar] [CrossRef]
- Dhillon, G.S.; Kaur, S.; Pulicharla, R.; Brar, S.K.; Cledón, M.; Verma, M.; Surampalli, R.Y. Triclosan: Current status, occurrence, environmental risks and bioaccumulation potential. Int. J. Environ. Res. Public Health 2015, 12, 5657–5684. [Google Scholar] [CrossRef]
- Moss, T.; Howes, D.; Williams, F.M. Percutaneous penetration and dermal metabolism of triclosan (2,4, 4′-trichloro-2′-hydroxydiphenyl ether). Food Chem. Toxicol. 2000, 38, 361–370. [Google Scholar] [CrossRef]
- Weatherly, L.M.; Gosse, J.A. Triclosan exposure, transformation, and human health effects. J. Toxicol. Environ. Health Part B Crit. Rev. 2017, 20, 447–469. [Google Scholar] [CrossRef] [PubMed]
- Milanović, M.; Đurić, L.; Milošević, N.; Milić, N. Comprehensive insight into triclosan-from widespread occurrence to health outcomes. Environ. Sci. Pollut. Res. Int. 2023, 30, 25119–25140. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.F.; Tian, Y. Reproductive endocrine-disrupting effects of triclosan: Population exposure, present evidence and potential mechanisms. Environ. Pollut. 2015, 206, 195–201. [Google Scholar] [CrossRef]
- Ruszkiewicz, J.A.; Li, S.; Rodriguez, M.B.; Aschner, M. Is Triclosan a neurotoxic agent? J. Toxicol. Environ. Health Part B Crit. Rev. 2017, 20, 104–117. [Google Scholar] [CrossRef]
- Olaniyan, L.W.; Mkwetshana, N.; Okoh, A.I. Triclosan in water, implications for human and environmental health. SpringerPlus 2016, 5, 1639. [Google Scholar] [CrossRef] [PubMed]
- Witorsch, R.J. Critical analysis of endocrine disruptive activity of triclosan and its relevance to human exposure through the use of personal care products. Crit. Rev. Toxicol. 2014, 44, 535–555. [Google Scholar] [CrossRef] [PubMed]
- Juncker, J.-C. Commission Impementing Decision Not Approving Triclosan as an Existing Active Substance for Use in Biocidal Products for Product-Type 1; 528/2012; Union European: Brussels, Belgium, 2016. [Google Scholar]
- Nowak, K.; Ratajczak-Wrona, W.; Górska, M.; Jabłońska, E. Parabens and their effects on the endocrine system. Mol. Cell. Endocrinol. 2018, 474, 238–251. [Google Scholar] [CrossRef] [PubMed]
- Hager, E.; Chen, J.; Zhao, L. Minireview: Parabens Exposure and Breast Cancer. Int. J. Environ. Res. Public Health 2022, 19, 1873. [Google Scholar] [CrossRef]
- Giuliani, A.; Zuccarini, M.; Cichelli, A.; Khan, H.; Reale, M. Critical Review on the Presence of Phthalates in Food and Evidence of Their Biological Impact. Int. J. Environ. Res. Public Health 2020, 17, 5655. [Google Scholar] [CrossRef]
- Wormuth, M.; Scheringer, M.; Vollenweider, M.; Hungerbühler, K. What are the sources of exposure to eight frequently used phthalic acid esters in Europeans? Risk Anal. Off. Publ. Soc. Risk Anal. 2006, 26, 803–824. [Google Scholar] [CrossRef]
- Wang, Y.; Zhu, H.; Kannan, K. A Review of Biomonitoring of Phthalate Exposures. Toxics 2019, 7, 21. [Google Scholar] [CrossRef]
- Philippat, C.; Rolland, M.; Lyon-Caen, S.; Pin, I.; Sakhi, A.K.; Sabaredzovic, A.; Thomsen, C.; Slama, R. Pre- and early post-natal exposure to phthalates and DINCH in a new type of mother-child cohort relying on within-subject pools of repeated urine samples. Environ. Pollut. 2021, 287, 117650. [Google Scholar] [CrossRef]
- EFSA. Report on the development of a Food Classification and Description System for exposure assessment and guidance on its implementation and use. EFSA J. 2011, 9, 2489. [Google Scholar] [CrossRef]
- EFSA. Commission directive 2006/141/EC of 22 December 2006 on infant formulae and follow-on formulae and amending Directive 1999/21/EC. EFSA J. 2006, 4, 4544. [Google Scholar]
- Genuis, S.J.; Beesoon, S.; Lobo, R.A.; Birkholz, D. Human elimination of phthalate compounds: Blood, urine, and sweat (BUS) study. Sci. World J. 2012, 2012, 615068. [Google Scholar] [CrossRef] [PubMed]
- Barker, D.J.; Gluckman, P.D.; Godfrey, K.M.; Harding, J.E.; Owens, J.A.; Robinson, J.S. Fetal nutrition and cardiovascular disease in adult life. Lancet 1993, 341, 938–941. [Google Scholar] [CrossRef] [PubMed]
- Dekant, W.; Völkel, W. Human exposure to bisphenol A by biomonitoring: Methods, results and assessment of environmental exposures. Toxicol. Appl. Pharmacol. 2008, 228, 114–134. [Google Scholar] [CrossRef]
- Thayer, K.A.; Doerge, D.R.; Hunt, D.; Schurman, S.H.; Twaddle, N.C.; Churchwell, M.I.; Garantziotis, S.; Kissling, G.E.; Easterling, M.R.; Bucher, J.R.; et al. Pharmacokinetics of bisphenol A in humans following a single oral administration. Environ. Int. 2015, 83, 107–115. [Google Scholar] [CrossRef]
- Khmiri, I.; Côté, J.; Mantha, M.; Khemiri, R.; Lacroix, M.; Gely, C.; Toutain, P.L.; Picard-Hagen, N.; Gayrard, V.; Bouchard, M. Toxicokinetics of bisphenol-S and its glucuronide in plasma and urine following oral and dermal exposure in volunteers for the interpretation of biomonitoring data. Environ. Int. 2020, 138, 105644. [Google Scholar] [CrossRef] [PubMed]
- Oh, J.; Choi, J.W.; Ahn, Y.A.; Kim, S. Pharmacokinetics of bisphenol S in humans after single oral administration. Environ. Int. 2018, 112, 127–133. [Google Scholar] [CrossRef] [PubMed]
- Sandborgh-Englund, G.; Adolfsson-Erici, M.; Odham, G.; Ekstrand, J. Pharmacokinetics of triclosan following oral ingestion in humans. J. Toxicol. Environ. Health Part A 2006, 69, 1861–1873. [Google Scholar] [CrossRef]
- Kadry, A.M.; Okereke, C.S.; Abdel-Rahman, M.S.; Friedman, M.A.; Davis, R.A. Pharmacokinetics of benzophenone-3 after oral exposure in male rats. J. Appl. Toxicol. JAT 1995, 15, 97–102. [Google Scholar] [CrossRef]
- Jeon, H.K.; Sarma, S.N.; Kim, Y.J.; Ryu, J.C. Toxicokinetics and metabolisms of benzophenone-type UV filters in rats. Toxicology 2008, 248, 89–95. [Google Scholar] [CrossRef]
- Okereke, C.S.; Kadry, A.M.; Abdel-Rahman, M.S.; Davis, R.A.; Friedman, M.A. Metabolism of benzophenone-3 in rats. Drug Metab. Dispos. Biol. Fate Chem. 1993, 21, 788–791. [Google Scholar]
- Abbas, S.; Greige-Gerges, H.; Karam, N.; Piet, M.H.; Netter, P.; Magdalou, J. Metabolism of parabens (4-hydroxybenzoic acid esters) by hepatic esterases and UDP-glucuronosyltransferases in man. Drug Metab. Pharmacokinet. 2010, 25, 568–577. [Google Scholar] [CrossRef] [PubMed]
- Wittassek, M.; Koch, H.M.; Angerer, J.; Brüning, T. Assessing exposure to phthalates—The human biomonitoring approach. Mol. Nutr. Food Res. 2011, 55, 7–31. [Google Scholar] [CrossRef]
- Frederiksen, H.; Jensen, T.K.; Jørgensen, N.; Kyhl, H.B.; Husby, S.; Skakkebæk, N.E.; Main, K.M.; Juul, A.; Andersson, A.M. Human urinary excretion of non-persistent environmental chemicals: An overview of Danish data collected between 2006 and 2012. Reproduction 2014, 147, 555–565. [Google Scholar] [CrossRef] [PubMed]
- Philippat, C.; Calafat, A.M. Comparison of strategies to efficiently combine repeated urine samples in biomarker-based studies. Environ. Res. 2021, 192, 110275. [Google Scholar] [CrossRef]
- Philippat, C.; Heude, B.; Botton, J.; Alfaidy, N.; Calafat, A.M.; Slama, R. Prenatal Exposure to Select Phthalates and Phenols and Associations with Fetal and Placental Weight among Male Births in the EDEN Cohort (France). Environ. Health Perspect. 2019, 127, 17002. [Google Scholar] [CrossRef] [PubMed]
- Philippat, C.; Wolff, M.S.; Calafat, A.M.; Ye, X.; Bausell, R.; Meadows, M.; Stone, J.; Slama, R.; Engel, S.M. Prenatal exposure to environmental phenols: Concentrations in amniotic fluid and variability in urinary concentrations during pregnancy. Environ. Health Perspect. 2013, 121, 1225–1231. [Google Scholar] [CrossRef] [PubMed]
- Tefre de Renzy-Martin, K.; Frederiksen, H.; Christensen, J.S.; Boye Kyhl, H.; Andersson, A.M.; Husby, S.; Barington, T.; Main, K.M.; Jensen, T.K. Current exposure of 200 pregnant Danish women to phthalates, parabens and phenols. Reproduction 2014, 147, 443–453. [Google Scholar] [CrossRef]
- Guilbert, A.; Rolland, M.; Pin, I.; Thomsen, C.; Sakhi, A.K.; Sabaredzovic, A.; Slama, R.; Guichardet, K.; Philippat, C. Associations between a mixture of phenols and phthalates and child behaviour in a French mother-child cohort with repeated assessment of exposure. Environ. Int. 2021, 156, 106697. [Google Scholar] [CrossRef]
- Koch, H.M.; Bolt, H.M.; Angerer, J. Di(2-ethylhexyl)phthalate (DEHP) metabolites in human urine and serum after a single oral dose of deuterium-labelled DEHP. Arch. Toxicol. 2004, 78, 123–130. [Google Scholar] [CrossRef]
- Terry, A.L.; Cogswell, M.E.; Wang, C.Y.; Chen, T.C.; Loria, C.M.; Wright, J.D.; Zhang, X.; Lacher, D.A.; Merritt, R.K.; Bowman, B.A. Feasibility of collecting 24-h urine to monitor sodium intake in the National Health and Nutrition Examination Survey. Am. J. Clin. Nutr. 2016, 104, 480–488. [Google Scholar] [CrossRef]
- Moos, R.K.; Angerer, J.; Dierkes, G.; Brüning, T.; Koch, H.M. Metabolism and elimination of methyl, iso- and n-butyl paraben in human urine after single oral dosage. Arch. Toxicol. 2016, 90, 2699–2709. [Google Scholar] [CrossRef] [PubMed]
- Shin, M.Y.; Shin, C.; Choi, J.W.; Lee, J.; Lee, S.; Kim, S. Pharmacokinetic profile of propyl paraben in humans after oral administration. Environ. Int. 2019, 130, 104917. [Google Scholar] [CrossRef] [PubMed]
- Koch, H.M.; Christensen, K.L.; Harth, V.; Lorber, M.; Brüning, T. Di-n-butyl phthalate (DnBP) and diisobutyl phthalate (DiBP) metabolism in a human volunteer after single oral doses. Arch. Toxicol. 2012, 86, 1829–1839. [Google Scholar] [CrossRef] [PubMed]
- Anderson, W.A.; Castle, L.; Scotter, M.J.; Massey, R.C.; Springall, C. A biomarker approach to measuring human dietary exposure to certain phthalate diesters. Food Addit. Contam. 2001, 18, 1068–1074. [Google Scholar] [CrossRef] [PubMed]
- Koch, H.M.; Angerer, J. Di-iso-nonylphthalate (DINP) metabolites in human urine after a single oral dose of deuterium-labelled DINP. Int. J. Hyg. Environ. Health 2007, 210, 9–19. [Google Scholar] [CrossRef]
- Aylward, L.L.; Hays, S.M.; Gagné, M.; Krishnan, K. Derivation of Biomonitoring Equivalents for di(2-ethylhexyl)phthalate (CAS No. 117-81-7). Regul. Toxicol. Pharmacol. RTP 2009, 55, 249–258. [Google Scholar] [CrossRef]
- Koch, H.M.; Calafat, A.M. Human body burdens of chemicals used in plastic manufacture. Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. 2009, 364, 2063–2078. [Google Scholar] [CrossRef]
- Gentry, P.R.; Clewell, H.J., 3rd; Clewell, R.; Campbell, J.; Van Landingham, C.; Shipp, A.M. Challenges in the application of quantitative approaches in risk assessment: A case study with di-(2-ethylhexyl)phthalate. Crit. Rev. Toxicol. 2011, 41 (Suppl. 2), 1–72. [Google Scholar] [CrossRef]
