Variations in Oil Occurrence State and Properties during High-Speed Stirring Treatment of Oily Sludge
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples
2.2. High-Speed Stirring (HSS) Experimental Procedure
2.3. X-ray Diffraction (XRD) Analyses
2.4. Gas Chromatography (GC) and SARA Analyses
2.5. Confocal Laser Scanning Microscopy (CLSM) and Fluorescence Analyses
2.6. Oil Content Determination
3. Results and Discussion
3.1. The Characteristics of OS and the Treatment Effect of the HSS Method
3.2. Variations in Oil Occurrence State and Properties during Treatment
3.3. Implications for the Treatment of OS
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hu, G.J.; Li, J.B.; Zeng, G.M. Recent development in the treatment of oily sludge from petroleum industry: A review. J. Hazard. Mater. 2013, 261, 470–490. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Jiang, L. Comparison of the crude oil removal effects of different surfactants in electrokinetic remediation of low-permeability soil. J. Environ. Chem. Eng. 2021, 9, 105190. [Google Scholar] [CrossRef]
- Hochberg, S.Y.; Tansel, B.; Laha, S. Materials and energy recovery from oily sludges removed from crude oil storage tanks (tank bottoms): A review of technologies. J. Environ. Manag. 2022, 305, 114428. [Google Scholar] [CrossRef]
- Chu, Z.W.; Li, Y.J.; Zhang, C.X.; Fang, Y.; Zhao, J.L. A review on resource utilization of oil sludge based on pyrolysis and gasification. J. Environ. Chem. Eng. 2023, 11, 109692. [Google Scholar] [CrossRef]
- Wang, Z.Y.; Gong, Z.Q.; Wang, Z.B.; Li, X.Y.; Chu, Z.W. Application and development of pyrolysis technology in petroleum oily sludge treatment. Environ. Eng. Res. 2021, 26, 190460. [Google Scholar] [CrossRef]
- Jerez, S.; Ventura, M.; Molina, R.; Pariente, M.I.; Martínez, F.; Melero, J.A. Comprehensive characterization of an oily sludge from a petrol refinery: A step forward for its valorization within the circular economy strategy. J. Environ. Manag. 2021, 285, 112124. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.W.; Zhang, H.; Wang, H.X.; Cao, Y.J.; Zhang, L. A makeup remover-inspired chitosan-based emulsion for heavy oil removal in oily sludge treatment. Fuel 2022, 330, 125588. [Google Scholar] [CrossRef]
- Murungi, P.I.; Sulaimon, A.A. Petroleum sludge treatment and disposal techniques: A review. Environ. Sci. Pollut. Res. 2022, 29, 40358–40372. [Google Scholar] [CrossRef]
- Teng, Q.; Zhang, D.M.; Yang, C.P. A review of the application of different treatment processes for oily sludge. Environ. Sci. Pollut. Res. 2020, 28, 121–132. [Google Scholar] [CrossRef]
- Jing, G.; Chen, T.; Luan, M. Studying oily sludge treatment by thermo chemistry. Arab. J. Chem. 2016, 9, S457–S460. [Google Scholar] [CrossRef]
- Hui, K.; Tang, J.; Lu, H.; Xi, B.; Qu, C.; Li, J. Status and prospect of oil recovery from oily sludge: A review. Arab. J. Chem. 2020, 13, 6523–6543. [Google Scholar] [CrossRef]
- Bento, F.M.; Camargo, F.A.; Okeke, B.C.; Frankenberger, W.T. Comparative bioremediation of soils contaminated with diesel oil by natural attenuation, biostimulation and bioaugmentation. Bioresour. Technol. 2005, 96, 1049–1055. [Google Scholar] [CrossRef]
