The Application of Nano Zero-Valent Iron in Synergy with White Rot Fungi in Environmental Pollution Control
Abstract
:1. Introduction
2. Nano Zero-Valent Iron
2.1. Mechanisms of Pollutant Removal by nZVI
2.2. Limitations of nZVI
2.3. Modification of nZVI
2.3.1. Sulfidized nZVI
2.3.2. Supported nZVI
2.3.3. Varying Reactivity of nZVI
3. nZVI Combined with Microorganisms
3.1. The Impact of nZVI on Microorganisms
3.2. The Effects of Microorganisms on nZVI
3.3. Mechanisms of Interaction between nZVI and Microorganisms
4. White Rot Fungi
4.1. Mechanisms of Pollutant Removal by White Rot Fungi
4.2. Remediation of Heavy Metal Pollutants by WRF
4.3. Limitations of WRF
5. nZVI Combined with WRF for Pollutant Remediation
5.1. Enhanced Removal of Cd (II) from Water Using Combined WRF and nZVI
5.2. The Combined Use of nZVI and White Rot Fungi Enhances the Degradation of PAHs
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mansor, M.; Xu, J. Benefits at the nanoscale: A review of nanoparticle-enabled processes favouring microbial growth and functionality. Environ. Microbiol. 2020, 22, 3633–3649. [Google Scholar] [CrossRef] [PubMed]
- Munk, L.; Sitarz, A.K.; Kalyani, D.C.; Mikkelsen, J.D.; Meyer, A.S. Can laccases catalyze bond cleavage in lignin? Biotechnol. Adv. 2015, 33, 13–24. [Google Scholar] [CrossRef] [PubMed]
- Huang, D.; Guo, X.; Peng, Z.; Zeng, G.; Xu, P.; Gong, X.; Deng, R.; Xue, W.; Wang, R.; Yi, H. White rot fungi and advanced combined biotechnology with nanomaterials: Promising tools for endocrine-disrupting compounds biotransformation. Crit. Rev. Biotechnol. 2018, 38, 671–689. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Q.; Li, J.; Wang, M.; Zhao, D. Iron-based magnetic nanomaterials and their environmental applications. Crit. Rev. Environ. Sci. Technol. 2016, 46, 783–826. [Google Scholar] [CrossRef]
- Mukherjee, R.; Kumar, R.; Sinha, A.; Lama, Y.; Saha, A.K. A review on synthesis, characterization, and applications of nano zero valent iron (nZVI) for environmental remediation. Crit. Rev. Environ. Sci. Technol. 2016, 46, 443–466. [Google Scholar] [CrossRef]
- Ken, D.S.; Sinha, A. Recent developments in surface modification of nano zero-valent iron (nZVI): Remediation, toxicity and environmental impacts. Environ. Nanotechnol. Monit. Manag. 2020, 14, 100344. [Google Scholar] [CrossRef]
- Glavee, G.N.; Klabunde, K.J.; Sorensen, C.M.; Hadjipanayis, G.C. Chemistry of borohydride reduction of iron (II) and iron (III) ions in aqueous and nonaqueous media. Formation of nanoscale Fe, FeB, and Fe2B powders. Inorg. Chem. 1995, 34, 28–35. [Google Scholar] [CrossRef]
- Qiu, X.F.Z. Degradation of halogenated organic compounds by modified nano zero-valent iron. Prog. Chem. 2010, 22, 291. [Google Scholar]
- Li, J.; Zhang, X.; Sun, Y.; Liang, L.; Pan, B.; Zhang, W.; Guan, X. Advances in sulfidation of zerovalent iron for water decontamination. Environ. Sci. Technol. 2017, 51, 13533–13544. [Google Scholar] [CrossRef]
- Zhang, W.-x. Nanoscale iron particles for environmental remediation: An overview. J. Nanoparticle Res. 2003, 5, 323–332. [Google Scholar] [CrossRef]
- Dong, H.; He, Q.; Zeng, G.; Tang, L.; Zhang, C.; Xie, Y.; Zeng, Y.; Zhao, F.; Wu, Y. Chromate removal by surface-modified nanoscale zero-valent iron: Effect of different surface coatings and water chemistry. J. Colloid Interface Sci. 2016, 471, 7–13. [Google Scholar] [CrossRef]
- Montesinos, V.N.; Quici, N.; Litter, M.I. Visible light enhanced Cr (VI) removal from aqueous solution by nanoparticulated zerovalent iron. Catal. Commun. 2014, 46, 57–60. [Google Scholar] [CrossRef]
- Ramos, M.A.; Yan, W.; Li, X.-q.; Koel, B.E.; Zhang, W.-x. Simultaneous oxidation and reduction of arsenic by zero-valent iron nanoparticles: Understanding the significance of the core−shell structure. J. Phys. Chem. C 2009, 113, 14591–14594. [Google Scholar] [CrossRef]