- Rurak, D.W.; Wright, M.R.; Axelson, J.E. Drug disposition and effects in the fetus. J. Dev. Physiol. 1991, 15, 33–44. [Google Scholar]
- Toutain, P.L.; Ferran, A.; Bousquet-Mélou, A. Species differences in pharmacokinetics and pharmacodynamics. Handb. Exp. Pharmacol. 2010, 199, 19–48. [Google Scholar] [CrossRef]
- Gayrard, V.; Moreau, J.; Picard-Hagen, N.; Helies, V.; Marchand, P.; Antignac, J.P.; Toutain, P.L.; Leandri, R. Use of Mixture Dosing and Nonlinear Mixed Effect Modeling of Eight Environmental Contaminants in Rabbits to Improve Extrapolation Value of Toxicokinetic Data. Environ. Health Perspect. 2021, 129, 117006. [Google Scholar] [CrossRef] [PubMed]
- Schneider, H.; Albrecht, C.; Ahmed, M.S.; Broekhuizen, M.; Aengenheister, L.; Buerki-Thurnherr, T.; Danser, A.H.J.; Gil, S.; Hansson, S.R.; Greupink, R.; et al. Ex vivo dual perfusion of an isolated human placenta cotyledon: Towards protocol standardization and improved inter-centre comparability. Placenta 2022, 126, 83–89. [Google Scholar] [CrossRef] [PubMed]
- Radke, E.G.; Braun, J.M.; Nachman, R.M.; Cooper, G.S. Phthalate exposure and neurodevelopment: A systematic review and meta-analysis of human epidemiological evidence. Environ. Int. 2020, 137, 105408. [Google Scholar] [CrossRef] [PubMed]
- Corbel, T.; Gayrard, V.; Viguié, C.; Puel, S.; Lacroix, M.Z.; Toutain, P.L.; Picard-Hagen, N. Bisphenol A disposition in the sheep maternal-placental-fetal unit: Mechanisms determining fetal internal exposure. Biol. Reprod. 2013, 89, 11. [Google Scholar] [CrossRef]
- Morrison, J.L.; Berry, M.J.; Botting, K.J.; Darby, J.R.T.; Frasch, M.G.; Gatford, K.L.; Giussani, D.A.; Gray, C.L.; Harding, R.; Herrera, E.A.; et al. Improving pregnancy outcomes in humans through studies in sheep. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2018, 315, R1123–R1153. [Google Scholar] [CrossRef]
- Barry, J.S.; Anthony, R.V. The pregnant sheep as a model for human pregnancy. Theriogenology 2008, 69, 55–67. [Google Scholar] [CrossRef]
- Gély, C.A.; Lacroix, M.Z.; Morin, M.; Vayssière, C.; Gayrard, V.; Picard-Hagen, N. Comparison of the materno-fetal transfer of fifteen structurally related bisphenol analogues using an ex vivo human placental perfusion model. Chemosphere 2021, 276, 130213. [Google Scholar] [CrossRef]
- Corbel, T.; Gayrard, V.; Puel, S.; Lacroix, M.Z.; Berrebi, A.; Gil, S.; Viguié, C.; Toutain, P.L.; Picard-Hagen, N. Bidirectional placental transfer of Bisphenol A and its main metabolite, Bisphenol A-Glucuronide, in the isolated perfused human placenta. Reprod. Toxicol. 2014, 47, 51–58. [Google Scholar] [CrossRef]
- Grandin, F.C.; Lacroix, M.Z.; Gayrard, V.; Viguié, C.; Mila, H.; de Place, A.; Vayssière, C.; Morin, M.; Corbett, J.; Gayrard, C.; et al. Is bisphenol S a safer alternative to bisphenol A in terms of potential fetal exposure ? Placental transfer across the perfused human placenta. Chemosphere 2019, 221, 471–478. [Google Scholar] [CrossRef]
- Gély, C.A.; Picard-Hagen, N.; Chassan, M.; Garrigues, J.C.; Gayrard, V.; Lacroix, M.Z. Contribution of Reliable Chromatographic Data in QSAR for Modelling Bisphenol Transport across the Human Placenta Barrier. Molecules 2023, 28, 500. [Google Scholar] [CrossRef]
- Gauderat, G.; Picard-Hagen, N.; Toutain, P.L.; Corbel, T.; Viguié, C.; Puel, S.; Lacroix, M.Z.; Mindeguia, P.; Bousquet-Melou, A.; Gayrard, V. Bisphenol A glucuronide deconjugation is a determining factor of fetal exposure to bisphenol A. Environ. Int. 2016, 86, 52–59. [Google Scholar] [CrossRef] [PubMed]
- Grandin, F.C.; Lacroix, M.Z.; Gayrard, V.; Gauderat, G.; Mila, H.; Toutain, P.L.; Picard-Hagen, N. Bisphenol S instead of Bisphenol A: Toxicokinetic investigations in the ovine materno-feto-placental unit. Environ. Int. 2018, 120, 584–592. [Google Scholar] [CrossRef]
- Gingrich, J.; Pu, Y.; Ehrhardt, R.; Karthikraj, R.; Kannan, K.; Veiga-Lopez, A. Toxicokinetics of bisphenol A, bisphenol S, and bisphenol F in a pregnancy sheep model. Chemosphere 2019, 220, 185–194. [Google Scholar] [CrossRef]
- Andersen, M.H.G.; Zuri, G.; Knudsen, L.E.; Mathiesen, L. Placental transport of parabens studied using an ex-vivo human perfusion model. Placenta 2021, 115, 121–128. [Google Scholar] [CrossRef] [PubMed]
- Fennell, T.R.; Krol, W.L.; Sumner, S.C.; Snyder, R.W. Pharmacokinetics of dibutylphthalate in pregnant rats. Toxicol. Sci. Off. J. Soc. Toxicol. 2004, 82, 407–418. [Google Scholar] [CrossRef]
- Saillenfait, A.M.; Payan, J.P.; Fabry, J.P.; Beydon, D.; Langonne, I.; Gallissot, F.; Sabate, J.P. Assessment of the developmental toxicity, metabolism, and placental transfer of Di-n-butyl phthalate administered to pregnant rats. Toxicol. Sci. Off. J. Soc. Toxicol. 1998, 45, 212–224. [Google Scholar] [CrossRef]
- Singh, A.R.; Lawrence, W.H.; Autian, J. Maternal-fetal transfer of 14C-di-2-ethylhexyl phthalate and 14C-diethyl phthalate in rats. J. Pharm. Sci. 1975, 64, 1347–1350. [Google Scholar] [CrossRef]
- Kremer, J.J.; Williams, C.C.; Parkinson, H.D.; Borghoff, S.J. Pharmacokinetics of monobutylphthalate, the active metabolite of di-n-butylphthalate, in pregnant rats. Toxicol. Lett. 2005, 159, 144–153. [Google Scholar] [CrossRef]
- Calafat, A.M.; Brock, J.W.; Silva, M.J.; Gray, L.E., Jr.; Reidy, J.A.; Barr, D.B.; Needham, L.L. Urinary and amniotic fluid levels of phthalate monoesters in rats after the oral administration of di(2-ethylhexyl) phthalate and di-n-butyl phthalate. Toxicology 2006, 217, 22–30. [Google Scholar] [CrossRef]
- Mose, T.; Knudsen, L.E.; Hedegaard, M.; Mortensen, G.K. Transplacental transfer of monomethyl phthalate and mono(2-ethylhexyl) phthalate in a human placenta perfusion system. Int. J. Toxicol. 2007, 26, 221–229. [Google Scholar] [CrossRef]
- Mose, T.; Mortensen, G.K.; Hedegaard, M.; Knudsen, L.E. Phthalate monoesters in perfusate from a dual placenta perfusion system, the placenta tissue and umbilical cord blood. Reprod. Toxicol. 2007, 23, 83–91. [Google Scholar] [CrossRef] [PubMed]
- Ihde, E.S.; Zamudio, S.; Loh, J.M.; Zhu, Y.; Woytanowski, J.; Rosen, L.; Liu, M.; Buckley, B. Application of a novel mass spectrometric (MS) method to examine exposure to Bisphenol-A and common substitutes in a maternal fetal cohort. Hum. Ecol. Risk Assess. HERA 2018, 24, 331–346. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Li, J.; Wu, Y.; Zhao, Y.; Luo, F.; Li, S.; Yang, L.; Moez, E.K.; Dinu, I.; Martin, J.W. Bisphenol A Metabolites and Bisphenol S in Paired Maternal and Cord Serum. Environ. Sci. Technol. 2017, 51, 2456–2463. [Google Scholar] [CrossRef] [PubMed]
- Casas, M.; Valvi, D.; Ballesteros-Gomez, A.; Gascon, M.; Fernández, M.F.; Garcia-Esteban, R.; Iñiguez, C.; Martínez, D.; Murcia, M.; Monfort, N.; et al. Exposure to Bisphenol A and Phthalates during Pregnancy and Ultrasound Measures of Fetal Growth in the INMA-Sabadell Cohort. Environ. Health Perspect. 2016, 124, 521–528. [Google Scholar] [CrossRef]
- Ferguson, K.K.; Meeker, J.D.; Cantonwine, D.E.; Mukherjee, B.; Pace, G.G.; Weller, D.; McElrath, T.F. Environmental phenol associations with ultrasound and delivery measures of fetal growth. Environ. Int. 2018, 112, 243–250, Erratum in Environ. Int. 2019, 122, 418. https://doi.org/10.1016/j.envint.2018.11.064. [Google Scholar] [CrossRef]
- Vrijens, K.; Van Overmeire, I.; De Cremer, K.; Neven, K.Y.; Carollo, R.M.; Vleminckx, C.; Van Loco, J.; Nawrot, T.S. Weight and head circumference at birth in function of placental paraben load in Belgium: An ENVIRONAGE birth cohort study. Environ. Health 2020, 19, 83. [Google Scholar] [CrossRef]
- Zhu, Y.D.; Gao, H.; Huang, K.; Zhang, Y.W.; Cai, X.X.; Yao, H.Y.; Mao, L.J.; Ge, X.; Zhou, S.S.; Xu, Y.Y.; et al. Prenatal phthalate exposure and placental size and shape at birth: A birth cohort study. Environ. Res. 2018, 160, 239–246. [Google Scholar] [CrossRef]
- Gao, H.; Geng, M.L.; Huang, K.; Zhu, B.B.; Zhang, C.; Gan, H.; Tong, J.; Wu, X.L.; Hu, C.Y.; Zhang, S.Y.; et al. Relationship of individual and mixed prenatal phthalate exposure with placental structure and efficiency in the prospective Ma’anshan Birth Cohort Study. Sci. Total Environ. 2022, 838, 156498. [Google Scholar] [CrossRef]
- Mustieles, V.; Mínguez-Alarcón, L.; Christou, G.; Ford, J.B.; Dimitriadis, I.; Hauser, R.; Souter, I.; Messerlian, C. Placental weight in relation to maternal and paternal preconception and prenatal urinary phthalate metabolite concentrations among subfertile couples. Environ. Res. 2019, 169, 272–279. [Google Scholar] [CrossRef]
- Huang, Y.; Li, J.; Garcia, J.M.; Lin, H.; Wang, Y.; Yan, P.; Wang, L.; Tan, Y.; Luo, J.; Qiu, Z.; et al. Phthalate levels in cord blood are associated with preterm delivery and fetal growth parameters in Chinese women. PLoS ONE 2014, 9, e87430. [Google Scholar] [CrossRef]
- Jovanovic, N.; Mustieles, V.; Althuser, M.; Lyon-Caen, S.; Alfaidy, N.; Thomsen, C.; Sakhi, A.K.; Sabaredzovic, A.; Bayat, S.; Couturier-Tarrade, A.; et al. Associations between synthetic phenols, phthalates, and placental growth/function: A longitudinal cohort with exposure assessment in early pregnancy. Hum. Reprod. Open 2024, 2024, hoae018. [Google Scholar] [CrossRef] [PubMed]
- Ouidir, M.; Jedynak, P.; Rolland, M.; Lyon-Caen, S.; Thomsen, C.; Sakhi, A.K.; Sabaredzovic, A.; Bayat, S.; Slama, R.; Philippat, C. Analyzing the impact of phthalate and DINCH exposure on fetal growth in a cohort with repeated urine collection. Environ. Int. 2024, 186, 108584. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Wan, Y.; Zhang, B.; Zhou, A.; Huo, W.; Wu, C.; Liu, H.; Jiang, Y.; Chen, Z.; Jiang, M.; et al. Relationship between maternal phthalate exposure and offspring size at birth. Sci. Total Environ. 2018, 612, 1072–1078. [Google Scholar] [CrossRef]
- LaRocca, J.; Binder, A.M.; McElrath, T.F.; Michels, K.B. The impact of first trimester phthalate and phenol exposure on IGF2/H19 genomic imprinting and birth outcomes. Environ. Res. 2014, 133, 396–406. [Google Scholar] [CrossRef]
- Zhao, Y.; Chen, J.; Wang, X.; Song, Q.; Xu, H.H.; Zhang, Y.H. Third trimester phthalate exposure is associated with DNA methylation of growth-related genes in human placenta. Sci. Rep. 2016, 6, 33449. [Google Scholar] [CrossRef]
- Zhao, Y.; Shi, H.J.; Xie, C.M.; Chen, J.; Laue, H.; Zhang, Y.H. Prenatal phthalate exposure, infant growth, and global DNA methylation of human placenta. Environ. Mol. Mutagen. 2015, 56, 286–292. [Google Scholar] [CrossRef]
- Lövkvist, C.; Dodd, I.B.; Sneppen, K.; Haerter, J.O. DNA methylation in human epigenomes depends on local topology of CpG sites. Nucleic Acids Res. 2016, 44, 5123–5132. [Google Scholar] [CrossRef]
