Toxicological Effects and Mechanisms of 2,2′,4,4′-Tetrabromodiphenyl Ether (BDE-47) on Marine Organisms
Abstract
:1. Introduction
2. Toxic Effects of BDE-47 to Marine Organisms
2.1. Lethality
2.2. BDE-47-Induced Morphological Damage
Phylum | Species | Concentrations | Life Stage | Duration of Exposure | Exposure Pathways | Primary Targets | Toxic Effects | Mechanisms | Ref. |
---|---|---|---|---|---|---|---|---|---|
Chlorophyta | Chlorella sp. | 60, 120 µg/L | -- | 96 h | immersion | -- | impaired morphology, photosynthesis toxicity, inhibited population growth | oxidative stress, PCD, excessive produced Ca2+ | [43] |
0.1, 1.0, 2.5 µg/L | -- | 96 h | immersion | -- | photosynthesis toxicity | -- | [49] | ||
0.1, 1.0, 2.5 µg/L | -- | 96 h | immersion | -- | photosynthesis toxicity | -- | [49] | ||
Chlorella autotrophica | 0, 0.1, 1, 5, 10, 50 µg/L | -- | 96 h | immersion | -- | inhibited population growth | -- | [50] | |
0.1, 1.0, 2.5 µg/L | -- | 96 h | immersion | -- | -- | oxidative stress | [51] | ||
Chlorella pyrenoidosa | 0.5, 1, 2, 4, 8 µg/L | -- | 96 h | immersion | -- | inhibited population growth | -- | [52] | |
Platymonas subcordiformis | 0.5, 1, 2, 4, 8, 16, 32 µg/L | -- | 2 h | immersion | -- | impaired motility | -- | [21] | |
1, 10, 50, 100, 300 µg/L | -- | immersion | -- | inhibited population growth | -- | [53] | |||
1, 10, 50, 100, 300 µg/L | -- | immersion | -- | inhibited population growth | -- | [53] | |||
Dunaliella salina | 1, 10, 50, 100, 300 µg/L | -- | immersion | -- | inhibited population growth | -- | [53] | ||
1, 10, 50, 100, 300 µg/L | -- | immersion | -- | inhibited population growth | -- | [53] | |||
0.1, 0.5, 1 mg/L | -- | 120 h | immersion | -- | impaired morphology, photosynthesis toxicity, developmental toxicity | oxidative stress | [39,54] | ||
0.1, 0.5, 1 mg/L | -- | 120 h | immersion | -- | impaired morphology, photosynthesis toxicity, developmental toxicity | oxidative stress | [39,54] | ||
Bacillariophyta | Thalassiosira pseudonana | 25 µg/L | -- | 24 h | immersion | -- | -- | whole transcriptome resequencing | [55] |
25 µg/L | -- | 120 h | immersion | -- | -- | oxidative stress, PCD | [56] | ||
5, 15, 25 µg/L | -- | 96 h | immersion | -- | inhibited population growth | DNA damage | [57] | ||
Skeletonema costatum | 50, 100, 200, 400, 600 µg/L | -- | 96 h | immersion | -- | impaired morphology, photosynthesis toxicity, inhibited population growth | oxidative stress | [40] | |
0, 0.1, 1, 5, 10, 50 µg/L | -- | 96 h | immersion | -- | inhibited population growth | -- | [50] | ||
0.1, 1.0, 2.5 µg/L | -- | 96 h | immersion | -- | -- | oxidative stress | [51] | ||
0.16, 0.31, 0.63, 1.25, 2.50 mg/L | -- | 96 h | immersion | -- | inhibited population growth | -- | [58] | ||
1.0, 3.2, 10, 32, 100 µg/L | -- | 96 h | immersion | -- | inhibited population growth | -- | [59] | ||
Phaeodactylum tricornutum | 0.8, 2, 4, 6, 8 mg/L | -- | 96 h | immersion | -- | impaired morphology, photosynthesis toxicity | oxidative stress | [44] | |
Chaetoceros muelleri | 0, 0.1, 1, 5, 10, 50 µg/L | -- | 96 h | immersion | -- | inhibited population growth | -- | [50] | |
0.1, 1.0, 2.5 µg/L | -- | 96 h | immersion | -- | -- | oxidative stress | [51] | ||
Dinoflagellata | Alexandrium minutum | 0.1, 0.5, 1 mg/L | -- | 120 h | immersion | -- | impaired morphology, photosynthesis toxicity, developmental toxicity | oxidative stress | [39,54] |
Heterosigma akashiwo | 0.1, 1.0, 2.5 µg/L | -- | 96 h | immersion | -- | photosynthesis toxicity | -- | [49] | |