- Wang, P.; Wang, Y.; Liu, T. Research progress of preparation of nano zero-valent iron by ball milling. Environ. Chem. 2021, 40, 2924–2933. (In Chinese) [Google Scholar] [CrossRef]
- Mu, Y.; Jia, F.; Ai, Z.; Zhang, L. Iron oxide shell mediated environmental remediation properties of nano zero-valent iron. Environ. Sci. Nano 2017, 4, 27–45. [Google Scholar] [CrossRef]
- Zhu, F.; Ma, S.; Liu, T.; Deng, X. Green synthesis of nano zero-valent iron/Cu by green tea to remove hexavalent chromium from groundwater. J. Clean. Prod. 2018, 174, 184–190. [Google Scholar] [CrossRef]
- Fazlzadeh, M.; Rahmani, K.; Zarei, A.; Abdoallahzadeh, H.; Nasiri, F.; Khosravi, R. A novel green synthesis of zero valent iron nanoparticles (NZVI) using three plant extracts and their efficient application for removal of Cr (VI) from aqueous solutions. Adv. Powder Technol. 2017, 28, 122–130. [Google Scholar] [CrossRef]
- Hamzezadeh, A.; Fazlzadeh, M.; Rahmani, K.; Poureshgh, Y. A novel green synthesis of zero valent iron nanoparticles (nZVI) using walnut green skin: Characterisation, catalytic degradation and toxicity studies. Int. J. Environ. Anal. Chem. 2023, 103, 6458–6474. [Google Scholar] [CrossRef]
- Rashtbari, Y.; Hazrati, S.; Azari, A.; Afshin, S.; Fazlzadeh, M.; Vosoughi, M. A novel, eco-friendly and green synthesis of PPAC-ZnO and PPAC-nZVI nanocomposite using pomegranate peel: Cephalexin adsorption experiments, mechanisms, isotherms and kinetics. Adv. Powder Technol. 2020, 31, 1612–1623. [Google Scholar] [CrossRef]
- Wang, T.; Lin, J.; Chen, Z.; Megharaj, M.; Naidu, R. Green synthesized iron nanoparticles by green tea and eucalyptus leaves extracts used for removal of nitrate in aqueous solution. J. Clean. Prod. 2014, 83, 413–419. [Google Scholar] [CrossRef]
- Sun, X.; Kurokawa, T.; Suzuki, M.; Takagi, M.; Kawase, Y. Removal of cationic dye methylene blue by zero-valent iron: Effects of pH and dissolved oxygen on removal mechanisms. J. Environ. Sci. Health Part A 2015, 50, 1057–1071. [Google Scholar] [CrossRef] [PubMed]
- Lu, H.-J.; Wang, J.-K.; Ferguson, S.; Wang, T.; Bao, Y.; Hao, H.-x. Mechanism, synthesis and modification of nano zerovalent iron in water treatment. Nanoscale 2016, 8, 9962–9975. [Google Scholar] [CrossRef]
- Crane, R.A.; Scott, T.B. Nanoscale zero-valent iron: Future prospects for an emerging water treatment technology. J. Hazard. Mater. 2012, 211–212, 112–125. [Google Scholar] [CrossRef] [PubMed]
- de Lima Perini, J.A.; Silva, B.F.; Nogueira, R.F.P. Zero-valent iron mediated degradation of ciprofloxacin–assessment of adsorption, operational parameters and degradation products. Chemosphere 2014, 117, 345–352. [Google Scholar] [CrossRef]
- Matheson, L.J.; Tratnyek, P.G. Reductive dehalogenation of chlorinated methanes by iron metal. Environ. Sci. Technol. 1994, 28, 2045–2053. [Google Scholar] [CrossRef]
- Zeng, G.; Liang, D.; Fan, X.; He, Y.; Zhang, R.; Lei, X.; Wei, H.; Sun, D. Activated carbon fiber loaded nano zero-valent iron for Microcystis aeruginosa removal: Performance and mechanisms. Bioresour. Technol. 2024, 413, 131538. [Google Scholar] [CrossRef]
- Xiong, M.; Sun, Y.; Chai, B.; Fan, G.; Song, G. Efficient peroxymonosulfate activation by magnetic CoFe2O4 nanoparticle immobilized on biochar toward sulfamethoxazole degradation: Performance, mechanism and pathway. Appl. Surf. Sci. 2023, 615, 156398. [Google Scholar] [CrossRef]
- Fu, F.; Dionysiou, D.D.; Liu, H. The use of zero-valent iron for groundwater remediation and wastewater treatment: A review. J. Hazard. Mater. 2014, 267, 194–205. [Google Scholar] [CrossRef]