- Grindler, N.M.; Vanderlinden, L.; Karthikraj, R.; Kannan, K.; Teal, S.; Polotsky, A.J.; Powell, T.L.; Yang, I.V.; Jansson, T. Exposure to Phthalate, an Endocrine Disrupting Chemical, Alters the First Trimester Placental Methylome and Transcriptome in Women. Sci. Rep. 2018, 8, 6086. [Google Scholar] [CrossRef] [PubMed]
- Jedynak, P.; Maitre, L.; Guxens, M.; Gützkow, K.B.; Julvez, J.; López-Vicente, M.; Sunyer, J.; Casas, M.; Chatzi, L.; Gražulevičienė, R.; et al. Prenatal exposure to a wide range of environmental chemicals and child behaviour between 3 and 7 years of age—An exposome-based approach in 5 European cohorts. Sci. Total Environ. 2021, 763, 144115. [Google Scholar] [CrossRef]
- Jedynak, P.; Tost, J.; Calafat, A.M.; Bourova-Flin, E.; Broséus, L.; Busato, F.; Forhan, A.; Heude, B.; Jakobi, M.; Schwartz, J.; et al. Pregnancy exposure to phthalates and DNA methylation in male placenta—An epigenome-wide association study. Environ. Int. 2022, 160, 107054. [Google Scholar] [CrossRef]
- Svendsen, A.J.; Gervin, K.; Lyle, R.; Christiansen, L.; Kyvik, K.; Junker, P.; Nielsen, C.; Houen, G.; Tan, Q. Differentially Methylated DNA Regions in Monozygotic Twin Pairs Discordant for Rheumatoid Arthritis: An Epigenome-Wide Study. Front. Immunol. 2016, 7, 510. [Google Scholar] [CrossRef] [PubMed]
- Jedynak, P.; Siroux, V.; Broséus, L.; Tost, J.; Busato, F.; Gabet, S.; Thomsen, C.; Sakhi, A.K.; Sabaredzovic, A.; Lyon-Caen, S.; et al. Epigenetic footprints: Investigating placental DNA methylation in the context of prenatal exposure to phenols and phthalates. Environ. Int. 2024, 189, 108763. [Google Scholar] [CrossRef] [PubMed]
- Puvvula, J.; Braun, J.M.; DeFranco, E.A.; Ho, S.M.; Leung, Y.K.; Huang, S.; Zhang, X.; Vuong, A.M.; Kim, S.S.; Percy, Z.; et al. Gestational exposure to environmental chemicals and epigenetic alterations in the placenta and cord blood mononuclear cells. Epigenetics. Commun. 2024, 4, 4. [Google Scholar] [CrossRef]
- Ticiani, E.; Gingrich, J.; Pu, Y.; Vettathu, M.; Davis, J.; Martin, D.; Petroff, M.G.; Veiga-Lopez, A. Bisphenol S and Epidermal Growth Factor Receptor Signaling in Human Placental Cytotrophoblasts. Environ. Health Perspect. 2021, 129, 27005. [Google Scholar] [CrossRef]
- Lapehn, S.; Houghtaling, S.; Ahuna, K.; Kadam, L.; MacDonald, J.W.; Bammler, T.K.; LeWinn, K.Z.; Myatt, L.; Sathyanarayana, S.; Paquette, A.G. Mono(2-ethylhexyl) phthalate induces transcriptomic changes in placental cells based on concentration, fetal sex, and trophoblast cell type. Arch. Toxicol. 2023, 97, 831–847. [Google Scholar] [CrossRef]
- Shoaito, H.; Petit, J.; Chissey, A.; Auzeil, N.; Guibourdenche, J.; Gil, S.; Laprévote, O.; Fournier, T.; Degrelle, S.A. The Role of Peroxisome Proliferator–Activated Receptor Gamma (PPARγ) in Mono(2-ethylhexyl) Phthalate (MEHP)-Mediated Cytotrophoblast Differentiation. Environ. Health Perspect. 2019, 127, 27003. [Google Scholar] [CrossRef]
- Adibi, J.J.; Zhao, Y.; Zhan, L.V.; Kapidzic, M.; Larocque, N.; Koistinen, H.; Huhtaniemi, I.T.; Stenman, U.H. An Investigation of the Single and Combined Phthalate Metabolite Effects on Human Chorionic Gonadotropin Expression in Placental Cells. Environ. Health Perspect. 2017, 125, 107010. [Google Scholar] [CrossRef] [PubMed]
- Kliman, H.J.; Nestler, J.E.; Sermasi, E.; Sanger, J.M.; Strauss, J.F. 3rd. Purification, characterization, and in vitro differentiation of cytotrophoblasts from human term placentae. Endocrinology 1986, 118, 1567–1582. [Google Scholar] [CrossRef]
- Zou, Z.; Harris, L.K.; Forbes, K.; Heazell, A.E.P. Sex-specific effects of bisphenol A on the signaling pathway of ESRRG in the human placenta. Biol. Reprod. 2022, 106, 1278–1291. [Google Scholar] [CrossRef]
- Alsubaie, A.M.; Arita, Y.; Atwater, M.; Mahfuz, A.; Peltier, M.R. Enhancement of placental inflammation by Dibutyl Phthalate. J. Reprod. Immunol. 2021, 147, 103368. [Google Scholar] [CrossRef]
- Sullivan, M.H. Endocrine cell lines from the placenta. Mol. Cell Endocrinol. 2004, 228, 103–119. [Google Scholar] [CrossRef] [PubMed]
- Olivier, E.; Wakx, A.; Fouyet, S.; Dutot, M.; Rat, P. JEG-3 placental cells in toxicology studies: A promising tool to reveal pregnancy disorders. Anat. Cell Biol. 2021, 54, 83–92. [Google Scholar] [CrossRef]
- Graham, C.H.; Hawley, T.S.; Hawley, R.G.; MacDougall, J.R.; Kerbel, R.S.; Khoo, N.; Lala, P.K. Establishment and characterization of first trimester human trophoblast cells with extended lifespan. Exp. Cell Res. 1993, 206, 204–211. [Google Scholar] [CrossRef] [PubMed]
- Gu, X.; Liu, H.; Luo, W.; Wang, X.; Wang, H.; Li, L. Di-2-ethylhexyl phthalate-induced miR-155-5p promoted lipid metabolism via inhibiting cAMP/PKA signaling pathway in human trophoblastic HTR-8/Svneo cells. Reprod. Toxicol. 2022, 114, 22–31. [Google Scholar] [CrossRef]
- Wice, B.; Menton, D.; Geuze, H.; Schwartz, A.L. Modulators of cyclic AMP metabolism induce syncytiotrophoblast formation in vitro. Exp. Cell Res. 1990, 186, 306–316. [Google Scholar] [CrossRef]
- Orendi, K.; Gauster, M.; Moser, G.; Meiri, H.; Huppertz, B. The choriocarcinoma cell line BeWo: Syncytial fusion and expression of syncytium-specific proteins. Reproduction 2010, 140, 759–766. [Google Scholar] [CrossRef]
- Gerbaud, P.; Pidoux, G. Review: An overview of molecular events occurring in human trophoblast fusion. Placenta 2015, 36 (Suppl. 1), S35–S42. [Google Scholar] [CrossRef] [PubMed]
- Pastuschek, J.; Nonn, O.; Gutiérrez-Samudio, R.N.; Murrieta-Coxca, J.M.; Müller, J.; Sanft, J.; Huppertz, B.; Markert, U.R.; Groten, T.; Morales-Prieto, D.M. Molecular characteristics of established trophoblast-derived cell lines. Placenta 2021, 108, 122–133. [Google Scholar] [CrossRef]
- Drwal, E.; Rak, A.; Gregoraszczuk, E. Co-culture of JEG-3, BeWo and syncBeWo cell lines with adrenal H295R cell line: An alternative model for examining endocrine and metabolic properties of the fetoplacental unit. Cytotechnology 2018, 70, 285–297. [Google Scholar] [CrossRef]
- Msheik, H.; El Hayek, S.; Bari, M.F.; Azar, J.; Abou-Kheir, W.; Kobeissy, F.; Vatish, M.; Daoud, G. Transcriptomic profiling of trophoblast fusion using BeWo and JEG-3 cell lines. Mol. Hum. Reprod. 2019, 25, 811–824. [Google Scholar] [CrossRef]
- Ma, R.; Tang, N.; Feng, L.; Wang, X.; Zhang, J.; Ren, X.; Du, Y.; Ouyang, F. Effects of triclosan exposure on placental extravillous trophoblast motility, relevant IGF2/H19 signaling and DNA methylation-related enzymes of HTR-8/SVneo cell line. Ecotoxicol. Environ. Saf. 2021, 228, 113051. [Google Scholar] [CrossRef]
- Agay-Shay, K.; Martinez, D.; Valvi, D.; Garcia-Esteban, R.; Basagaña, X.; Robinson, O.; Casas, M.; Sunyer, J.; Vrijheid, M. Exposure to Endocrine-Disrupting Chemicals during Pregnancy and Weight at 7 Years of Age: A Multi-pollutant Approach. Environ. Health Perspect. 2015, 123, 1030–1037. [Google Scholar] [CrossRef] [PubMed]
- Msheik, H.; Azar, J.; El Sabeh, M.; Abou-Kheir, W.; Daoud, G. HTR-8/SVneo: A model for epithelial to mesenchymal transition in the human placenta. Placenta 2020, 90, 90–97. [Google Scholar] [CrossRef]
- Mannelli, C.; Ietta, F.; Carotenuto, C.; Romagnoli, R.; Szostek, A.Z.; Wasniewski, T.; Skarzynski, D.J.; Paulesu, L. Bisphenol A alters β-hCG and MIF release by human placenta: An in vitro study to understand the role of endometrial cells. Mediat. Inflamm. 2014, 2014, 635364. [Google Scholar] [CrossRef]
- Mørck, T.J.; Sorda, G.; Bechi, N.; Rasmussen, B.S.; Nielsen, J.B.; Ietta, F.; Rytting, E.; Mathiesen, L.; Paulesu, L.; Knudsen, L.E. Placental transport and in vitro effects of Bisphenol A. Reprod. Toxicol. 2010, 30, 131–137. [Google Scholar] [CrossRef] [PubMed]
- Rajakumar, C.; Guan, H.; Langlois, D.; Cernea, M.; Yang, K. Bisphenol A disrupts gene expression in human placental trophoblast cells. Reprod. Toxicol. 2015, 53, 39–44. [Google Scholar] [CrossRef]
- Benachour, N.; Aris, A. Toxic effects of low doses of Bisphenol-A on human placental cells. Toxicol. Appl. Pharmacol. 2009, 241, 322–328. [Google Scholar] [CrossRef]
- Wang, X.K.; Agarwal, M.; Parobchak, N.; Rosen, A.; Vetrano, A.M.; Srinivasan, A.; Wang, B.; Rosen, T. Mono-(2-Ethylhexyl) Phthalate Promotes Pro-Labor Gene Expression in the Human Placenta. PLoS ONE 2016, 11, e0147013. [Google Scholar] [CrossRef]
- de Aguiar Greca, S.C.; Kyrou, I.; Pink, R.; Randeva, H.; Grammatopoulos, D.; Silva, E.; Karteris, E. Involvement of the Endocrine-Disrupting Chemical Bisphenol A (BPA) in Human Placentation. J. Clin. Med. 2020, 9, 405. [Google Scholar] [CrossRef]
- Ponniah, M.; Billett, E.E.; De Girolamo, L.A. Bisphenol A increases BeWo trophoblast survival in stress-induced paradigms through regulation of oxidative stress and apoptosis. Chem. Res. Toxicol. 2015, 28, 1693–1703. [Google Scholar] [CrossRef]
- Cao, Y.; Chen, S.; Lu, J.; Zhang, M.; Shi, L.; Qin, J.; Lv, J.; Li, D.; Ma, L.; Zhang, Y. BPA induces placental trophoblast proliferation inhibition and fetal growth restriction by inhibiting the expression of SRB1. Environ. Sci. Pollut. Res. Int. 2023, 30, 60805–60819. [Google Scholar] [CrossRef] [PubMed]
- Narciso, L.; Ietta, F.; Romagnoli, R.; Paulesu, L.; Mantovani, A.; Tait, S. Effects of Bisphenol A on endogenous retroviral envelopes expression and trophoblast fusion in BeWo cells. Reprod. Toxicol. 2019, 89, 35–44. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.Y.; Lu, J.; Zhang, Y.Z.; Zhang, M.; Liu, T.; Qu, X.L. Effect of Bisphenol A on invasion ability of human trophoblastic cell line BeWo. Int. J. Clin. Exp. Pathol. 2015, 8, 14355–14364. [Google Scholar]
- Lu, Y.; Yang, R.; Yin, N.; Faiola, F. In vivo and in vitro transcriptomics meta-analyses reveal that BPA may affect TGF-beta signaling regardless of the toxicology system employed. Environ. Pollut. 2021, 285, 117472. [Google Scholar] [CrossRef]
- Kim, M.J.; Kim, C.H.; An, M.J.; Lee, J.H.; Shin, G.S.; Song, M.; Kim, J.W. Ethylparaben induces apoptotic cell death in human placenta BeWo cells via the Caspase-3 pathway. Anim. Cells Syst. 2020, 24, 34–43. [Google Scholar] [CrossRef]
- Petit, J.; Wakx, A.; Gil, S.; Fournier, T.; Auzeil, N.; Rat, P.; Laprévote, O. Lipidome-wide disturbances of human placental JEG-3 cells by the presence of MEHP. Biochimie 2018, 149, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.; Lim, W.; Bazer, F.W.; Song, G. Butyl paraben promotes apoptosis in human trophoblast cells through increased oxidative stress-induced endoplasmic reticulum stress. Environ. Toxicol. 2018, 33, 436–445. [Google Scholar] [CrossRef]
- Wang, C.; Niu, Y.; Xu, L.; Song, L.; Yin, L.; Zheng, X.; Chu, J.; Ma, T. Effects of phthalates on human chorionic trophoblast cells and mouse embryonic development. Reprod. Toxicol. 2023, 116, 108339. [Google Scholar] [CrossRef]