0, 0.1, 1, 5, 10, 50 µg/L | -- | 96 h | immersion | -- | inhibited population growth | -- | [50] | ||
0.1, 1.0, 2.5 µg/L | -- | 96 h | immersion | -- | -- | oxidative stress | [51] | ||
Rotifera | Brachionus plicatilis | 0.8, 2, 6, 10, 14, 18, 22 mg/L | 0–2 h | 24–96 h | immersion | the whole body | inhibited population growth, impaired motility, reproductive toxicity | -- | [32] |
2.0, 6.0, 10, 14, 18, 22 mg/L | 0–2 h | 24 h | immersion | impaired motility | -- | [38] | |||
2, 6, 10, 14, 18, 22 mg/L | 2 h | 96 h | immersion | the whole body | impaired morphology, inhibited population growth, reproductive toxicity | oxidative stress, activation of the detoxification system | [41] | ||
0.08, 0,8 and 8 mg/L | female adults | 24 h | immersion | stomach and ovary | impaired morphology | ROS, apoptosis, mitophagy | [47] | ||
0.008, 0.08, 0.8 mg/L | 0–2 h | 0–200 h | immersion | ovary | impaired morphology, reproductive toxicity | oxidative stress | [60] | ||
0.02, 0.1, 0.5 mg/L | amictic females | 24 h | immersion | the whole body | -- | oxidative stress, DNA damage, apoptosis, Metabolic disorders (Metabolomics) | [61] | ||
31.25, 125, 500 µg/L | 2 h | 24 h | immersion | stomach | impaired morphology, impaired feeding | impaired feeding and metabolism | [47,62] | ||
0.1, 0.2, 0.5, 1.0, 2.0, 3.9, 7.8, 15.6, 31.3, 62.5, 125.0 mg/L | 2 h | 72 h | immersion | -- | inhibited population growth | -- | [63] | ||
0.05, 0.1, 0.2 mg/L | 0–2 h | 17 d | immersion | ovary | reproductive toxicity, developmental toxicity | down-regulated vasa mRNA | [64] | ||
0.05, 0.1, 0.2 mg/L | adult | 24 h | immersion | ovary | reproductive toxicity | oxidative stress, excessive produced Ca2+ | [65] | ||
0.0008, 0.008, 0.08, 0.8, 2, 4, 8 mg/L | 0–2 h | full life history | immersion | -- | inhibited population growth, developmental toxicity | -- | [66] | ||
Arthropoda | Tigriopus japonicus | 0.7125, 1.425, 2.85, 5.7, 11.4 µg/L; 10.6375, 21.275, 42.55, 85.11, 170.2 µg/L | adult | 96 h | immersion | the whole body | 24 h impaired feeding | oxidative stress | [37] |
0.05, 60, 120 µg/L | less than 12 hph nauplii | 20 d | immersion | the whole body | reproductive toxicity, developmental toxicity | oxidative stress, activation of the detoxification system, apoptosis, DNA damage | [67] | ||
Eurytemora pacifica | 0.7125, 1.425, 2.85, 5.7, 11.4 µg/L; 10.6375, 21.275, 42.55, 85.11, 170.2 µg/L | adult | 96 h | immersion | the whole body | 24 h impaired feeding | oxidative stress | [37] | |
Annelida | Paracyclopina nana | 0.1, 1, 10 µg/L | 12 hph nauplii | 14 d | immersion | the whole body | developmental toxicity, increased lipid production | oxidative stress, activation of MAPK signaling cascade (ERK and JNK), de novo lipogenesis | [68] |
Mollusca | Ruditapes philippinarum | 5 µg/L | adult | 15 d | immersion | digestive glands | -- | suppression subtractive hybridization (SSH)-transcriptome | [69] |
5 µg/L | BBL = 4.06 ± 0.42 cm, BH = 2.53 ± 0.73 cm, BW = 8.32 ± 0.98 g | 15 d | immersion | gill, digestive gland | impaired morphology, developmental toxicity | DNA damage | [69] | ||
6.25 µM, 12.5 µM, 25 µM, 50 µM, 100 µM | BL = 3.49 ± 0.26 cm | 12 h | immersion | hemocytes | immunotoxicity | oxidative stress, MAPKs (reduced p-ERK expression, disturbed p38 expression) | [70] | ||
Mytilus edulis | 0.1, 1.0, 10 µg/L | adult (BL = 3.5–5.0 cm) | 21 d | immersion | hemocytes | altered energy metabolism | target metabolism (impaired TCA cycle and glycolysis) | [1] | |