- Mueller, N.C.; Braun, J.; Bruns, J.; Černík, M.; Rissing, P.; Rickerby, D.; Nowack, B. Application of nanoscale zero valent iron (NZVI) for groundwater remediation in Europe. Environ. Sci. Pollut. Res. 2012, 19, 550–558. [Google Scholar] [CrossRef]
- Greenlee, L.F.; Torrey, J.D.; Amaro, R.L.; Shaw, J.M. Kinetics of zero valent iron nanoparticle oxidation in oxygenated water. Environ. Sci. Technol. 2012, 46, 12913–12920. [Google Scholar] [CrossRef]
- Shi, D.; Zhu, G.; Zhang, X.; Zhang, X.; Li, X.; Fan, J. Ultra-small and recyclable zero-valent iron nanoclusters for rapid and highly efficient catalytic reduction of p-nitrophenol in water. Nanoscale 2019, 11, 1000–1010. [Google Scholar] [CrossRef] [PubMed]
- Stefaniuk, M.; Oleszczuk, P.; Ok, Y.S. Review on nano zerovalent iron (nZVI): From synthesis to environmental applications. Chem. Eng. J. 2016, 287, 618–632. [Google Scholar] [CrossRef]
- Huang, Q.; Gu, T.; Liu, A.; Liu, J.; Zhang, W.-x. Probing pollutant reactions at the iron surface: A case study on selenite reactions with nanoscale zero-valent iron. Environ. Sci. Nano 2021, 8, 2650–2659. [Google Scholar] [CrossRef]
- Zhou, L.; Li, Z.; Yi, Y.; Tsang, E.P.; Fang, Z. Increasing the electron selectivity of nanoscale zero-valent iron in environmental remediation: A review. J. Hazard. Mater. 2022, 421, 126709. [Google Scholar] [CrossRef]
- Yan, W.; Herzing, A.A.; Kiely, C.J.; Zhang, W.-x. Nanoscale zero-valent iron (nZVI): Aspects of the core-shell structure and reactions with inorganic species in water. J. Contam. Hydrol. 2010, 118, 96–104. [Google Scholar] [CrossRef]
- Tang, J.; Tang, L.; Feng, H.; Dong, H.; Zhang, Y.; Liu, S.; Zeng, G. Research progress of aqueous pollutants removal by sulfidated nanoscale zero-valent iron. Acta Chim. Sin. 2017, 75, 575. [Google Scholar] [CrossRef]
- Wang, H.; Cai, S.; Shan, L.; Zhuang, M.; Li, N.; Quan, G.; Yan, J. Adsorptive and reductive removal of chlorophenol from wastewater by biomass-derived mesoporous carbon-supported sulfide nanoscale zerovalent iron. Nanomaterials 2019, 9, 1786. [Google Scholar] [CrossRef]
- He, F.; Li, Z.; Shi, S.; Xu, W.; Sheng, H.; Gu, Y.; Jiang, Y.; Xi, B. Dechlorination of excess trichloroethene by bimetallic and sulfidated nanoscale zero-valent iron. Environ. Sci. Technol. 2018, 52, 8627–8637. [Google Scholar] [CrossRef]
- Zhu, X.; Le, T.T.; Du, J.; Xu, T.; Cui, Y.; Ling, H.; Kim, S.H. Novel core-shell sulfidated nano-Fe (0) particles for chromate sequestration: Promoted electron transfer and Fe (II) production. Chemosphere 2021, 284, 131379. [Google Scholar] [CrossRef]
- Wu, D.; Peng, S.; Yan, K.; Shao, B.; Feng, Y.; Zhang, Y. Enhanced As (III) sequestration using sulfide-modified nano-scale zero-valent iron with a characteristic core–shell structure: Sulfidation and as distribution. ACS Sustain. Chem. Eng. 2018, 6, 3039–3048. [Google Scholar] [CrossRef]
- Li, D.; Zhong, Y.; Wang, H.; Huang, W. Remarkable promotion in particle dispersion and electron transfer capacity of sulfidated nano zerovalent iron by coating alginate polymer. Sci. Total Environ. 2021, 759, 143481. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Yang, M.; Hu, S.; Wang, L.; Yao, H. Characteristics and mechanisms of 4A zeolite supported nanoparticulate zero-valent iron as Fenton-like catalyst to degrade methylene blue. Toxicol. Environ. Chem. 2014, 96, 227–242. [Google Scholar] [CrossRef]
- Qu, R.; Zhang, W.; Liu, N.; Zhang, Q.; Liu, Y.; Li, X.; Wei, Y.; Feng, L. Antioil Ag3PO4 nanoparticle/polydopamine/Al2O3 sandwich structure for complex wastewater treatment: Dynamic catalysis under natural light. ACS Sustain. Chem. Eng. 2018, 6, 8019–8028. [Google Scholar] [CrossRef]
- Chen, Z.; Wang, T.; Jin, X.; Chen, Z.; Megharaj, M.; Naidu, R. Multifunctional kaolinite-supported nanoscale zero-valent iron used for the adsorption and degradation of crystal violet in aqueous solution. J. Colloid Interface Sci. 2013, 398, 59–66. [Google Scholar] [CrossRef]