- Du, Z.P.; Feng, S.; Li, Y.L.; Li, R.; Lv, J.; Ren, W.Q.; Feng, Q.W.; Liu, P.; Wang, Q.N. Di-(2-ethylhexyl) phthalate inhibits expression and internalization of transthyretin in human placental trophoblastic cells. Toxicol. Appl. Pharmacol. 2020, 394, 114960. [Google Scholar] [CrossRef]
- Seymore, T.N.; Rivera-Núñez, Z.; Stapleton, P.A.; Adibi, J.J.; Barrett, E.S. Phthalate Exposures and Placental Health in Animal Models and Humans: A Systematic Review. Toxicol. Sci. Off. J. Soc. Toxicol. 2022, 188, 153–179. [Google Scholar] [CrossRef]
- Bhurke, A.; Davila, J.; Flaws, J.A.; Bagchi, M.K.; Bagchi, I.C. Exposure to di-isononyl phthalate during early pregnancy disrupts decidual angiogenesis and placental development in mice. Reprod. Toxicol. 2023, 120, 108446. [Google Scholar] [CrossRef] [PubMed]
- Barberio, L.; Paulesu, L.; Canesi, L.; Grasselli, E.; Mandalà, M. Bisphenol a Interferes with Uterine Artery Features and Impairs Rat Feto-Placental Growth. Int. J. Mol. Sci. 2021, 22, 6912. [Google Scholar] [CrossRef]
- Song, W.; Puttabyatappa, M.; Zeng, L.; Vazquez, D.; Pennathur, S.; Padmanabhan, V. Developmental programming: Prenatal bisphenol A treatment disrupts mediators of placental function in sheep. Chemosphere 2020, 243, 125301. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Zheng, Y.; Liu, X.; Zha, X.; Elsabagh, M.; Ma, Y.; Jiang, H.; Wang, H.; Wang, M. Autophagy attenuates placental apoptosis, oxidative stress and fetal growth restriction in pregnant ewes. Environ. Int. 2023, 173, 107806. [Google Scholar] [CrossRef]
- Müller, J.E.; Meyer, N.; Santamaria, C.G.; Schumacher, A.; Luque, E.H.; Zenclussen, M.L.; Rodriguez, H.A.; Zenclussen, A.C. Bisphenol A exposure during early pregnancy impairs uterine spiral artery remodeling and provokes intrauterine growth restriction in mice. Sci. Rep. 2018, 8, 9196. [Google Scholar] [CrossRef]
- Tachibana, T.; Wakimoto, Y.; Nakamuta, N.; Phichitraslip, T.; Wakitani, S.; Kusakabe, K.; Hondo, E.; Kiso, Y. Effects of bisphenol A (BPA) on placentation and survival of the neonates in mice. J. Reprod. Dev. 2007, 53, 509–514. [Google Scholar] [CrossRef] [PubMed]
- Tait, S.; Tassinari, R.; Maranghi, F.; Mantovani, A. Bisphenol A affects placental layers morphology and angiogenesis during early pregnancy phase in mice. J. Appl. Toxicol. JAT 2015, 35, 1278–1291. [Google Scholar] [CrossRef]
- Lan, X.; Fu, L.J.; Zhang, J.; Liu, X.Q.; Zhang, H.J.; Zhang, X.; Ma, M.F.; Chen, X.M.; He, J.L.; Li, L.B.; et al. Bisphenol A exposure promotes HTR-8/SVneo cell migration and impairs mouse placentation involving upregulation of integrin-β1 and MMP-9 and stimulation of MAPK and PI3K signaling pathways. Oncotarget 2017, 8, 51507–51521. [Google Scholar] [CrossRef]
- Ye, Y.; Tang, Y.; Xiong, Y.; Feng, L.; Li, X. Bisphenol A exposure alters placentation and causes preeclampsia-like features in pregnant mice involved in reprogramming of DNA methylation of WNT2. FASEB J. 2019, 33, 2732–2742. [Google Scholar] [CrossRef]
- Imanishi, S.; Manabe, N.; Nishizawa, H.; Morita, M.; Sugimoto, M.; Iwahori, M.; Miyamoto, H. Effects of oral exposure of bisphenol A on mRNA expression of nuclear receptors in murine placentae assessed by DNA microarray. J. Reprod. Dev. 2003, 49, 329–336. [Google Scholar] [CrossRef]
- Kang, E.R.; Iqbal, K.; Tran, D.A.; Rivas, G.E.; Singh, P.; Pfeifer, G.P.; Szabó, P.E. Effects of endocrine disruptors on imprinted gene expression in the mouse embryo. Epigenetics 2011, 6, 937–950. [Google Scholar] [CrossRef]
- Susiarjo, M.; Sasson, I.; Mesaros, C.; Bartolomei, M.S. Bisphenol a exposure disrupts genomic imprinting in the mouse. PLoS Genet. 2013, 9, e1003401. [Google Scholar] [CrossRef] [PubMed]
- Mao, J.; Kinkade, J.A.; Bivens, N.J.; Rosenfeld, C.S. miRNA changes in the mouse placenta due to bisphenol A exposure. Epigenomics 2021, 13, 1909–1919. [Google Scholar] [CrossRef]
- Lee, J.H.; Ahn, C.; Kang, H.Y.; Hong, E.J.; Hyun, S.H.; Choi, K.C.; Jeung, E.B. Effects of Octylphenol and Bisphenol A on the Metal Cation Transporter Channels of Mouse Placentas. Int. J. Environ. Res. Public Health 2016, 13, 965. [Google Scholar] [CrossRef] [PubMed]
- Hong, E.J.; Choi, K.C.; Jeung, E.B. Maternal-fetal transfer of endocrine disruptors in the induction of Calbindin-D9k mRNA and protein during pregnancy in rat model. Mol. Cell. Endocrinol. 2003, 212, 63–72. [Google Scholar] [CrossRef]
- Hong, E.J.; Choi, K.C.; Jeung, E.B. Maternal exposure to bisphenol a during late pregnancy resulted in an increase of Calbindin-D9k mRNA and protein in maternal and postnatal rat uteri. J. Reprod. Dev. 2005, 51, 499–508. [Google Scholar] [CrossRef] [PubMed]
- Benincasa, L.; Mandalà, M.; Paulesu, L.; Barberio, L.; Ietta, F. Prenatal Nutrition Containing Bisphenol A Affects Placenta Glucose Transfer: Evidence in Rats and Human Trophoblast. Nutrients 2020, 12, 1375. [Google Scholar] [CrossRef]
- Tan, W.; Huang, H.; Wang, Y.; Wong, T.Y.; Wang, C.C.; Leung, L.K. Bisphenol A differentially activates protein kinase C isoforms in murine placental tissue. Toxicol. Appl. Pharmacol. 2013, 269, 163–168. [Google Scholar] [CrossRef]
- Gingrich, J.; Pu, Y.; Roberts, J.; Karthikraj, R.; Kannan, K.; Ehrhardt, R.; Veiga-Lopez, A. Gestational bisphenol S impairs placental endocrine function and the fusogenic trophoblast signaling pathway. Arch. Toxicol. 2018, 92, 1861–1876. [Google Scholar] [CrossRef]
- Mao, J.; Jain, A.; Denslow, N.D.; Nouri, M.Z.; Chen, S.; Wang, T.; Zhu, N.; Koh, J.; Sarma, S.J.; Sumner, B.W.; et al. Bisphenol A and bisphenol S disruptions of the mouse placenta and potential effects on the placenta-brain axis. Proc. Natl. Acad. Sci. USA 2020, 117, 4642–4652. [Google Scholar] [CrossRef]
- Crawford, B.R.; Decatanzaro, D. Disruption of blastocyst implantation by triclosan in mice: Impacts of repeated and acute doses and combination with bisphenol-A. Reprod. Toxicol. 2012, 34, 607–613. [Google Scholar] [CrossRef] [PubMed]
- Jackson, E.N.; Rowland-Faux, L.; James, M.O.; Wood, C.E. Administration of low dose triclosan to pregnant ewes results in placental uptake and reduced estradiol sulfotransferase activity in fetal liver and placenta. Toxicol. Lett. 2018, 294, 116–121. [Google Scholar] [CrossRef] [PubMed]
- Feng, Y.; Zhang, P.; Zhang, Z.; Shi, J.; Jiao, Z.; Shao, B. Endocrine Disrupting Effects of Triclosan on the Placenta in Pregnant Rats. PLoS ONE 2016, 11, e0154758. [Google Scholar] [CrossRef]
- Cao, X.; Hua, X.; Wang, X.; Chen, L. Exposure of pregnant mice to triclosan impairs placental development and nutrient transport. Sci. Rep. 2017, 7, 44803. [Google Scholar] [CrossRef]
- Wang, X.; Chen, X.; Feng, X.; Chang, F.; Chen, M.; Xia, Y.; Chen, L. Triclosan causes spontaneous abortion accompanied by decline of estrogen sulfotransferase activity in humans and mice. Sci. Rep. 2015, 5, 18252. [Google Scholar] [CrossRef] [PubMed]
- Frederiksen, H.; Taxvig, C.; Hass, U.; Vinggaard, A.M.; Nellemann, C. Higher levels of ethyl paraben and butyl paraben in rat amniotic fluid than in maternal plasma after subcutaneous administration. Toxicol. Sci. Off. J. Soc. Toxicol. 2008, 106, 376–383. [Google Scholar] [CrossRef]
- Dagher, J.B.; Hahn-Townsend, C.K.; Kaimal, A.; Mansi, M.A.; Henriquez, J.E.; Tran, D.G.; Laurent, C.R.; Bacak, C.J.; Buechter, H.E.; Cambric, C.; et al. Independent and combined effects of Bisphenol A and Diethylhexyl Phthalate on gestational outcomes and offspring development in Sprague-Dawley rats. Chemosphere 2021, 263, 128307. [Google Scholar] [CrossRef] [PubMed]
- Reed, J.M.; Spinelli, P.; Falcone, S.; He, M.; Goeke, C.M.; Susiarjo, M. Evaluating the Effects of BPA and TBBPA Exposure on Pregnancy Loss and Maternal-Fetal Immune Cells in Mice. Environ. Health Perspect. 2022, 130, 37010. [Google Scholar] [CrossRef]
- Hua, X.; Xiong, J.W.; Zhang, Y.J.; Cao, X.Y.; Sun, P.; Wu, J.; Chen, L. Exposure of pregnant mice to triclosan causes hyperphagic obesity of offspring via the hypermethylation of proopiomelanocortin promoter. Arch. Toxicol. 2019, 93, 547–558. [Google Scholar] [CrossRef]
- Li, J.; Quan, X.; Zhang, Y.; Yu, T.; Lei, S.; Huang, Z.; Wang, Q.; Song, W.; Yang, X.; Xu, P. PPARγ Regulates Triclosan Induced Placental Dysfunction. Cells 2021, 11, 86. [Google Scholar] [CrossRef] [PubMed]
- Bitencourt, G.; Fortunato, E.D.; Panis, C.; Amorim, E.M.P.; de Arruda Amorim, J.P. Maternal exposure to triclosan causes fetal development restriction, deregulation of the oestrous cycle, and alters uterine tissue in rat offspring. Environ. Toxicol. 2019, 34, 1105–1113. [Google Scholar] [CrossRef] [PubMed]
- Shen, R.; Zhao, L.L.; Yu, Z.; Zhang, C.; Chen, Y.H.; Wang, H.; Zhang, Z.H.; Xu, D.X. Maternal di-(2-ethylhexyl) phthalate exposure during pregnancy causes fetal growth restriction in a stage-specific but gender-independent manner. Reprod. Toxicol. 2017, 67, 117–124. [Google Scholar] [CrossRef]
- Zong, T.; Lai, L.; Hu, J.; Guo, M.; Li, M.; Zhang, L.; Zhong, C.; Yang, B.; Wu, L.; Zhang, D.; et al. Maternal exposure to di-(2-ethylhexyl) phthalate disrupts placental growth and development in pregnant mice. J. Hazard. Mater. 2015, 297, 25–33. [Google Scholar] [CrossRef] [PubMed]
- Xu, W.; Wu, H.; Shang, L. Gene expression in rat placenta after exposure to di(2-ethylhexyl) phthalate. Hum. Exp. Toxicol. 2021, 40, 504–514. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Agrawal, S.; Cook, T.J.; Knipp, G.T. Maternal di-(2-ethylhexyl)-phthalate exposure influences essential fatty acid homeostasis in rat placenta. Placenta 2008, 29, 962–969. [Google Scholar] [CrossRef]
- Ahbab, M.A.; Güven, C.; Koçkaya, E.A.; Barlas, N. Comparative developmental toxicity evaluation of di- n-hexyl phthalate and dicyclohexyl phthalate in rats. Toxicol. Ind. Health 2017, 33, 696–716. [Google Scholar] [CrossRef]
- Daston, G.P. Developmental toxicity evaluation of butylparaben in Sprague-Dawley rats. Birth Defects Res. Part B Dev. Reprod. Toxicol. 2004, 71, 296–302. [Google Scholar] [CrossRef]
- Shaw, J.; deCatanzaro, D. Estrogenicity of parabens revisited: Impact of parabens on early pregnancy and an uterotrophic assay in mice. Reprod. Toxicol. 2009, 28, 26–31. [Google Scholar] [CrossRef]
- Boberg, J.; Metzdorff, S.; Wortziger, R.; Axelstad, M.; Brokken, L.; Vinggaard, A.M.; Dalgaard, M.; Nellemann, C. Impact of diisobutyl phthalate and other PPAR agonists on steroidogenesis and plasma insulin and leptin levels in fetal rats. Toxicology 2008, 250, 75–81. [Google Scholar] [CrossRef]
- Wang, D.; Li, W.; Yang, C.; Chen, X.; Liu, X.; He, J.; Tong, C.; Peng, C.; Ding, Y.; Geng, Y.; et al. Exposure to ethylparaben and propylparaben interfere with embryo implantation by compromising endometrial decidualization in early pregnant mice. J. Appl. Toxicol. JAT 2021, 41, 1732–1746. [Google Scholar] [CrossRef]