- Patowary, K.; Patowary, R.; Kalita, M.C.; Deka, S. Development of an efficient bacterial consortium for the potential remediation of hydrocarbons from contaminated sites. Front. Microbiol. 2016, 7, 1092. [Google Scholar] [CrossRef]
- Zhu, Y.M.; Li, K.Q.; Wang, Y.; Zhao, J.; Tang, X.J.; Li, T.; Zhang, C.M. Highly Efficient Treatment of Oily Sludge by a Novel High-Speed Stirring Method at Room Temperature. Int. J. Environ. Res. Public. Health 2022, 19, 16817. [Google Scholar] [CrossRef] [PubMed]
- Jarvie, D.M. Shale resource systems for oil and gas: Part 2-Shale-oil resource systems. AAPG Meml. 2012, 97, 89–119. [Google Scholar]
- O’Brien, N.R.; Cremer, M.D.; Canales, D.G. The Role of Argillaceous Rock Fabric in Primary Migration of Oil. Gulf Coast Assoc. Geol. Soc. Trans. 2002, 52, 1103–1112. [Google Scholar]
- Curtis, J.B. Fractured Shale-Gas Systems. AAPG Bull. 2002, 86, 1921–1938. [Google Scholar]
- Van Heek, K.H. Progress of coal science in the 20th century. Fuel 2000, 79, 1–26. [Google Scholar] [CrossRef]
- Li, Y.Q.; Yang, Y.; Sun, X.D.; Yang, D.; Zhang, N.; Yang, H.J.; Guo, H.; Zheng, J. The application of laser confocal method in microscopic oil analysis. J. Pet. Sci. Eng. 2014, 120, 52–60. [Google Scholar] [CrossRef]
- Liu, B.; Yan, M.; Sun, X.D.; Bai, Y.F.; Bai, L.H.; Fu, X.F. Microscopic and Fractal Characterization of Organic Matter within Lacustrine Shale Reservoirs in the First Member of Cretaceous Qingshankou Formation, Songliao Basin, Northeast China. J. Earth Sci. 2020, 31, 1241–1250. [Google Scholar] [CrossRef]
- Pecharsky, V.; Zavalij, P. Fundamentals of Powder Diffraction and Structural Characterization of Minerals; Kluwer Academic Publishers: New York, NY, USA, 2009; pp. 1–15. [Google Scholar]
- Cheng, X.; Hou, D.J.; Zhou, X.H.; Liu, J.S.; Diao, H.; Jiang, Y.H.; Yu, Z.K. Organic geochemistry and kinetics for natural gas generation from mudstone and coal in the Xihu Sag, East China Sea Shelf Basin, China. Mar. Pet. Geol. 2020, 118, 104405. [Google Scholar] [CrossRef]
- ASTM Standards, D2007. Characteristic Groups in Rubber Extender and Processing Oils by the Clay-Gel Adsorption Chromatographic Method. Part 24. 1981. p. 169. Available online: https://www.astm.org/d2007-19.html (accessed on 27 September 2024).
- Goldstein, R.H.; Reynolds, T.J. Systematics of Fluid Inclusions in Diagenetic Minerals, Systematics of Fluid Inclusions in Diagenetic Minerals. SEPM (Soc. Sediment. Geol.) 1994, 31, 69–85. [Google Scholar]
- Przyjalgowski, M.A.; Ryder, A.G.; Feely, M. Analysis of Hydrocarbon-Bearing Fluid Inclusions (HCFI) Using Time-Resolved Fluorescence Spectroscopy. In Opto-Ireland 2005: Optical Sensing and Spectroscopy; SPIE: Bellingham, WA, USA, 2005; Volume 5826, pp. 173–184. [Google Scholar]
- Wang, L.T.; Sun, L.P.; Kang, J.C.; Wang, Y.F. Experimental Study on the Chemical Cleaning Technology of Oil Sludge in Offshore Oil Tank. Fresen. Environ. Bull. 2020, 29, 544–550. [Google Scholar]
- Sun, B.Z.; Bai, L.F.; Wang, Q.; Zhang, X.X. Experiment Research on Washing Oil Shale Sludge by Thermochemical Method. Chem. Ind. Eng. Prog. 2014, 33, 1596–1600. [Google Scholar]
- Zhao, H.R.; Su, Y.J.; Ye, Y.; Ma, W.C.; Liu, G.Q. Study of Harmless Treatment of Oily Sludge in Refinery Works. Chem. Eng. Oil Gas 2003, 32, 396–398. [Google Scholar]
- Wang, Y.J.; Zhang, N.; Liu, S.J.; Miao, C.; Liu, X.L. Performance and Mechanism of Thermochemical Technology for Oily Sludge Cleaning. Chem. Ind. Eng. Prog. 2022, 41, 3333–3340. [Google Scholar]