- Xuanyi, Z.; Zhe, L.; Jiawei, C. Study on Mobility of Chitosan Coated Fe/Ni Bimetal Nanoparticles and Their Reactivity for Trichloroethylene Degradation in Groundwater. Geoscience 2018, 32, 1322. [Google Scholar] [CrossRef]
- Kustov, L.M.; Finashina, E.D.; Shuvalova, E.V.; Tkachenko, O.P.; Kirichenko, O.A. Pd–Fe nanoparticles stabilized by chitosan derivatives for perchloroethene dechlorination. Environ. Int. 2011, 37, 1044–1052. [Google Scholar] [CrossRef] [PubMed]
- Xue, J.; Wang, Z.; Yang, B.; Zhou, H.; Huang, Y.; Yin, Y.; Liu, J.; Huang, K. Degradation of Methylene Blue by Nano-Zero Valent Iron Loaded Garlic Residue. Adv. Environ. Prot. 2018, 8, 515–526. [Google Scholar] [CrossRef]
- Cheng, Y.; Tang, W.; Sun, X. Research on the Treatment of Phosphorus Containing Wastewater by Porous Ceramic Supported nZVI. Water Pollut. Treat. 2018, 6, 68–81. [Google Scholar] [CrossRef]
- Shi, L.-n.; Lin, Y.-M.; Zhang, X.; Chen, Z.-l. Synthesis, characterization and kinetics of bentonite supported nZVI for the removal of Cr (VI) from aqueous solution. Chem. Eng. J. 2011, 171, 612–617. [Google Scholar] [CrossRef]
- Gil-Díaz, M.; Alonso, J.; Rodríguez-Valdés, E.; Gallego, J.; Lobo, M.C. Comparing different commercial zero valent iron nanoparticles to immobilize As and Hg in brownfield soil. Sci. Total Environ. 2017, 584, 1324–1332. [Google Scholar] [CrossRef]
- Eljamal, R.; Eljamal, O.; Maamoun, I.; Yilmaz, G.; Sugihara, Y. Enhancing the characteristics and reactivity of nZVI: Polymers effect and mechanisms. J. Mol. Liq. 2020, 315, 113714. [Google Scholar] [CrossRef]
- Mokete, R.; Eljamal, O.; Sugihara, Y. Exploration of the reactivity of nanoscale zero-valent iron (NZVI) associated nanoparticles in diverse experimental conditions. Chem. Eng. Process.-Process Intensif. 2020, 150, 107879. [Google Scholar] [CrossRef]
- Xie, Y.; Dong, H.; Zeng, G.; Tang, L.; Jiang, Z.; Zhang, C.; Deng, J.; Zhang, L.; Zhang, Y. The interactions between nanoscale zero-valent iron and microbes in the subsurface environment: A review. J. Hazard. Mater. 2017, 321, 390–407. [Google Scholar] [CrossRef]
- Yao, B.; Luo, Z.; Zhi, D.; Hou, D.; Luo, L.; Du, S.; Zhou, Y. Current progress in degradation and removal methods of polybrominated diphenyl ethers from water and soil: A review. J. Hazard. Mater. 2021, 403, 123674. [Google Scholar] [CrossRef]
- Ali, H. Biodegradation of synthetic dyes—A review. Water Air Soil Pollut. 2010, 213, 251–273. [Google Scholar] [CrossRef]
- Jabbar, N.M.; Alardhi, S.M.; Mohammed, A.K.; Salih, I.K.; Albayati, T.M. Challenges in the implementation of bioremediation processes in petroleum-contaminated soils: A review. Environ. Nanotechnol. Monit. Manag. 2022, 18, 100694. [Google Scholar] [CrossRef]
- Dong, H.; Li, L.; Lu, Y.; Cheng, Y.; Wang, Y.; Ning, Q.; Wang, B.; Zhang, L.; Zeng, G. Integration of nanoscale zero-valent iron and functional anaerobic bacteria for groundwater remediation: A review. Environ. Int. 2019, 124, 265–277. [Google Scholar] [CrossRef]
- Huang, M.; Wang, X.; Zhao, F. Research progress of zero-valent-iron microbial coupled system in remediating contaminated groundwater. China Environ. Sci. 2021, 41, 1119–1131. [Google Scholar] [CrossRef]
- Reardon, E.J.; Fagan, R.; Vogan, J.L.; Przepiora, A. Anaerobic corrosion reaction kinetics of nanosized iron. Environ. Sci. Technol. 2008, 42, 2420–2425. [Google Scholar] [CrossRef]
- Liu, Y.; Lowry, G.V. Effect of particle age (Fe0 content) and solution pH on NZVI reactivity: H2 evolution and TCE dechlorination. Environ. Sci. Technol. 2006, 40, 6085–6090. [Google Scholar] [CrossRef]
- Haferburg, G.; Kothe, E. Microbes and metals: Interactions in the environment. J. Basic Microbiol. 2007, 47, 453–467. [Google Scholar] [CrossRef]