- Berger, K.; Hyland, C.; Ames, J.L.; Mora, A.M.; Huen, K.; Eskenazi, B.; Holland, N.; Harley, K.G. Prenatal Exposure to Mixtures of Phthalates, Parabens, and Other Phenols and Obesity in Five-Year-Olds in the CHAMACOS Cohort. Int. J. Environ. Res. Public Health 2021, 18, 1796. [Google Scholar] [CrossRef] [PubMed]
- Vrijheid, M.; Fossati, S.; Maitre, L.; Márquez, S.; Roumeliotaki, T.; Agier, L.; Andrusaityte, S.; Cadiou, S.; Casas, M.; de Castro, M.; et al. Early-Life Environmental Exposures and Childhood Obesity: An Exposome-Wide Approach. Environ. Health Perspect. 2020, 128, 67009. [Google Scholar] [CrossRef] [PubMed]
- Güil-Oumrait, N.; Cano-Sancho, G.; Montazeri, P.; Stratakis, N.; Warembourg, C.; Lopez-Espinosa, M.J.; Vioque, J.; Santa-Marina, L.; Jimeno-Romero, A.; Ventura, R.; et al. Prenatal exposure to mixtures of phthalates and phenols and body mass index and blood pressure in Spanish preadolescents. Environ. Int. 2022, 169, 107527. [Google Scholar] [CrossRef] [PubMed]
- Ouidir, M.; Cissé, A.H.; Botton, J.; Lyon-Caen, S.; Thomsen, C.; Sakhi, A.K.; Sabaredzovic, A.; Bayat, S.; Slama, R.; Heude, B.; et al. Fetal and Infancy Exposure to Phenols, Parabens, and Phthalates and Anthropometric Measurements up to 36 Months, in the Longitudinal SEPAGES Cohort. Environ. Health Perspect. 2024, 132, 57002. [Google Scholar] [CrossRef] [PubMed]
- Ouyang, F.; Zhang, G.H.; Du, K.; Shen, L.; Ma, R.; Wang, X.; Wang, X.; Zhang, J. Maternal prenatal urinary bisphenol A level and child cardio-metabolic risk factors: A prospective cohort study. Environ. Pollut. 2020, 265, 115008. [Google Scholar] [CrossRef]
- Yang, T.C.; Peterson, K.E.; Meeker, J.D.; Sánchez, B.N.; Zhang, Z.; Cantoral, A.; Solano, M.; Tellez-Rojo, M.M. Bisphenol A and phthalates in utero and in childhood: Association with child BMI z-score and adiposity. Environ. Res. 2017, 156, 326–333. [Google Scholar] [CrossRef]
- Philippat, C.; Botton, J.; Calafat, A.M.; Ye, X.; Charles, M.A.; Slama, R. Prenatal exposure to phenols and growth in boys. Epidemiology 2014, 25, 625–635. [Google Scholar] [CrossRef]
- Vafeiadi, M.; Roumeliotaki, T.; Myridakis, A.; Chalkiadaki, G.; Fthenou, E.; Dermitzaki, E.; Karachaliou, M.; Sarri, K.; Vassilaki, M.; Stephanou, E.G.; et al. Association of early life exposure to bisphenol A with obesity and cardiometabolic traits in childhood. Environ. Res. 2016, 146, 379–387. [Google Scholar] [CrossRef]
- Harley, K.G.; Aguilar Schall, R.; Chevrier, J.; Tyler, K.; Aguirre, H.; Bradman, A.; Holland, N.T.; Lustig, R.H.; Calafat, A.M.; Eskenazi, B. Prenatal and postnatal bisphenol A exposure and body mass index in childhood in the CHAMACOS cohort. Environ. Health Perspect. 2013, 121, 514–520. [Google Scholar] [CrossRef]
- Braun, J.M.; Li, N.; Arbuckle, T.E.; Dodds, L.; Massarelli, I.; Fraser, W.D.; Lanphear, B.P.; Muckle, G. Association between gestational urinary bisphenol a concentrations and adiposity in young children: The MIREC study. Environ. Res. 2019, 172, 454–461. [Google Scholar] [CrossRef]
- Guo, J.; Zhang, J.; Wu, C.; Xiao, H.; Lv, S.; Lu, D.; Qi, X.; Feng, C.; Liang, W.; Chang, X.; et al. Urinary bisphenol A concentrations and adiposity measures at age 7 years in a prospective birth cohort. Chemosphere 2020, 251, 126340. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.M.; Hong, Y.C.; Ha, M.; Kim, Y.; Park, H.; Kim, H.S.; Ha, E.H. Prenatal Bisphenol-A exposure affects fetal length growth by maternal glutathione transferase polymorphisms, and neonatal exposure affects child volume growth by sex: From multiregional prospective birth cohort MOCEH study. Sci. Total Environ. 2018, 612, 1433–1441. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.; Li, J.; Xia, W.; Li, Y.; Zhang, B.; Zhou, A.; Hu, J.; Li, C.; Zhao, H.; Jiang, M.; et al. The association of repeated measurements of prenatal exposure to triclosan with fetal and early-childhood growth. Environ. Int. 2018, 120, 54–62. [Google Scholar] [CrossRef] [PubMed]
- Højsager, F.D.; Kyhl, H.B.; Frederiksen, H.; Juul, A.; Andersson, A.M.; Andersen, M.S.; Grøntved, A.; Jensen, T.K. Prenatal Exposure to Butyl Paraben Is Associated With Fat Percentage in 7-Year-Old Boys. J. Clin. Endocrinol. Metab. 2021, 106, e2633–e2638. [Google Scholar] [CrossRef]
- Guo, J.; Wu, C.; Lu, D.; Jiang, S.; Liang, W.; Chang, X.; Xu, H.; Wang, G.; Zhou, Z. Urinary paraben concentrations and their associations with anthropometric measures of children aged 3 years. Environ. Pollut. 2017, 222, 307–314. [Google Scholar] [CrossRef] [PubMed]
- Buckley, J.P.; Engel, S.M.; Braun, J.M.; Whyatt, R.M.; Daniels, J.L.; Mendez, M.A.; Richardson, D.B.; Xu, Y.; Calafat, A.M.; Wolff, M.S.; et al. Prenatal Phthalate Exposures and Body Mass Index Among 4- to 7-Year-old Children: A Pooled Analysis. Epidemiology 2016, 27, 449–458. [Google Scholar] [CrossRef]
- Lee, D.W.; Lim, H.M.; Lee, J.Y.; Min, K.B.; Shin, C.H.; Lee, Y.A.; Hong, Y.C. Prenatal exposure to phthalate and decreased body mass index of children: A systematic review and meta-analysis. Sci. Rep. 2022, 12, 8961. [Google Scholar] [CrossRef]
- Li, J.; Qian, X.; Zhou, Y.; Li, Y.; Xu, S.; Xia, W.; Cai, Z. Trimester-specific and sex-specific effects of prenatal exposure to di(2-ethylhexyl) phthalate on fetal growth, birth size, and early-childhood growth: A longitudinal prospective cohort study. Sci. Total Environ. 2021, 777, 146146. [Google Scholar] [CrossRef]
- Berman, Y.E.; Doherty, D.A.; Main, K.M.; Frederiksen, H.; Keelan, J.A.; Newnham, J.P.; Hart, R.J. The influence of prenatal exposure to phthalates on subsequent male growth and body composition in adolescence. Environ. Res. 2021, 195, 110313. [Google Scholar] [CrossRef]
- Valvi, D.; Casas, M.; Romaguera, D.; Monfort, N.; Ventura, R.; Martinez, D.; Sunyer, J.; Vrijheid, M. Prenatal Phthalate Exposure and Childhood Growth and Blood Pressure: Evidence from the Spanish INMA-Sabadell Birth Cohort Study. Environ. Health Perspect. 2015, 123, 1022–1029. [Google Scholar] [CrossRef]
- Ferguson, K.K.; Bommarito, P.A.; Arogbokun, O.; Rosen, E.M.; Keil, A.P.; Zhao, S.; Barrett, E.S.; Nguyen, R.H.N.; Bush, N.R.; Trasande, L.; et al. Prenatal Phthalate Exposure and Child Weight and Adiposity from in Utero to 6 Years of Age. Environ. Health Perspect. 2022, 130, 47006. [Google Scholar] [CrossRef] [PubMed]
- Harley, K.G.; Berger, K.; Rauch, S.; Kogut, K.; Claus Henn, B.; Calafat, A.M.; Huen, K.; Eskenazi, B.; Holland, N. Association of prenatal urinary phthalate metabolite concentrations and childhood BMI and obesity. Pediatr. Res. 2017, 82, 405–415. [Google Scholar] [CrossRef] [PubMed]
- Botton, J.; Philippat, C.; Calafat, A.M.; Carles, S.; Charles, M.A.; Slama, R.; The Eden Mother-Child Cohort Study, G. Phthalate pregnancy exposure and male offspring growth from the intra-uterine period to five years of age. Environ. Res. 2016, 151, 601–609. [Google Scholar] [CrossRef] [PubMed]
- Bowman, A.; Peterson, K.E.; Dolinoy, D.C.; Meeker, J.D.; Sánchez, B.N.; Mercado-Garcia, A.; Téllez-Rojo, M.M.; Goodrich, J.M. Phthalate Exposures, DNA Methylation and Adiposity in Mexican Children Through Adolescence. Front. Public Health 2019, 7, 162. [Google Scholar] [CrossRef]
- Shoaff, J.; Papandonatos, G.D.; Calafat, A.M.; Ye, X.; Chen, A.; Lanphear, B.P.; Yolton, K.; Braun, J.M. Early-Life Phthalate Exposure and Adiposity at 8 Years of Age. Environ. Health Perspect. 2017, 125, 097008. [Google Scholar] [CrossRef] [PubMed]
- Heggeseth, B.C.; Holland, N.; Eskenazi, B.; Kogut, K.; Harley, K.G. Heterogeneity in childhood body mass trajectories in relation to prenatal phthalate exposure. Environ. Res. 2019, 175, 22–33. [Google Scholar] [CrossRef]
- Vafeiadi, M.; Myridakis, A.; Roumeliotaki, T.; Margetaki, K.; Chalkiadaki, G.; Dermitzaki, E.; Venihaki, M.; Sarri, K.; Vassilaki, M.; Leventakou, V.; et al. Association of Early Life Exposure to Phthalates With Obesity and Cardiometabolic Traits in Childhood: Sex Specific Associations. Front. Public Health 2018, 6, 327. [Google Scholar] [CrossRef]
- Kupsco, A.; Wu, H.; Calafat, A.M.; Kioumourtzoglou, M.A.; Cantoral, A.; Tamayo-Ortiz, M.; Pantic, I.; Pizano-Zárate, M.L.; Oken, E.; Braun, J.M.; et al. Prenatal maternal phthalate exposures and trajectories of childhood adiposity from four to twelve years. Environ. Res. 2022, 204, 112111. [Google Scholar] [CrossRef]
- Buckley, J.P.; Engel, S.M.; Mendez, M.A.; Richardson, D.B.; Daniels, J.L.; Calafat, A.M.; Wolff, M.S.; Herring, A.H. Prenatal Phthalate Exposures and Childhood Fat Mass in a New York City Cohort. Environ. Health Perspect. 2016, 124, 507–513. [Google Scholar] [CrossRef]
- Gao, H.; Geng, M.L.; Gan, H.; Huang, K.; Zhang, C.; Zhu, B.B.; Sun, L.; Wu, X.; Zhu, P.; Tao, F.B. Prenatal single and combined exposure to phthalates associated with girls’ BMI trajectory in the first six years. Ecotoxicol. Environ. Saf. 2022, 241, 113837. [Google Scholar] [CrossRef]
- Güil-Oumrait, N.; Stratakis, N.; Maitre, L.; Anguita-Ruiz, A.; Urquiza, J.; Fabbri, L.; Basagaña, X.; Heude, B.; Haug, L.S.; Sakhi, A.K.; et al. Prenatal Exposure to Chemical Mixtures and Metabolic Syndrome Risk in Children. JAMA Netw. Open 2024, 7, e2412040. [Google Scholar] [CrossRef] [PubMed]
- Kalloo, G.; Calafat, A.M.; Chen, A.; Yolton, K.; Lanphear, B.P.; Braun, J.M. Early life Triclosan exposure and child adiposity at 8 Years of age: A prospective cohort study. Environ. Health 2018, 17, 24. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.W.; Lim, Y.H.; Shin, C.H.; Lee, Y.A.; Kim, B.N.; Kim, J.I.; Hong, Y.C. Prenatal exposure to di-(2-ethylhexyl) phthalate and decreased skeletal muscle mass in 6-year-old children: A prospective birth cohort study. Environ. Res. 2020, 182, 109020. [Google Scholar] [CrossRef] [PubMed]
- Maresca, M.M.; Hoepner, L.A.; Hassoun, A.; Oberfield, S.E.; Mooney, S.J.; Calafat, A.M.; Ramirez, J.; Freyer, G.; Perera, F.P.; Whyatt, R.M.; et al. Prenatal Exposure to Phthalates and Childhood Body Size in an Urban Cohort. Environ. Health Perspect. 2016, 124, 514–520. [Google Scholar] [CrossRef]
- Nidens, N.; Krönke, A.; Jurkutat, A.; Schlingmann, M.; Poulain, T.; Nüchter, M.; Kiviranta, H.; Körner, A.; Vogel, M.; Lindh, C.; et al. Associations of prenatal exposure to phthalates and one phthalate substitute with anthropometric measures in early life: Results from the German LIFE Child cohort study. Best Pract. Res. Clin. Endocrinol. Metab. 2021, 35, 101532. [Google Scholar] [CrossRef]