0.1, 1, 10 µg/L | BL = 3.5–5.0 cm | 21 d | immersion | hemocytes | impaired morphology, immunotoxicity | oxidative stress | [46] | ||
0.23 µg/L | adult | 3 w | immersion | digestive glands | -- | proteomics (non-high-throughput) | [71] | ||
5 ppb | adult | 3 w | immersion | gill | -- | DNA damage | [72] | ||
Mytilus galloprovincialis | 10 µg/L | BW = 12.9 ± 1.4 g, BL = 5.7 ± 0.74 cm | 26 d | immersion | digestive gland, gills, gonad | impaired morphology, bioaccumulation | oxidative stress | [42] | |
1, 10 µg/L | adult, BL = 5.5–6.0 cm | 30 d | immersion | gonad | impaired metabolism | impaired metabolism (metabolomics) | [73] | ||
Mytilus coruscus | 0.1, 1, 10 µg/L | 21 d | immersion | hemocytes | immunotoxicity | oxidative stress | [25] | ||
Crassostrea gigas | 100, 200, 400, 800, 1600 µg/L | egg-larvae | 96 h | immersion | the whole body | developmental toxicity | DNA damage | [74] | |
Chordata | Oncorhynchus mykiss gonadal RTG-2 cells | 6, 12.5, 25 µM | -- | 6 and 24 h | immersion | gonadal RTG-2 cells (No. CCL-55) | impaired morphology, reproductive toxicity | apoptosis, excessive produced Ca2+ | [45] |
6, 12.5, 25 µM | -- | 6 and 24 h | immersion | gonadal RTG-2 cells (No. CCL-55) | reproductive toxicity | apoptosis, oxidative stress activates the Nrf2-mediated antioxidant response and P38 MAPK pathway | [75] | ||
Oncorhynchus mykiss | 42.35 ng/g, 372.71 ng/g | juvenile, wet BW = 10–15 g, BL = 9.4 ± 3.7 cm | 21 d | food intake | the head kidney | -- | lipid peroxidation, PXR-mediated detoxification, Nrf2-mediated antioxidation system | [76] | |
Cynoglossus semilaevis Gunther | 5, 500, 50,000 ng/L | BL = 3.0 ± 0.5 cm, BW = 2.4 ± 0.5 g | 15 d | immersion | liver | -- | oxidative stress | [77] | |
Gadus macrocephalus Tilesius | 5, 500, 50,000 ng/L | BL = 45 ± 6.8 cm, BW = 1225 ± 395 g | 96 h | immersion | mussel, blood | -- | oxidative stress, DNA damage | [78] | |
Oryzias melastigma | -- | adult | 21 d | food intake | liver, muscle | bioaccumulation | sex specific effects on apoptosis and heat shock protein expression | [79] | |
-- | adult | 21 d | food intake | intergenerational transmission, bioaccumulation | transmission through lipids | [80] | |||
Psetta maxima | 0.3, 0.75, 1.5, 2.5, 3.125, 6.125, 12.5, 25, 30, 100, 150, 200 µg/L | 72 h egg | 6 d | immersion | the whole body | developmental toxicity | -- | [81] |
2.3. BDE-47-Induced Impaired Motility
2.4. Photosynthesis Toxicity
2.5. Immunotoxicity
2.6. Liver Toxicity Induced by BDE-47
2.7. Developmental Toxicity
2.8. Reproductive Toxicity
3. Molecular Mechanisms of BDE-47-Induced Toxicity
3.1. The Activation of Oxidative Stress Pathways
3.2. The Activation of Detoxification System
3.3. DNA Damage and Apoptosis
3.3.1. ROS Mediated Mechanism
3.3.2. Ca2+ Mediated Mechanism
3.4. Alternated Energy Metabolism and Compromised Metabolic Functions
3.5. Activation of the MAPK Signaling Cascade
4. Conclusions and Future Prospects
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jiang, Y.; Cao, S.; Zhou, B.; Cao, Q.; Xu, M.; Sun, T.; Zhao, X.; Zhou, Z.; Wang, Y. Hemocytes in blue mussel Mytilus edulis adopt different energy supply modes to cope with different BDE-47 exposures. Sci. Total Environ. 2023, 885, 163766. [Google Scholar] [CrossRef] [PubMed]
- Lv, M.; Tang, X.; Zhao, Y.; Li, J.; Zhang, B.; Li, L.; Jiang, Y.; Zhao, Y. The toxicity, bioaccumulation and debromination of BDE-47 and BDE-209 in Chlorella sp. under multiple exposure modes. Sci. Total Environ. 2020, 723, 138086. [Google Scholar] [CrossRef] [PubMed]