- Klueglein, N.; Zeitvogel, F.; Stierhof, Y.-D.; Floetenmeyer, M.; Konhauser, K.O.; Kappler, A.; Obst, M. Potential role of nitrite for abiotic Fe (II) oxidation and cell encrustation during nitrate reduction by denitrifying bacteria. Appl. Environ. Microbiol. 2014, 80, 1051–1061. [Google Scholar] [CrossRef] [PubMed]
- Liu, N.; Liu, J.; Wang, H.; Li, S.; Zhang, W.-x. Microbes team with nanoscale zero-valent iron: A robust route for degradation of recalcitrant pollutants. J. Environ. Sci. 2022, 118, 140–146. [Google Scholar] [CrossRef] [PubMed]
- Wu, D.; Shen, Y.; Ding, A.; Mahmood, Q.; Liu, S.; Tu, Q. Effects of nanoscale zero-valent iron particles on biological nitrogen and phosphorus removal and microorganisms in activated sludge. J. Hazard. Mater. 2013, 262, 649–655. [Google Scholar] [CrossRef] [PubMed]
- Kirschling, T.L.; Gregory, K.B.; Minkley, J.; Edwin, G.; Lowry, G.V.; Tilton, R.D. Impact of nanoscale zero valent iron on geochemistry and microbial populations in trichloroethylene contaminated aquifer materials. Environ. Sci. Technol. 2010, 44, 3474–3480. [Google Scholar] [CrossRef]
- Niu, C.; Cai, T.; Lu, X.; Zhen, G.; Pan, Y.; Ren, X.; Qin, X.; Li, W.; Tang, Y.; Zhi, Z. Nano zero-valent iron regulates the enrichment of organics-degrading and hydrogenotrophic microbes to stimulate methane bioconversion of waste activated sludge. Chem. Eng. J. 2021, 418, 129511. [Google Scholar] [CrossRef]
- Wang, S.; Chen, S.; Wang, Y.; Low, A.; Lu, Q.; Qiu, R. Integration of organohalide-respiring bacteria and nanoscale zero-valent iron (Bio-nZVI-RD): A perfect marriage for the remediation of organohalide pollutants? Biotechnol. Adv. 2016, 34, 1384–1395. [Google Scholar] [CrossRef]
- Ma, L.; Du, Y.; Chen, S.; Zhang, F.; Zhan, W.; Du, D.; Zhang, T.C. Nanoscale zero-valent iron coupling with Shewanella oneidensis MR-1 for enhanced reduction/removal of aqueous Cr (VI). Sep. Purif. Technol. 2021, 277, 119488. [Google Scholar] [CrossRef]
- Luo, Y.; Pang, J.; Peng, C.; Ye, J.; Long, B.; Tong, J.; Shi, J. Cr (VI) Reduction and Fe (II) Regeneration by Penicillium oxalicum SL2-Enhanced Nanoscale Zero-Valent Iron. Environ. Sci. Technol. 2023, 57, 11313–11324. [Google Scholar] [CrossRef]
- Zhou, L.; Li, A.; Ma, F.; Zhao, H.; Deng, F.; Pi, S.; Tang, A.; Yang, J. Combining high electron transfer efficiency and oxidation resistance in nZVI with coatings of microbial extracellular polymeric substances to enhance Sb (V) reduction and adsorption. Chem. Eng. J. 2020, 395, 125168. [Google Scholar] [CrossRef]
- Gao, D.; Du, L.; Yang, J.; Wu, W.-M.; Liang, H. A critical review of the application of white rot fungus to environmental pollution control. Crit. Rev. Biotechnol. 2010, 30, 70–77. [Google Scholar] [CrossRef]
- Rodríguez-Couto, S. Industrial and environmental applications of white-rot fungi. Mycosphere 2017, 8, 456–466. [Google Scholar] [CrossRef]
- Suryadi, H.; Judono, J.J.; Putri, M.R.; Eclessia, A.D.; Ulhaq, J.M.; Agustina, D.N.; Sumiati, T. Biodelignification of lignocellulose using ligninolytic enzymes from white-rot fungi. Heliyon 2022, 8, e08865. [Google Scholar] [CrossRef]
- Kotterman, M.; Wasseveld, R.A.; Field, J.A. Hydrogen peroxide production as a limiting factor in xenobiotic compound oxidation by nitrogen-sufficient cultures of Bjerkandera sp. strain BOS55 overproducing peroxidases. Appl. Environ. Microbiol. 1996, 62, 880–885. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Geißen, S.-U. In vitro degradation of carbamazepine and diclofenac by crude lignin peroxidase. J. Hazard. Mater. 2010, 176, 1089–1092. [Google Scholar] [CrossRef] [PubMed]
- Wen, X.; Jia, Y.; Li, J. Degradation of tetracycline and oxytetracycline by crude lignin peroxidase prepared from Phanerochaete chrysosporium–A white rot fungus. Chemosphere 2009, 75, 1003–1007. [Google Scholar] [CrossRef] [PubMed]