- de Freitas, T.; Zapaterini, J.R.; Moreira, C.M.; de Aquino, A.M.; Alonso-Costa, L.G.; Bidinotto, L.T.; Kass, L.; Flaws, J.A.; Scarano, W.R.; Barbisan, L.F. Prenatal exposure to a mixture of different phthalates increases the risk of mammary carcinogenesis in F1 female offspring. Food Chem. Toxicol. 2021, 156, 112519. [Google Scholar] [CrossRef] [PubMed]
- Mustieles, V.; Rolland, M.; Pin, I.; Thomsen, C.; Sakhi, A.K.; Sabaredzovic, A.; Muckle, G.; Guichardet, K.; Slama, R.; Philippat, C. Early-Life Exposure to a Mixture of Phenols and Phthalates in Relation to Child Social Behavior: Applying an Evidence-Based Prioritization to a Cohort with Improved Exposure Assessment. Environ. Health Perspect. 2023, 131, 87006. [Google Scholar] [CrossRef]
- Malaisé, Y.; Lencina, C.; Cartier, C.; Olier, M.; Ménard, S.; Guzylack-Piriou, L. Perinatal oral exposure to low doses of bisphenol A, S or F impairs immune functions at intestinal and systemic levels in female offspring mice. Environ. Health A Glob. Access Sci. Source 2020, 19, 93. [Google Scholar] [CrossRef]
- da Silva, B.S.; Pietrobon, C.B.; Bertasso, I.M.; Lopes, B.P.; Carvalho, J.C.; Peixoto-Silva, N.; Santos, T.R.; Claudio-Neto, S.; Manhães, A.C.; Oliveira, E.; et al. Short and long-term effects of bisphenol S (BPS) exposure during pregnancy and lactation on plasma lipids, hormones, and behavior in rats. Environ. Pollut. 2019, 250, 312–322. [Google Scholar] [CrossRef]
- Taylor, J.A.; Sommerfeld-Sager, J.M.; Meng, C.X.; Nagel, S.C.; Shioda, T.; Vom Saal, F.S. Reduced body weight at weaning followed by increased post-weaning growth rate interacts with part-per-trillion fetal serum concentrations of bisphenol A (BPA) to impair glucose tolerance in male mice. PLoS ONE 2018, 13, e0208846. [Google Scholar] [CrossRef]
- Boronat-Belda, T.; Ferrero, H.; Al-Abdulla, R.; Quesada, I.; Gustafsson, J.A.; Nadal, Á.; Alonso-Magdalena, P. Bisphenol-A exposure during pregnancy alters pancreatic β-cell division and mass in male mice offspring: A role for ERβ. Food Chem. Toxicol. 2020, 145, 111681. [Google Scholar] [CrossRef] [PubMed]
- Bansal, A.; Li, C.; Xin, F.; Duemler, A.; Li, W.; Rashid, C.; Bartolomei, M.S.; Simmons, R.A. Transgenerational effects of maternal bisphenol: A exposure on offspring metabolic health. J. Dev. Orig. Health Dis. 2019, 10, 164–175. [Google Scholar] [CrossRef] [PubMed]
- Rashid, C.S.; Bansal, A.; Mesaros, C.; Bartolomei, M.S.; Simmons, R.A. Paternal bisphenol A exposure in mice impairs glucose tolerance in female offspring. Food Chem. Toxicol. 2020, 145, 111716. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, H.T.; Li, L.; Eguchi, A.; Kannan, K.; Kim, E.Y.; Iwata, H. Effects on the liver lipidome of rat offspring prenatally exposed to bisphenol A. Sci. Total Environ. 2021, 759, 143466. [Google Scholar] [CrossRef]
- Nguyen, H.T.; Yamamoto, K.; Iida, M.; Agusa, T.; Ochiai, M.; Guo, J.; Karthikraj, R.; Kannan, K.; Kim, E.Y.; Iwata, H. Effects of prenatal bisphenol A exposure on the hepatic transcriptome and proteome in rat offspring. Sci. Total Environ. 2020, 720, 137568. [Google Scholar] [CrossRef]
- Veiga-Lopez, A.; Moeller, J.; Sreedharan, R.; Singer, K.; Lumeng, C.; Ye, W.; Pease, A.; Padmanabhan, V. Developmental programming: Interaction between prenatal BPA exposure and postnatal adiposity on metabolic variables in female sheep. Am. J. Physiol. Endocrinol. Metab. 2016, 310, E238–E247. [Google Scholar] [CrossRef] [PubMed]
- Puttabyatappa, M.; Martin, J.D.; Andriessen, V.; Stevenson, M.; Zeng, L.; Pennathur, S.; Padmanabhan, V. Developmental programming: Changes in mediators of insulin sensitivity in prenatal bisphenol A-treated female sheep. Reprod. Toxicol. 2019, 85, 110–122. [Google Scholar] [CrossRef]
- Puttabyatappa, M.; Saadat, N.; Elangovan, V.R.; Dou, J.; Bakulski, K.; Padmanabhan, V. Developmental programming: Impact of prenatal bisphenol-A exposure on liver and muscle transcriptome of female sheep. Toxicol. Appl. Pharmacol. 2022, 451, 116161. [Google Scholar] [CrossRef]
- Ciarelli, J.; Thangaraj, S.V.; Sun, H.; Domke, S.; Alkhatib, B.; Vyas, A.K.; Gregg, B.; Sargis, R.M.; Padmanabhan, V. Developmental programming: An exploratory analysis of pancreatic islet compromise in female sheep resulting from gestational BPA exposure. Mol. Cell. Endocrinol. 2024, 588, 112202. [Google Scholar] [CrossRef]
- García-Arévalo, M.; Alonso-Magdalena, P.; Servitja, J.M.; Boronat-Belda, T.; Merino, B.; Villar-Pazos, S.; Medina-Gómez, G.; Novials, A.; Quesada, I.; Nadal, A. Maternal Exposure to Bisphenol-A During Pregnancy Increases Pancreatic β-Cell Growth During Early Life in Male Mice Offspring. Endocrinology 2016, 157, 4158–4171. [Google Scholar] [CrossRef]
- Alonso-Magdalena, P.; Vieira, E.; Soriano, S.; Menes, L.; Burks, D.; Quesada, I.; Nadal, A. Bisphenol A exposure during pregnancy disrupts glucose homeostasis in mothers and adult male offspring. Environ. Health Perspect. 2010, 118, 1243–1250. [Google Scholar] [CrossRef] [PubMed]
- Esteban, J.; Serrano-Maciá, M.; Sánchez-Pérez, I.; Alonso-Magdalena, P.; Pellín, M.C.; García-Arévalo, M.; Nadal, Á.; Barril, J. In utero exposure to bisphenol-A disrupts key elements of retinoid system in male mice offspring. Food Chem. Toxicol. 2019, 126, 142–151. [Google Scholar] [CrossRef]
- Luo, S.; Li, Y.; Li, Y.; Zhu, Q.; Jiang, J.; Wu, C.; Shen, T. Gestational and lactational exposure to low-dose bisphenol A increases Th17 cells in mice offspring. Environ. Toxicol. Pharmacol. 2016, 47, 149–158. [Google Scholar] [CrossRef] [PubMed]
- O’Brien, E.; Dolinoy, D.C.; Mancuso, P. Perinatal bisphenol A exposures increase production of pro-inflammatory mediators in bone marrow-derived mast cells of adult mice. J. Immunotoxicol. 2014, 11, 205–212. [Google Scholar] [CrossRef] [PubMed]
- Susiarjo, M.; Xin, F.; Bansal, A.; Stefaniak, M.; Li, C.; Simmons, R.A.; Bartolomei, M.S. Bisphenol a exposure disrupts metabolic health across multiple generations in the mouse. Endocrinology 2015, 156, 2049–2058. [Google Scholar] [CrossRef]
- van Esterik, J.C.; Dollé, M.E.; Lamoree, M.H.; van Leeuwen, S.P.; Hamers, T.; Legler, J.; van der Ven, L.T. Programming of metabolic effects in C57BL/6JxFVB mice by exposure to bisphenol A during gestation and lactation. Toxicology 2014, 321, 40–52. [Google Scholar] [CrossRef]
- Bodin, J.; Bølling, A.K.; Becher, R.; Kuper, F.; Løvik, M.; Nygaard, U.C. Transmaternal bisphenol A exposure accelerates diabetes type 1 development in NOD mice. Toxicol. Sci. Off. J. Soc. Toxicol. 2014, 137, 311–323. [Google Scholar] [CrossRef]
- Anderson, O.S.; Peterson, K.E.; Sanchez, B.N.; Zhang, Z.; Mancuso, P.; Dolinoy, D.C. Perinatal bisphenol A exposure promotes hyperactivity, lean body composition, and hormonal responses across the murine life course. FASEB J. 2013, 27, 1784–1792. [Google Scholar] [CrossRef]
- Rabaglino, M.B.; Moreira-Espinoza, M.J.; Lopez, J.P.; Garcia, N.H.; Beltramo, D. Maternal Triclosan consumption alters the appetite regulatory network on Wistar rat offspring and predispose to metabolic syndrome in the adulthood. Endocr. J. 2016, 63, 1007–1016. [Google Scholar] [CrossRef]
- Ma, Y.; Guo, Y.; Ye, H.; Zhang, J.; Ke, Y. Perinatal Triclosan exposure in the rat induces long-term disturbances in metabolism and gut microbiota in adulthood and old age. Environ. Res. 2020, 182, 109004. [Google Scholar] [CrossRef]
- Weber, A.A.; Yang, X.; Mennillo, E.; Ding, J.; Watrous, J.D.; Jain, M.; Chen, S.; Karin, M.; Tukey, R.H. Lactational delivery of Triclosan promotes non-alcoholic fatty liver disease in newborn mice. Nat. Commun. 2022, 13, 4346. [Google Scholar] [CrossRef] [PubMed]
- Vo, T.T.; Nguyen, P.V.; Duong, H.T.; Nguyen, T.D.; Huynh, H.T.; Nong, H.V. Potential effect of combined xenoestrogens during gestation stages on mouse offspring. J. Environ. Biol. 2015, 36, 337–344. [Google Scholar] [PubMed]
- Leppert, B.; Strunz, S.; Seiwert, B.; Schlittenbauer, L.; Schlichting, R.; Pfeiffer, C.; Röder, S.; Bauer, M.; Borte, M.; Stangl, G.I.; et al. Maternal paraben exposure triggers childhood overweight development. Nat. Commun. 2020, 11, 561. [Google Scholar] [CrossRef]
- Wassenaar, P.N.H.; Legler, J. Systematic review and meta-analysis of early life exposure to di(2-ethylhexyl) phthalate and obesity related outcomes in rodents. Chemosphere 2017, 188, 174–181. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.I.; Chiang, C.W.; Lin, H.C.; Zhao, J.F.; Li, C.T.; Shyue, S.K.; Lee, T.S. Maternal exposure to di-(2-ethylhexyl) phthalate exposure deregulates blood pressure, adiposity, cholesterol metabolism and social interaction in mouse offspring. Arch. Toxicol. 2016, 90, 1211–1224. [Google Scholar] [CrossRef]
- Neier, K.; Montrose, L.; Chen, K.; Malloy, M.A.; Jones, T.R.; Svoboda, L.K.; Harris, C.; Song, P.X.K.; Pennathur, S.; Sartor, M.A.; et al. Short- and long-term effects of perinatal phthalate exposures on metabolic pathways in the mouse liver. Environ. Epigenetics 2020, 6, dvaa017. [Google Scholar] [CrossRef]
- Fan, Y.; Qin, Y.; Chen, M.; Li, X.; Wang, R.; Huang, Z.; Xu, Q.; Yu, M.; Zhang, Y.; Han, X.; et al. Prenatal low-dose DEHP exposure induces metabolic adaptation and obesity: Role of hepatic thiamine metabolism. J. Hazard. Mater. 2020, 385, 121534. [Google Scholar] [CrossRef]
- Sanders, A.P.; Saland, J.M.; Wright, R.O.; Satlin, L. Perinatal and childhood exposure to environmental chemicals and blood pressure in children: A review of literature 2007–2017. Pediatr. Res. 2018, 84, 165–180. [Google Scholar] [CrossRef]
- An, S.J.; Lee, E.J.; Jeong, S.H.; Hong, Y.P.; Ahn, S.; Yang, Y.J. Perinatal exposure to di-(2-ethylhexyl) phthalate induces hepatic lipid accumulation mediated by diacylglycerol acyltransferase 1. Hum. Exp. Toxicol. 2021, 40, 1698–1709. [Google Scholar] [CrossRef]
- Li, G.; Zhao, C.Y.; Wu, Q.; Kang, Z.; Zhang, J.T.; Guan, S.Y.; Jin, H.W.; Zhang, Y.B.; Na, X.L. Di(2-ethylhexyl) phthalate disturbs cholesterol metabolism through oxidative stress in rat liver. Environ. Toxicol. Pharmacol. 2022, 95, 103958. [Google Scholar] [CrossRef]
- Yang, Y.J.; Park, M.S.; Lee, E.J.; Hong, Y.P. The Development of Metabolic Derangement in Male Offspring after Perinatal Exposure to Di-(2-Ethylhexyl) Phthalate. Biomed. Environ. Sci. BES 2018, 31, 531–534. [Google Scholar] [CrossRef] [PubMed]
- Venturelli, A.C.; Meyer, K.B.; Fischer, S.V.; Kita, D.H.; Philipsen, R.A.; Morais, R.N.; Martino Andrade, A.J. Effects of in utero and lactational exposure to phthalates on reproductive development and glycemic homeostasis in rats. Toxicology 2019, 421, 30–40. [Google Scholar] [CrossRef] [PubMed]