- Venkateswar Reddy, M.; Prathima Devi, M.; Chandrasekhar, K.; Kannaiah Goud, R.; Venkata Mohan, S. Aerobic remediation of petroleum sludge through soil supplementation: Microbial community analysis. J. Hazard. Mater. 2011, 197, 80–87. [Google Scholar] [CrossRef] [PubMed]
- El Naggar, A.Y.; Saad, E.A.; Kandil, A.T.; Elmoher, H.O. Petroleum cuts as solvent extractor for oil recovery from petroleum sludge. J. Petrol. Technol. Altern. Fuels 2010, 1, 10–19. [Google Scholar]
- Schmidt, H.; Kaminsky, W. Pyrolysis of oil sludge in a fluidised bed reactor. Chemosphere 2001, 45, 285–290. [Google Scholar] [CrossRef]
- Jean, D.S.; Lee, D.J.; Wu, J.C.S. Separation of oil from oily sludge by freezing and thawing. Water Res. 1999, 33, 1756–1759. [Google Scholar]
- Bustin, R.M. Shale Gas and Shale Oil Petrology and Petrophysics. Int. J. Coal Geol. 2012, 103, 1–2. [Google Scholar] [CrossRef]
- Li, J.; Huang, W.; Lu, S.; Wang, M.; Chen, G.H.; Tian, W.C.; Guo, Z.Q. Nuclear magnetic resonance T1-T2 map division method for hydrogen-bearing components in continental shale. Energy Fuels 2018, 32, 9043–9054. [Google Scholar] [CrossRef]
- Hunter, W.R.; Niederdorfer, R.; Gernand, A.; Veuger, B.; Prommer, J.; Mooshammer, M.; Battin, T.J. Metabolism of mineral-sorbed organic matter and microbial lifestyles in fluvial ecosystems. Geophys. Res. Lett. 2016, 43, 1582–1588. [Google Scholar] [CrossRef]
- Zhao, T.X.; Xu, S.; Hao, F. Differential adsorption of clay minerals: Implications for organic matter enrichment. Earth-Sci. Rev. 2023, 246, 104598. [Google Scholar] [CrossRef]
- Kalbitz, K.; Schwesig, D.; Rethemeyer, J.; Matzner, E. Stabilization of dissolved organic matter by sorption to the mineral soil. Soil Biol. Biochem. 2005, 37, 1319–1331. [Google Scholar] [CrossRef]
- Kramer, M.G.; Sanderman, J.; Chadwick, O.A.; Chorover, J.; Vitousek, P.M. Long-term carbon storage through retention of dissolved aromatic acids by reactive particles in soil. Glob. Chang. Biol. 2012, 18, 2594–2605. [Google Scholar] [CrossRef]
- Sanderman, J.; Amundson, R. A comparative study of dissolved organic carbon transport and stabilization in California forest and grassland soils. Biogeochemistry 2009, 92, 41–59. [Google Scholar] [CrossRef]
- Gao, Y.X.; Ding, R.; Chen, X.; Gong, Z.B.; Zhang, Y.; Yang, M. Ultrasonic washing for oily sludge treatment in pilot scale. Ultrasonics 2018, 90, 1–4. [Google Scholar] [CrossRef] [PubMed]
- Kriipsalu, M.; Marques, M.; Nammari, D.R.; Hogland, W. Biotreatment of oily sludge: The contribution of amendment material to the content of target contaminants, and the biodegradation dynamics. J. Hazard. Mater. 2007, 148, 616–622. [Google Scholar] [CrossRef]
- Luo, X.M.; Gong, H.Y.; He, Z.L.; Zhang, P.; He, L.M. Research on mechanism and characteristics of oil recovery from oily sludge in ultrasonic fields. J. Hazard. Mater. 2020, 399, 123137. [Google Scholar] [CrossRef] [PubMed]
- Pereira, L.B.; Sad, C.M.S.; Da Silva, M.; Corona, R.R.B.; Dos Santos, F.D.; Goncalves, G.R.; Casrro, E.V.R.; Filgueiras, P.R.; Lacerda, V., Jr. Oil recovery from water-based drilling fluid waste. Fuel 2019, 237, 335–343. [Google Scholar] [CrossRef]