- Ferreira-Leitao, V.S.; de Carvalho, M.E.A.; Bon, E.P. Lignin peroxidase efficiency for methylene blue decolouration: Comparison to reported methods. Dye. Pigment. 2007, 74, 230–236. [Google Scholar] [CrossRef]
- Konadu, K.T.; Harrison, S.T.; Osseo-Asare, K.; Sasaki, K. Transformation of the carbonaceous matter in double refractory gold ore by crude lignin peroxidase released from the white-rot fungus. Int. Biodeterior. Biodegrad. 2019, 143, 104735. [Google Scholar] [CrossRef]
- Wang, J.; Majima, N.; Hirai, H.; Kawagishi, H. Effective removal of endocrine-disrupting compounds by lignin peroxidase from the white-rot fungus Phanerochaete sordida YK-624. Curr. Microbiol. 2012, 64, 300–303. [Google Scholar] [CrossRef]
- Dinh Giap, V.; Nghi, D.H.; Cuong, L.H.; Quynh, D.T. Lignin Peroxidase from the White-rot Fungus Lentinus squarrosulus MPN12 and its Application in the Biodegradation of Synthetic Dyes and Lignin. BioResources 2022, 17, 4480. [Google Scholar] [CrossRef]
- Manimekalai, R.; Swaminathan, T. Removal of hazardous compounds by lignin peroxidase from Phanerochaete chrysosporium. Bioprocess Eng. 2000, 22, 29–33. [Google Scholar] [CrossRef]
- Saravanakumar, T.; Palvannan, T.; Kim, D.-H.; Park, S.-M. Manganese peroxidase H4 isozyme mediated degradation and detoxification of triarylmethane dye malachite green: Optimization of decolorization by response surface methodology. Appl. Biochem. Biotechnol. 2013, 171, 1178–1193. [Google Scholar] [CrossRef] [PubMed]
- Bilal, M.; Asgher, M.; Iqbal, M.; Hu, H.; Zhang, X. Chitosan beads immobilized manganese peroxidase catalytic potential for detoxification and decolorization of textile effluent. Int. J. Biol. Macromol. 2016, 89, 181–189. [Google Scholar] [CrossRef]
- Baborová, P.; Möder, M.; Baldrian, P.; Cajthamlová, K.; Cajthaml, T. Purification of a new manganese peroxidase of the white-rot fungus Irpex lacteus, and degradation of polycyclic aromatic hydrocarbons by the enzyme. Res. Microbiol. 2006, 157, 248–253. [Google Scholar] [CrossRef]
- Inoue, Y.; Hata, T.; Kawai, S.; Okamura, H.; Nishida, T. Elimination and detoxification of triclosan by manganese peroxidase from white rot fungus. J. Hazard. Mater. 2010, 180, 764–767. [Google Scholar] [CrossRef]
- Kong, W.; Chen, H.; Lyu, S.; Ma, F.; Yu, H.; Zhang, X. Characterization of a novel manganese peroxidase from white-rot fungus Echinodontium taxodii 2538, and its use for the degradation of lignin-related compounds. Process Biochem. 2016, 51, 1776–1783. [Google Scholar] [CrossRef]
- Ogawa, N.; Okamura, H.; Hirai, H.; Nishida, T. Degradation of the antifouling compound Irgarol 1051 by manganese peroxidase from the white rot fungus Phanerochaete chrysosporium. Chemosphere 2004, 55, 487–491. [Google Scholar] [CrossRef]
- Hirano, T.; HoNDA, Y.; Watanabe, T.; KUwAHARA, M. Degradation of bisphenol A by the lignin-degrading enzyme, manganese peroxidase, produced by the white-rot basidiomycete, Pleurotus ostreatus. Biosci. Biotechnol. Biochem. 2000, 64, 1958–1962. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, S.; He, F.; Qin, X.; Zhang, X.; Yang, Y. Characterization of a manganese peroxidase from white-rot fungus Trametes sp. 48424 with strong ability of degrading different types of dyes and polycyclic aromatic hydrocarbons. J. Hazard. Mater. 2016, 320, 265–277. [Google Scholar] [CrossRef]
- Rubilar, O.; Diez, M.C.; Gianfreda, L. Transformation of chlorinated phenolic compounds by white rot fungi. Crit. Rev. Environ. Sci. Technol. 2008, 38, 227–268. [Google Scholar] [CrossRef]