- Rajesh, P.; Balasubramanian, K. Gestational exposure to di(2-ethylhexyl) phthalate (DEHP) impairs pancreatic β-cell function in F1 rat offspring. Toxicol. Lett. 2015, 232, 46–57. [Google Scholar] [CrossRef] [PubMed]
- Rajagopal, G.; Bhaskaran, R.S.; Karundevi, B. Maternal di-(2-ethylhexyl) phthalate exposure alters hepatic insulin signal transduction and glucoregulatory events in rat F(1) male offspring. J. Appl. Toxicol. JAT 2019, 39, 751–763. [Google Scholar] [CrossRef]
- Dong, J.; Cong, Z.; You, M.; Fu, Y.; Wang, Y.; Wang, Y.; Fu, H.; Wei, L.; Chen, J. Effects of perinatal di (2-ethylhexyl) phthalate exposure on thyroid function in rat offspring. Environ. Toxicol. Pharmacol. 2019, 67, 53–60. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, W.; Fu, X.; Zhou, F.; Yu, H.; Na, X. Transcriptomics and metabonomics analyses of maternal DEHP exposure on male offspring. Environ. Sci. Pollut. Res. Int. 2018, 25, 26322–26329. [Google Scholar] [CrossRef]
- Ma, S.; Li, R.; Gong, X.; Shi, W.; Zhong, X. Lycopene reduces in utero bisphenol A exposure-induced mortality, benefits hormones, and development of reproductive organs in offspring mice. Environ. Sci. Pollut. Res. Int. 2018, 25, 24041–24051. [Google Scholar] [CrossRef]
- Shu, L.; Meng, Q.; Diamante, G.; Tsai, B.; Chen, Y.W.; Mikhail, A.; Luk, H.; Ritz, B.; Allard, P.; Yang, X. Prenatal Bisphenol A Exposure in Mice Induces Multitissue Multiomics Disruptions Linking to Cardiometabolic Disorders. Endocrinology 2019, 160, 409–429. [Google Scholar] [CrossRef]
- Yang, Q.; Mao, Y.; Wang, J.; Yu, H.; Zhang, X.; Pei, X.; Duan, Z.; Xiao, C.; Ma, M. Gestational bisphenol A exposure impairs hepatic lipid metabolism by altering mTOR/CRTC2/SREBP1 in male rat offspring. Hum. Exp. Toxicol. 2022, 41, 9603271221129852. [Google Scholar] [CrossRef] [PubMed]
- MohanKumar, S.M.; Rajendran, T.D.; Vyas, A.K.; Hoang, V.; Asirvatham-Jeyaraj, N.; Veiga-Lopez, A.; Olivier, N.B.; Padmanabhan, V.; MohanKumar, P.S. Effects of prenatal bisphenol-A exposure and postnatal overfeeding on cardiovascular function in female sheep. J. Dev. Orig. Health Dis. 2017, 8, 65–74. [Google Scholar] [CrossRef]
- Nakashima, R.; Hayashi, Y.; Md, K.; Jia, X.; Wang, D.; Naito, H.; Ito, Y.; Kamijima, M.; Gonzalez, F.J.; Nakajima, T. Exposure to DEHP decreased four fatty acid levels in plasma of prepartum mice. Toxicology 2013, 309, 52–60. [Google Scholar] [CrossRef] [PubMed]
- Svoboda, L.K.; Wang, K.; Cavalcante, R.G.; Neier, K.; Colacino, J.A.; Sartor, M.A.; Dolinoy, D.C. Sex-Specific Programming of Cardiac DNA Methylation by Developmental Phthalate Exposure. Epigenetics Insights 2020, 13, 2516865720939971. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Luo, T.; Rong, H.; Lu, L.; Zhang, L.; Zheng, C.; Yi, D.; Peng, Y.; Lei, E.; Xiong, X.; et al. Maternal rodent exposure to di-(2-ethylhexyl) phthalate decreases muscle mass in the offspring by increasing myostatin. J. Cachexia Sarcopenia Muscle 2022, 13, 2740–2751. [Google Scholar] [CrossRef]
- Dong, X.W.; Wu, W.D.; Yao, S.Q.; Zhang, Y.B.; Wang, C.; Wu, H.Y.; Na, X.L. Long-term Di-(2-ethylhexyl) phthalate Exposure Disturbs the Lipid Metabolism Profiles and Hepatic Enzymes in Male Rats: A UPLC-MS-based Serum Metabolomics Analysis. Biomed. Environ. Sci. BES 2021, 34, 920–925. [Google Scholar] [CrossRef]
- Martinez-Arguelles, D.B.; McIntosh, M.; Rohlicek, C.V.; Culty, M.; Zirkin, B.R.; Papadopoulos, V. Maternal in utero exposure to the endocrine disruptor di-(2-ethylhexyl) phthalate affects the blood pressure of adult male offspring. Toxicol. Appl. Pharmacol. 2013, 266, 95–100. [Google Scholar] [CrossRef] [PubMed]
- Martinez-Arguelles, D.B.; Guichard, T.; Culty, M.; Zirkin, B.R.; Papadopoulos, V. In utero exposure to the antiandrogen di-(2-ethylhexyl) phthalate decreases adrenal aldosterone production in the adult rat. Biol. Reprod. 2011, 85, 51–61. [Google Scholar] [CrossRef]
- Parsanathan, R.; Maria Joseph, A.; Karundevi, B. Postnatal exposure to di-(2-ethylhexyl)phthalate alters cardiac insulin signaling molecules and GLUT4(Ser488) phosphorylation in male rat offspring. J. Cell. Biochem. 2019, 120, 5802–5812. [Google Scholar] [CrossRef]
- Martinez-Arguelles, D.B.; Campioli, E.; Lienhart, C.; Fan, J.; Culty, M.; Zirkin, B.R.; Papadopoulos, V. In utero exposure to the endocrine disruptor di-(2-ethylhexyl) phthalate induces long-term changes in gene expression in the adult male adrenal gland. Endocrinology 2014, 155, 1667–1678. [Google Scholar] [CrossRef]
- Wei, Z.; Song, L.; Wei, J.; Chen, T.; Chen, J.; Lin, Y.; Xia, W.; Xu, B.; Li, X.; Chen, X.; et al. Maternal exposure to di-(2-ethylhexyl)phthalate alters kidney development through the renin-angiotensin system in offspring. Toxicol. Lett. 2012, 212, 212–221. [Google Scholar] [CrossRef]
- Zhu, Y.P.; Chen, L.; Wang, X.J.; Jiang, Q.H.; Bei, X.Y.; Sun, W.L.; Xia, S.J.; Jiang, J.T. Maternal exposure to di-n-butyl phthalate (DBP) induces renal fibrosis in adult rat offspring. Oncotarget 2017, 8, 31101–31111. [Google Scholar] [CrossRef]
- Sun, W.L.; Zhu, Y.P.; Ni, X.S.; Jing, D.D.; Yao, Y.T.; Ding, W.; Liu, Z.H.; Ding, G.X.; Jiang, J.T. Potential involvement of Fgf10/Fgfr2 and androgen receptor (AR) in renal fibrosis in adult male rat offspring subjected to prenatal exposure to di-n-butyl phthalate (DBP). Toxicol. Lett. 2018, 282, 37–42. [Google Scholar] [CrossRef]
- Ye, Q.; Zhao, S.; Zhang, Y.; Su, Y.M.; Chen, M.; Zhao, J.; Jia, G.Z.; Han, B.M.; Jiang, J.T. Activation of the RhoA/ROCK pathway contributes to renal fibrosis in offspring rats induced by maternal exposure to di-n-butyl phthalate. Toxicology 2020, 443, 152573. [Google Scholar] [CrossRef] [PubMed]
- Boberg, J.; Axelstad, M.; Svingen, T.; Mandrup, K.; Christiansen, S.; Vinggaard, A.M.; Hass, U. Multiple Endocrine Disrupting Effects in Rats Perinatally Exposed to Butylparaben. Toxicol. Sci. Off. J. Soc. Toxicol. 2016, 152, 244–256. [Google Scholar] [CrossRef] [PubMed]
- Zhao, S.; Pan, L.; Chen, M.; Zhu, Y.P.; Han, B.M.; Xia, S.J.; Jiang, J.T. In utero di-n-butyl phthalate exposure induced abnormal autophagy in renal tubular cells via hedgehog signaling in newborn rats. Chem. Biol. Interact. 2020, 328, 109189. [Google Scholar] [CrossRef] [PubMed]
- Perng, W.; Watkins, D.J.; Cantoral, A.; Mercado-García, A.; Meeker, J.D.; Téllez-Rojo, M.M.; Peterson, K.E. Exposure to phthalates is associated with lipid profile in peripubertal Mexican youth. Environ. Res. 2017, 154, 311–317. [Google Scholar] [CrossRef]
- Warembourg, C.; Maitre, L.; Tamayo-Uria, I.; Fossati, S.; Roumeliotaki, T.; Aasvang, G.M.; Andrusaityte, S.; Casas, M.; Cequier, E.; Chatzi, L.; et al. Early-Life Environmental Exposures and Blood Pressure in Children. J. Am. Coll. Cardiol. 2019, 74, 1317–1328. [Google Scholar] [CrossRef]
- Philips, E.M.; Jaddoe, V.W.V.; Trasande, L. Effects of early exposure to phthalates and bisphenols on cardiometabolic outcomes in pregnancy and childhood. Reprod. Toxicol. 2017, 68, 105–118. [Google Scholar] [CrossRef]
- Tain, Y.L.; Hou, C.Y.; Chang-Chien, G.P.; Lin, S.; Hsu, C.N. Resveratrol Butyrate Ester Supplementation Blunts the Development of Offspring Hypertension in a Maternal Di-2-ethylhexyl Phthalate Exposure Rat Model. Nutrients 2023, 15, 697. [Google Scholar] [CrossRef]
- Zhao, S.; Jiang, J.T.; Li, D.; Zhu, Y.P.; Xia, S.J.; Han, B.M. Maternal exposure to di-n-butyl phthalate promotes Snail1-mediated epithelial-mesenchymal transition of renal tubular epithelial cells via upregulation of TGF-β1 during renal fibrosis in rat offspring. Ecotoxicol. Environ. Saf. 2019, 169, 266–272. [Google Scholar] [CrossRef]
- Rahmani, A.; Soleimannejad, K.; Hafezi Ahmadi, M.R.; Asadollahi, K.; Khalighi, Z. Prenatal Exposure to Phthalic Acid Induces Increased Blood Pressure, Oxidative Stress, and Markers of Endothelial Dysfunction in Rat Offspring. Cardiovasc. Toxicol. 2016, 16, 307–315. [Google Scholar] [CrossRef]
- Hart, R.J. The Impact of Prenatal Exposure to Bisphenol A on Male Reproductive Function. Front. Endocrinol. 2020, 11, 320. [Google Scholar] [CrossRef] [PubMed]
- Dean, A.; Sharpe, R.M. Clinical review: Anogenital distance or digit length ratio as measures of fetal androgen exposure: Relationship to male reproductive development and its disorders. J. Clin. Endocrinol. Metab. 2013, 98, 2230–2238. [Google Scholar] [CrossRef] [PubMed]
- Mammadov, E.; Uncu, M.; Dalkan, C. High Prenatal Exposure to Bisphenol A Reduces Anogenital Distance in Healthy Male Newborns. J. Clin. Res. Pediatr. Endocrinol. 2018, 10, 25–29. [Google Scholar] [CrossRef]
- Sun, X.; Li, D.; Liang, H.; Miao, M.; Song, X.; Wang, Z.; Zhou, Z.; Yuan, W. Maternal exposure to bisphenol A and anogenital distance throughout infancy: A longitudinal study from Shanghai, China. Environ. Int. 2018, 121, 269–275. [Google Scholar] [CrossRef]
- Berger, K.; Eskenazi, B.; Kogut, K.; Parra, K.; Lustig, R.H.; Greenspan, L.C.; Holland, N.; Calafat, A.M.; Ye, X.; Harley, K.G. Association of Prenatal Urinary Concentrations of Phthalates and Bisphenol A and Pubertal Timing in Boys and Girls. Environ. Health Perspect. 2018, 126, 97004. [Google Scholar] [CrossRef]
- Freire, C.; Castiello, F.; Babarro, I.; Anguita-Ruiz, A.; Casas, M.; Vrijheid, M.; Sarzo, B.; Beneito, A.; Kadawathagedara, M.; Philippat, C.; et al. Association of prenatal exposure to phthalates and synthetic phenols with pubertal development in three European cohorts. Int. J. Hyg. Environ. Health 2024, 261, 114418. [Google Scholar] [CrossRef] [PubMed]
- Ferguson, K.K.; Peterson, K.E.; Lee, J.M.; Mercado-García, A.; Blank-Goldenberg, C.; Téllez-Rojo, M.M.; Meeker, J.D. Prenatal and peripubertal phthalates and bisphenol A in relation to sex hormones and puberty in boys. Reprod. Toxicol. 2014, 47, 70–76. [Google Scholar] [CrossRef] [PubMed]
- Hart, R.J.; Doherty, D.A.; Keelan, J.A.; Minaee, N.S.; Thorstensen, E.B.; Dickinson, J.E.; Pennell, C.E.; Newnham, J.P.; McLachlan, R.; Norman, R.J.; et al. The impact of antenatal Bisphenol A exposure on male reproductive function at 20–22 years of age. Reprod. Biomed. Online 2018, 36, 340–347. [Google Scholar] [CrossRef]
- Holmboe, S.A.; Scheutz Henriksen, L.; Frederiksen, H.; Andersson, A.M.; Priskorn, L.; Jørgensen, N.; Juul, A.; Toppari, J.; Skakkebæk, N.E.; Main, K.M. Prenatal exposure to phenols and benzophenones in relation to markers of male reproductive function in adulthood. Front. Endocrinol. 2022, 13, 1071761. [Google Scholar] [CrossRef]
- Wang, C.; Chen, L.; Zhao, S.; Hu, Y.; Zhou, Y.; Gao, Y.; Wang, W.; Zhang, J.; Tian, Y. Impacts of prenatal triclosan exposure on fetal reproductive hormones and its potential mechanism. Environ. Int. 2018, 111, 279–286. [Google Scholar] [CrossRef]