- Svendsen, T.C.; Vorkamp, K.; Ronsholdt, B.; Frier, J.-O. Organochlorines and polybrominated diphenyl ethers in four geographically separated populations of Atlantic salmon (Salmo salar). J. Environ. Monit. 2007, 9, 1213–1219. [Google Scholar] [CrossRef]
- Wang, Z.; Ma, X.; Lin, Z.; Na, G.; Yao, Z. Congener specific distributions of polybrominated diphenyl ethers (PBDEs) in sediment and mussel (Mytilus edulis) of the Bo Sea, China. Chemosphere 2009, 74, 896–901. [Google Scholar] [CrossRef]
- Yogui, G.T.; Sericano, J.L. Polybrominated diphenyl ether flame retardants in the US marine environment: A review. Environ. Int. 2009, 35, 655–666. [Google Scholar] [CrossRef]
- Sun, H.Z.; Li, Y.M.; Hao, Y.F.; Zhu, Y.; Yang, R.Q.; Wang, P.; Zhang, Q.H.; Jiang, G.B. Bioaccumulation and trophic transfer of polybrominated diphenyl ethers and their hydroxylated and methoxylated analogues in polar marine food webs. Environ. Sci. Technol. 2020, 54, 15086–15096. [Google Scholar] [CrossRef]
- Liu, L.; Zhen, X.M.; Wang, X.M.; Zhang, D.C.; Sun, L.T.; Tang, J.H. Spatio-temporal variations and input patterns on the legacy and novel brominated flame retardants (BFRs) in coastal rivers of North China. Environ. Pollut. 2021, 283, 117093. [Google Scholar] [CrossRef]
- Alava, J.J.; Keller, J.M.; Wyneken, J.; Crowder, L.; Scott, G.; Kucklick, J.R. Geographical variation of persistent organic pollutants in eggs of threatened loggerhead sea turtles (Caretta caretta) from southeastern United States. Environ. Toxicol. Chem. 2011, 30, 1677–1688. [Google Scholar] [CrossRef]
- Strid, A.; Athanassiadis, I.; Athanasiadou, M.; Svavarsson, J.; Papke, O.; Bergman, A. Neutral and phenolic brominated organic compounds of natural and anthropogenic origin in Northeast Atlantic Greenland shark (Somniosus microcephalus). Environ. Toxicol. Chem. 2010, 29, 2653–2659. [Google Scholar] [CrossRef]
- Peltonen, H.; Ruokojarvi, P.; Korhonen, M.; Kiviranta, H.; Flinkman, J.; Verta, M. PCDD/Fs, PCBs and PBDEs in zooplankton in the Baltic Sea—Spatial and temporal shifts in the congener-specific concentrations. Chemosphere 2014, 114, 172–180. [Google Scholar] [CrossRef]
- Xu, T.; Cho, I.K.; Wang, D.; Rubio, F.M.; Shelver, W.L.; Gasc, A.M.E.; Li, J.; Li, Q.X. Suitability of a magnetic particle immunoassay for the analysis of PBDEs in Hawaiian euryhaline fish and crabs in comparison with gas chromatography/electron capture detection-ion trap mass spectrometry. Environ. Pollut. 2009, 157, 417–422. [Google Scholar] [CrossRef] [PubMed]
- Weltmeyer, A.; Dogruer, G.; Hollert, H.; Ouellet, J.D.; Townsend, K.; Covaci, A.; Weijs, L. Distribution and toxicity of persistent organic pollutants and methoxylated polybrominated diphenylethers in different tissues of the green turtle Chelonia mydas. Environ. Pollut. 2021, 277, 116795. [Google Scholar] [CrossRef] [PubMed]
- Mwakalapa, E.B.; Mmochi, A.J.; Mueller, M.H.B.; Mdegela, R.H.; Lyche, J.L.; Polder, A. Occurrence and levels of persistent organic pollutants (POPs) in farmed and wild marine fish from Tanzania. A pilot study. Chemosphere 2018, 191, 438–449. [Google Scholar] [CrossRef]
- Shaw, S.D.; Berger, M.L.; Brenner, D.; Carpenter, D.O.; Tao, L.; Hong, C.-S.; Kannan, K. Polybrominated diphenyl ethers (PBDEs) in farmed and wild salmon marketed in the Northeastern United States. Chemosphere 2008, 71, 1422–1431. [Google Scholar] [CrossRef]