- Rekik, H.; Jaouadi, N.Z.; Bouacem, K.; Zenati, B.; Kourdali, S.; Badis, A.; Annane, R.; Bouanane-Darenfed, A.; Bejar, S.; Jaouadi, B. Physical and enzymatic properties of a new manganese peroxidase from the white-rot fungus Trametes pubescens strain i8 for lignin biodegradation and textile-dyes biodecolorization. Int. J. Biol. Macromol. 2019, 125, 514–525. [Google Scholar] [CrossRef] [PubMed]
- Mansur, M.; Arias, M.a.E.; Copa-Patino, J.L.; Flärdh, M.a.; González, A.E. The white-rot fungus Pleurotus ostreatus secretes laccase isozymes with different substrate specificities. Mycologia 2003, 95, 1013–1020. [Google Scholar] [CrossRef] [PubMed]
- Chane, A.D.; Košnář, Z.; Hřebečková, T.; Jozífek, M.; Doležal, P.; Tlustoš, P. Persistent polycyclic aromatic hydrocarbons removal from sewage sludge-amended soil through phytoremediation combined with solid-state ligninolytic fungal cultures. Fungal Biol. 2024, 128, 1675–1683. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.; Jang, Y.; Choi, Y.-S.; Kim, M.-J.; Lee, J.; Lee, H.; Hong, J.-H.; Lee, Y.M.; Kim, G.-H.; Kim, J.-J. Biotechnological procedures to select white rot fungi for the degradation of PAHs. J. Microbiol. Methods 2014, 97, 56–62. [Google Scholar] [CrossRef]
- Kadri, T.; Rouissi, T.; Brar, S.K.; Cledon, M.; Sarma, S.; Verma, M. Biodegradation of polycyclic aromatic hydrocarbons (PAHs) by fungal enzymes: A review. J. Environ. Sci. 2017, 51, 52–74. [Google Scholar] [CrossRef]
- Novotný, Č.; Vyas, B.; Erbanova, P.; Kubatova, A.; Šašek, V. Removal of PCBs by various white rot fungi in liquid cultures. Folia Microbiol. 1997, 42, 136–140. [Google Scholar] [CrossRef]
- Stella, T.; Covino, S.; Čvančarová, M.; Filipová, A.; Petruccioli, M.; D’Annibale, A.; Cajthaml, T. Bioremediation of long-term PCB-contaminated soil by white-rot fungi. J. Hazard. Mater. 2017, 324, 701–710. [Google Scholar] [CrossRef]
- Gouma, S.; Papadaki, A.A.; Markakis, G.; Magan, N.; Goumas, D. Studies on pesticides mixture degradation by white rot fungi. J. Ecol. Eng. 2019, 20, 16–26. [Google Scholar] [CrossRef]
- Xin, W.; Zhaoxing, L.; Zijun, N.; Lei, S. Research progress on degradation of pesticides by white rot fungi. Chin. J. Pestic. Sci. 2020, 22, 405–412. [Google Scholar] [CrossRef]
- Wesenberg, D.; Kyriakides, I.; Agathos, S.N. White-rot fungi and their enzymes for the treatment of industrial dye effluents. Biotechnol. Adv. 2003, 22, 161–187. [Google Scholar] [CrossRef]
- Sen, S.K.; Raut, S.; Bandyopadhyay, P.; Raut, S. Fungal decolouration and degradation of azo dyes: A review. Fungal Biol. Rev. 2016, 30, 112–133. [Google Scholar] [CrossRef]
- Torres-Farradá, G.; Thijs, S.; Rineau, F.; Guerra, G.; Vangronsveld, J. White Rot Fungi as Tools for the Bioremediation of Xenobiotics: A Review. J. Fungi 2024, 10, 167. [Google Scholar] [CrossRef]
- Latif, W.; Ciniglia, C.; Iovinella, M.; Shafiq, M.; Papa, S. Role of White Rot Fungi in Industrial Wastewater Treatment: A Review. Appl. Sci. 2023, 13, 8318. [Google Scholar] [CrossRef]
- Lu, N.; Hu, T.; Zhai, Y.; Qin, H.; Aliyeva, J.; Zhang, H. Fungal cell with artificial metal container for heavy metals biosorption: Equilibrium, kinetics study and mechanisms analysis. Environ. Res. 2020, 182, 109061. [Google Scholar] [CrossRef] [PubMed]
- Sharma, K.; Giri, R.; Sharma, R. Efficient bioremediation of metal containing industrial wastewater using white rot fungi. Int. J. Environ. Sci. Technol. 2023, 20, 943–950. [Google Scholar] [CrossRef]
- Chen, L.; Zhang, X.; Zhang, M.; Zhu, Y.; Zhuo, R. Removal of heavy-metal pollutants by white rot fungi: Mechanisms, achievements, and perspectives. J. Clean. Prod. 2022, 354, 131681. [Google Scholar] [CrossRef]
- Gabriel, J.; Baldrian, P.; Hladíková, K.; Háková, M. Copper sorption by native and modified pellets of wood-rotting basidiomycetes. Lett. Appl. Microbiol. 2001, 32, 194–198. [Google Scholar] [CrossRef]