- Chen, Z.; Zheng, Z.J.; He, C.L.; Liu, J.M.; Zhang, R.; Chen, Q. Oily sludge treatment in subcritical and supercritical water: A review. J. Hazard. Mater. 2022, 433, 128761. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Liu, T.L.; Huang, Q.X.; Ma, Z.Y.; Chi, Y.; Yan, J.H. Production and characterization of high quality activated carbon from oily sludge. Fuel Process. Technol. 2017, 162, 13–19. [Google Scholar]
- Kim, Y.U.; Wang, M.C. Effect of ultrasound on oil removal from solids. Ultrason. Sonochem 2003, 41, 539–542. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Song, X.; Hu, G.; Thring, R.W. Ultrasonic desorption of petroleum hydrocarbons from crude oil contaminated soils. J. Environ. Sci. Health 2013, A8, 1378–1389. [Google Scholar]
- Zhang, C.X.; Jiang, F.J.; Hu, T.; Chen, D.; Huang, L.L.; Jiang, Z.X.; Wang, X.H.; Liu, Z.Y.; Wu, Y.P.; Lv, J.H.; et al. Oil occurrence state and quantity in alkaline lacustrine shale using a high-frequency NMR technique. Mar. Pet. Geol. 2023, 154, 106302. [Google Scholar] [CrossRef]
Samples | Oil Concentration (%) | SARA Composition | |||
---|---|---|---|---|---|
Saturates (%) | Aromatics (%) | Resins (%) | Asphaltenes (%) | ||
Before HSS treatment | 32.98 | 53.42 | 25.78 | 16.56 | 4.24 |
After HSS treatment | 1.65 | 52.82 | 22.97 | 20.32 | 3.89 |
Treatment | Advantages | Drawbacks | Oil Removal Rate |
---|---|---|---|
Centrifugation treatment | Wider adaptability, good reduction, and combustion to produce heat. | Waste of petroleum resources, easy to cause secondary pollution. | 92–96% [30]. |
Solvent Extraction | The crude oil recovery rate is high, and the extractant can be recycled. | Higher cost, larger amount of extractant. | 76% [31]. |
Pyrolysis | Simple operation, high processing efficiency, and high crude oil recovery rate. | High energy consumption, more complex equipment. | 70–84% [32]. |
Freeze/thaw treatment | High environmental protection; no secondary pollution. | Strict reaction conditions; long processing time; high technical requirements. | 50% [33]. |
High-speed stirring (HSS) method | More environmentally friendly and economical, bringing innovative advances to the field. | Subsequent recycling of oil sludge has not been explored. | 95% [14]. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bao, Y.; Zhu, Y.; Liu, Y.; Zhao, J.; Tang, X.; Li, T.; Wang, Y.; Liu, X.; Zhang, H. Variations in Oil Occurrence State and Properties during High-Speed Stirring Treatment of Oily Sludge. Toxics 2024, 12, 711. https://doi.org/10.3390/toxics12100711
Bao Y, Zhu Y, Liu Y, Zhao J, Tang X, Li T, Wang Y, Liu X, Zhang H. Variations in Oil Occurrence State and Properties during High-Speed Stirring Treatment of Oily Sludge. Toxics. 2024; 12(10):711. https://doi.org/10.3390/toxics12100711
Chicago/Turabian StyleBao, Yuwei, Yimin Zhu, Yang Liu, Jiao Zhao, Xiaojia Tang, Tie Li, Yin Wang, Xianmeng Liu, and Hao Zhang. 2024. "Variations in Oil Occurrence State and Properties during High-Speed Stirring Treatment of Oily Sludge" Toxics 12, no. 10: 711. https://doi.org/10.3390/toxics12100711
APA StyleBao, Y., Zhu, Y., Liu, Y., Zhao, J., Tang, X., Li, T., Wang, Y., Liu, X., & Zhang, H. (2024). Variations in Oil Occurrence State and Properties during High-Speed Stirring Treatment of Oily Sludge. Toxics, 12(10), 711. https://doi.org/10.3390/toxics12100711