- Harley, K.G.; Berger, K.P.; Kogut, K.; Parra, K.; Lustig, R.H.; Greenspan, L.C.; Calafat, A.M.; Ye, X.; Eskenazi, B. Association of phthalates, parabens and phenols found in personal care products with pubertal timing in girls and boys. Hum. Reprod. 2019, 34, 109–117. [Google Scholar] [CrossRef]
- Swan, S.H.; Main, K.M.; Liu, F.; Stewart, S.L.; Kruse, R.L.; Calafat, A.M.; Mao, C.S.; Redmon, J.B.; Ternand, C.L.; Sullivan, S.; et al. Decrease in anogenital distance among male infants with prenatal phthalate exposure. Environ. Health Perspect. 2005, 113, 1056–1061. [Google Scholar] [CrossRef] [PubMed]
- Sathyanarayana, S.; Grady, R.; Barrett, E.S.; Redmon, B.; Nguyen, R.H.N.; Barthold, J.S.; Bush, N.R.; Swan, S.H. First trimester phthalate exposure and male newborn genital anomalies. Environ. Res. 2016, 151, 777–782. [Google Scholar] [CrossRef] [PubMed]
- Romao, R.L.P.; Dodds, L.; Ashley-Martin, J.; Monnier, P.; Arbuckle, T.E. Prenatal exposure to phthalates and male reproductive system development: Results from a Canadian pregnancy cohort study. Reprod. Toxicol. 2020, 95, 11–18. [Google Scholar] [CrossRef] [PubMed]
- Freire, C.; Castiello, F.; Lopez-Espinosa, M.J.; Beneito, A.; Lertxundi, A.; Jimeno-Romero, A.; Vrijheid, M.; Casas, M. Association of prenatal phthalate exposure with pubertal development in Spanish boys and girls. Environ. Res. 2022, 213, 113606. [Google Scholar] [CrossRef] [PubMed]
- Watkins, D.J.; Sánchez, B.N.; Téllez-Rojo, M.M.; Lee, J.M.; Mercado-García, A.; Blank-Goldenberg, C.; Peterson, K.E.; Meeker, J.D. Phthalate and bisphenol A exposure during in utero windows of susceptibility in relation to reproductive hormones and pubertal development in girls. Environ. Res. 2017, 159, 143–151. [Google Scholar] [CrossRef]
- Henriksen, L.S.; Frederiksen, H.; Jørgensen, N.; Juul, A.; Skakkebæk, N.E.; Toppari, J.; Petersen, J.H.; Main, K.M. Maternal phthalate exposure during pregnancy and testis function of young adult sons. Sci. Total Environ. 2023, 871, 161914. [Google Scholar] [CrossRef]
- Olukole, S.G.; Lanipekun, D.O.; Ola-Davies, E.O.; Oke, B.O. Maternal exposure to environmentally relevant doses of bisphenol A causes reproductive dysfunction in F1 adult male rats: Protective role of melatonin. Environ. Sci. Pollut. Res. Int. 2019, 26, 28940–28950. [Google Scholar] [CrossRef]
- Silva, B.S.; Bertasso, I.M.; Pietrobon, C.B.; Lopes, B.P.; Santos, T.R.; Peixoto-Silva, N.; Carvalho, J.C.; Claudio-Neto, S.; Manhães, A.C.; Cabral, S.S.; et al. Effects of maternal bisphenol A on behavior, sex steroid and thyroid hormones levels in the adult rat offspring. Life Sci. 2019, 218, 253–264. [Google Scholar] [CrossRef]
- Campos, P.; Oliveira, I.M.; Sena de Souza, J.; Da Conceição, R.R.; Giannocco, G.; Chiamolera, M.I.; Silva, M.R.D.; Romano, M.A.; Romano, R.M. Maternal bisphenol A exposure disrupts spermatogenesis in adult rat offspring. J. Toxicol. Environ. Health Part A 2019, 82, 163–175. [Google Scholar] [CrossRef]
- Salian, S.; Doshi, T.; Vanage, G. Perinatal exposure of rats to Bisphenol A affects the fertility of male offspring. Life Sci. 2009, 85, 742–752. [Google Scholar] [CrossRef] [PubMed]
- Dere, E.; Anderson, L.M.; Huse, S.M.; Spade, D.J.; McDonnell-Clark, E.; Madnick, S.J.; Hall, S.J.; Camacho, L.; Lewis, S.M.; Vanlandingham, M.M.; et al. Effects of continuous bisphenol A exposure from early gestation on 90 day old rat testes function and sperm molecular profiles: A CLARITY-BPA consortium study. Toxicol. Appl. Pharmacol. 2018, 347, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Wei, Y.; Han, C.; Geng, Y.; Cui, Y.; Bao, Y.; Shi, W.; Zhong, X. Maternal exposure to bisphenol A during pregnancy interferes testis development of F1 male mice. Environ. Sci. Pollut. Res. Int. 2019, 26, 23491–23504. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Bao, J.; Gong, X.; Shi, W.; Zhong, X. Hazards of bisphenol A—blocks RNA splicing leading to abnormal testicular development in offspring male mice. Chemosphere 2019, 230, 432–439. [Google Scholar] [CrossRef] [PubMed]
- Ma, S.; Shi, W.; Wang, X.; Song, P.; Zhong, X. Bisphenol A Exposure during Pregnancy Alters the Mortality and Levels of Reproductive Hormones and Genes in Offspring Mice. BioMed. Res. Int. 2017, 2017, 3585809. [Google Scholar] [CrossRef]
- Ortega-García, A.P.; Díaz-Hernández, V.; Collazo-Saldaña, P.; Merchant-Larios, H. Bisphenol A alters differentiation of Leydig cells in the rabbit fetal testis. Int. J. Dev. Biol. 2021, 65, 403–412. [Google Scholar] [CrossRef]
- Higuchi, T.T.; Palmer, J.S.; Gray, L.E., Jr.; Veeramachaneni, D.N. Effects of dibutyl phthalate in male rabbits following in utero, adolescent, or postpubertal exposure. Toxicol. Sci. Off. J. Soc. Toxicol. 2003, 72, 301–313. [Google Scholar] [CrossRef]
- Dostalova, P.; Zatecka, E.; Ded, L.; Elzeinova, F.; Valaskova, E.; Kubatova, A.; Korenkova, V.; Langerova, L.; Komrskova, K.; Peknicova, J. Gestational and pubertal exposure to low dose of di-(2-ethylhexyl) phthalate impairs sperm quality in adult mice. Reprod. Toxicol. 2020, 96, 175–184. [Google Scholar] [CrossRef]
- Wilson, V.S.; Howdeshell, K.L.; Lambright, C.S.; Furr, J.; Earl Gray, L., Jr. Differential expression of the phthalate syndrome in male Sprague-Dawley and Wistar rats after in utero DEHP exposure. Toxicol. Lett. 2007, 170, 177–184. [Google Scholar] [CrossRef] [PubMed]
- Hannas, B.R.; Lambright, C.S.; Furr, J.; Howdeshell, K.L.; Wilson, V.S.; Gray, L.E., Jr. Dose-response assessment of fetal testosterone production and gene expression levels in rat testes following in utero exposure to diethylhexyl phthalate, diisobutyl phthalate, diisoheptyl phthalate, and diisononyl phthalate. Toxicol. Sci. Off. J. Soc. Toxicol. 2011, 123, 206–216. [Google Scholar] [CrossRef]
- Repouskou, A.; Panagiotidou, E.; Panagopoulou, L.; Bisting, P.L.; Tuck, A.R.; Sjödin, M.O.D.; Lindberg, J.; Bozas, E.; Rüegg, J.; Gennings, C.; et al. Gestational exposure to an epidemiologically defined mixture of phthalates leads to gonadal dysfunction in mouse offspring of both sexes. Sci. Rep. 2019, 9, 6424. [Google Scholar] [CrossRef] [PubMed]
- Howdeshell, K.L.; Furr, J.; Lambright, C.R.; Rider, C.V.; Wilson, V.S.; Gray, L.E., Jr. Cumulative effects of dibutyl phthalate and diethylhexyl phthalate on male rat reproductive tract development: Altered fetal steroid hormones and genes. Toxicol. Sci. Off. J. Soc. Toxicol. 2007, 99, 190–202. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.D.; Deng, Q.; Wang, Z.M.; Gao, M.; Wang, L.; Chong, T.; Li, H.C. Disruption of reproductive development in male rat offspring following gestational and lactational exposure to di-(2-ethylhexyl) phthalate and genistein. Biol. Res. 2013, 46, 139–146. [Google Scholar] [CrossRef] [PubMed]
- Fiandanese, N.; Borromeo, V.; Berrini, A.; Fischer, B.; Schaedlich, K.; Schmidt, J.S.; Secchi, C.; Pocar, P. Maternal exposure to a mixture of di(2-ethylhexyl) phthalate (DEHP) and polychlorinated biphenyls (PCBs) causes reproductive dysfunction in adult male mouse offspring. Reprod. Toxicol. 2016, 65, 123–132. [Google Scholar] [CrossRef]
- Abdel-Maksoud, F.M.; Ali, F.A.Z.; Akingbemi, B.T. Prenatal exposures to bisphenol A and di (2-ethylhexyl) phthalate disrupted seminiferous tubular development in growing male rats. Reprod. Toxicol. 2019, 88, 85–90. [Google Scholar] [CrossRef]
- Wei, Y.; Han, C.; Li, S.; Cui, Y.; Bao, Y.; Shi, W. Maternal exposure to bisphenol A during pregnancy interferes ovaries development of F1 female mice. Theriogenology 2020, 142, 138–148. [Google Scholar] [CrossRef]
- Meng, Y.; Yannan, Z.; Ren, L.; Qi, S.; Wei, W.; Lihong, J. Adverse reproductive function induced by maternal BPA exposure is associated with abnormal autophagy and activating inflamation via mTOR and TLR4/NF-κB signaling pathways in female offspring rats. Reprod. Toxicol. 2020, 96, 185–194. [Google Scholar] [CrossRef]
- Hannon, P.R.; Flaws, J.A. The effects of phthalates on the ovary. Front. Endocrinol. 2015, 6, 8. [Google Scholar] [CrossRef]
- Li, L.; Zhang, T.; Qin, X.S.; Ge, W.; Ma, H.G.; Sun, L.L.; Hou, Z.M.; Chen, H.; Chen, P.; Qin, G.Q.; et al. Exposure to diethylhexyl phthalate (DEHP) results in a heritable modification of imprint genes DNA methylation in mouse oocytes. Mol. Biol. Rep. 2014, 41, 1227–1235. [Google Scholar] [CrossRef]
- Pocar, P.; Fiandanese, N.; Secchi, C.; Berrini, A.; Fischer, B.; Schmidt, J.S.; Schaedlich, K.; Borromeo, V. Exposure to di(2-ethyl-hexyl) phthalate (DEHP) in utero and during lactation causes long-term pituitary-gonadal axis disruption in male and female mouse offspring. Endocrinology 2012, 153, 937–948. [Google Scholar] [CrossRef]
- Perrier, F.; Giorgis-Allemand, L.; Slama, R.; Philippat, C. Within-subject Pooling of Biological Samples to Reduce Exposure Misclassification in Biomarker-based Studies. Epidemiology 2016, 27, 378–388. [Google Scholar] [CrossRef] [PubMed]
- Malassine, A.; Frendo, J.L.; Evain-Brion, D. A comparison of placental development and endocrine functions between the human and mouse model. Hum. Reprod. Update 2003, 9, 531–539. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rousseau-Ralliard, D.; Bozec, J.; Ouidir, M.; Jovanovic, N.; Gayrard, V.; Mellouk, N.; Dieudonné, M.-N.; Picard-Hagen, N.; Flores-Sanabria, M.-J.; Jammes, H.; et al. Short-Half-Life Chemicals: Maternal Exposure and Offspring Health Consequences—The Case of Synthetic Phenols, Parabens, and Phthalates. Toxics 2024, 12, 710. https://doi.org/10.3390/toxics12100710
Rousseau-Ralliard D, Bozec J, Ouidir M, Jovanovic N, Gayrard V, Mellouk N, Dieudonné M-N, Picard-Hagen N, Flores-Sanabria M-J, Jammes H, et al. Short-Half-Life Chemicals: Maternal Exposure and Offspring Health Consequences—The Case of Synthetic Phenols, Parabens, and Phthalates. Toxics. 2024; 12(10):710. https://doi.org/10.3390/toxics12100710
Chicago/Turabian StyleRousseau-Ralliard, Delphine, Jeanne Bozec, Marion Ouidir, Nicolas Jovanovic, Véronique Gayrard, Namya Mellouk, Marie-Noëlle Dieudonné, Nicole Picard-Hagen, Maria-José Flores-Sanabria, Hélène Jammes, and et al. 2024. "Short-Half-Life Chemicals: Maternal Exposure and Offspring Health Consequences—The Case of Synthetic Phenols, Parabens, and Phthalates" Toxics 12, no. 10: 710. https://doi.org/10.3390/toxics12100710
APA StyleRousseau-Ralliard, D., Bozec, J., Ouidir, M., Jovanovic, N., Gayrard, V., Mellouk, N., Dieudonné, M. -N., Picard-Hagen, N., Flores-Sanabria, M. -J., Jammes, H., Philippat, C., & Couturier-Tarrade, A. (2024). Short-Half-Life Chemicals: Maternal Exposure and Offspring Health Consequences—The Case of Synthetic Phenols, Parabens, and Phthalates. Toxics, 12(10), 710. https://doi.org/10.3390/toxics12100710