- Yetis, U.; Dolek, A.; Dilek, F.B.; Ozcengiz, G. The removal of Pb (II) by Phanerochaete chrysosporium. Water Res. 2000, 34, 4090–4100. [Google Scholar] [CrossRef]
- Baldrian, P. Interactions of heavy metals with white-rot fungi. Enzym. Microb. Technol. 2003, 32, 78–91. [Google Scholar] [CrossRef]
- Mir-Tutusaus, J.A.; Baccar, R.; Caminal, G.; Sarrà, M. Can white-rot fungi be a real wastewater treatment alternative for organic micropollutants removal? A review. Water Res. 2018, 138, 137–151. [Google Scholar] [CrossRef]
- Zeng, Q.; Zhou, X.; Huang, C.; Wang, P.; Cheng, H.; Zheng, X.; Wang, M.; Liu, H. Enhanced removal of Cd(II) from aqueous solution by nanoscale zero-valent iron coupled with white rot fungus. China Environ. Sci. 2022, 42, 3174–3183. (In Chinese) [Google Scholar] [CrossRef]
- Tan, X. Remediation of PAHs contaminated soil enhanced by nano-zero-valent iron combined with white rot fungi Peniophora incarnata. Alex. Eng. J. 2023, 83, 85–91. [Google Scholar] [CrossRef]
LiP Source | Pollutants | References |
---|---|---|
P. chrysosporium strain BKM F-1767 (DSM 6909) | Carbamazepine and diclofenac | [75] |
P. chrysosporium strain BKM-F-1767 | Tetracycline (TC) and oxytetracycline (OTC) | [76] |
P. chrysosporium | Methylene blue (MB) | [77] |
P. chrysosporium | Sulfides and carbonaceous matter in double refractory gold ore (DRGO) | [78] |
Phanerochaete sordida YK-624 (P. sordida YK-624) | Five endocrine disruptors, p–t-octylphenol (OP), bisphenol A (BPA), estrone (E1), 17b-estradiol (E2), and ethinylestradiol (EE2) | [79] |
Lentinus squarrosulus MPN12 (L. squarrosulus MPN12) | Synthetic dyes | [80] |
The WRF Irpex lacteus | pyrene | [73] |
P. chrysosporium ATCC 24725 | Phenol, chlorophenol, and the dyes | [81] |
MnP Source | Pollutants and Concentration | References |
---|---|---|
P. chrysosporium strain BKM F-1767 | Malachite green, 100 mg/L | [82] |
P. chrysosporium | Textile wastewater | [83] |
The WRF Irpex lacteus | PAHs (phenanthrene, anthracene, fluoranthene, and pyrene) | [84] |
P. chrysosporium ME-446 | The antimicrobial and preservative agent triclosan (TCS) | [85] |
The WRF Echinodontium taxodii 2538 (E. taxodii 2538) | Nonphenolic and phenolic lignin model compounds | [86] |
P. chrysosporium ME-446 | The antifouling compound irgarol 1051 | [87] |
The White-rot Basidiomycete, Pleurotus ostreatus | 2,2-Bis(4-hydroxyphenyl)propane (bisphenol A, BPA) | [88] |
Trametes sp. 48424 | Dyes (indigo, anthraquinone, azo, and triphenylmethane) and polycyclic aromatic hydrocarbons (PAHs) (fluorene, fluoranthene, pyrene, phenanthrene, and anthracene) | [89] |
P. chrysosporium | Chlorinated phenolic compounds | [90] |
Trametes pubescens i8 | Synthetic dyes | [91] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zeng, G.; Ma, Z.; Zhang, R.; He, Y.; Fan, X.; Lei, X.; Xiao, Y.; Zhang, M.; Sun, D. The Application of Nano Zero-Valent Iron in Synergy with White Rot Fungi in Environmental Pollution Control. Toxics 2024, 12, 721. https://doi.org/10.3390/toxics12100721
Zeng G, Ma Z, Zhang R, He Y, Fan X, Lei X, Xiao Y, Zhang M, Sun D. The Application of Nano Zero-Valent Iron in Synergy with White Rot Fungi in Environmental Pollution Control. Toxics. 2024; 12(10):721. https://doi.org/10.3390/toxics12100721
Chicago/Turabian StyleZeng, Guoming, Zilong Ma, Rui Zhang, Yu He, Xuanhao Fan, Xiaoling Lei, Yong Xiao, Maolan Zhang, and Da Sun. 2024. "The Application of Nano Zero-Valent Iron in Synergy with White Rot Fungi in Environmental Pollution Control" Toxics 12, no. 10: 721. https://doi.org/10.3390/toxics12100721
APA StyleZeng, G., Ma, Z., Zhang, R., He, Y., Fan, X., Lei, X., Xiao, Y., Zhang, M., & Sun, D. (2024). The Application of Nano Zero-Valent Iron in Synergy with White Rot Fungi in Environmental Pollution Control. Toxics, 12(10), 721. https://doi.org/10.3390/toxics12100721