- Fernandes, A.; Mortimer, D.; Gem, M.; Dicks, P.; Smith, F.; White, S.; Rose, M. Brominated dioxins (PBDD/Fs) and PBDEs in marine shellfish in the UK. Food Addit. Contam. Part A-Chem. Anal. Control Expo. Risk Assess. 2009, 26, 918–927. [Google Scholar] [CrossRef]
- deBruyn, A.M.H.; Meloche, L.M.; Lowe, C.J. Patterns of bioaccumulation of polybrominated diphenyl ether and polychlorinated biphenyl congeners in marine mussels. Environ. Sci. Technol. 2009, 43, 3700–3704. [Google Scholar] [CrossRef]
- Pizzini, S.; Marchiori, E.; Piazza, R.; Cozzi, G.; Barbante, C. Determination by HRGC/HRMS of PBDE levels in edible Mediterranean bivalves collected from north-western Adriatic coasts. Microchem. J. 2015, 121, 184–191. [Google Scholar] [CrossRef]
- Bianco, G.; Novario, G.; Anzilotta, G.; Palma, A.; Mangone, A.; Cataldi, T.R.I. Polybrominated diphenyl ethers (PBDEs) in Mediterranean mussels (Mytilus galloprovincialis) from selected Apulia coastal sites evaluated by GC-HRMS. J. Mass Spectrom. 2010, 45, 1046–1055. [Google Scholar] [CrossRef]
- Suominen, K.; Hallikainen, A.; Ruokojarvi, P.; Airaksinen, R.; Koponen, J.; Rannikko, R.; Kiviranta, H. Occurrence of PCDD/F, PCB, PBDE, PFAS, and organotin compounds in fish meal, fish oil and fish feed. Chemosphere 2011, 85, 300–306. [Google Scholar] [CrossRef]
- Babichuk, N.; Sarkar, A.; Mulay, S.; Knight, J.; Bautista, J.J.; Young, C.J. Polybrominated diphenyl ethers (PBDEs) in marine fish and dietary exposure in Newfoundland. EcoHealth 2022, 19, 99–113. [Google Scholar] [CrossRef]
- Asante, K.A.; Takahashi, S.; Itai, T.; Isobe, T.; Devanathan, G.; Muto, M.; Agyakwah, S.K.; Adu-Kumi, S.; Subramanian, A.; Tanabe, S. Occurrence of halogenated contaminants in inland and coastal fish from Ghana: Levels, dietary exposure assessment and human health implications. Ecotoxicol. Environ. Saf. 2013, 94, 123–130. [Google Scholar] [CrossRef] [PubMed]
- Montory, M.; Habit, E.; Fernandez, P.; Grimalt, J.O.; Barra, R. Polybrominated diphenyl ether levels in wild and farmed Chilean salmon and preliminary flow data for commercial transport. J. Environ. Sci. 2012, 24, 221–227. [Google Scholar] [CrossRef] [PubMed]
- Ikonomou, M.G.; Teas, H.J.; Gerlach, R.; Higgs, D.; Addison, R.F. Residues of PBDEs in northeastern Pacific marine fish: Evidence for spatial and temporal trends. Environ. Toxicol. Chem. 2011, 30, 1261–1271. [Google Scholar] [CrossRef] [PubMed]
- Novak, P.; Zuliani, T.; Milacic, R.; Scancar, J. Development of an analytical method for the determination of polybrominated diphenyl ethers in mussels and fish by gas chromatography-Inductively coupled plasma mass spectrometry. J. Chromatogr. A 2017, 1524, 179–187. [Google Scholar] [CrossRef]
- Gu, H.; Wei, S.; Hu, M.; Wei, H.; Wang, X.; Shang, Y.; Li, L.a.; Shi, H.; Wang, Y. Microplastics aggravate the adverse effects of BDE-47 on physiological and defense performance in mussels. J. Hazard. Mater. 2020, 398, 122909. [Google Scholar] [CrossRef]
- Wardrop, P.; Shimeta, J.; Nugegoda, D.; Morrison, P.D.; Miranda, A.; Tang, M.; Clarke, B.O. Chemical Pollutants Sorbed to Ingested Microbeads from Personal Care Products Accumulate in Fish. Environ. Sci. Technol. 2016, 50, 4037–4044. [Google Scholar] [CrossRef]
- Mhadhbi, L.; Fumega, J.; Beiras, R. Uptake Kinetics, Bioconcentration and Debromination of BDE-47 in Juvenile Marine Fish Psetta maxima. Water Air Soil Pollut. 2014, 225, 2072. [Google Scholar] [CrossRef]
- Ali, N.; Ali, L.N.; Egani, S.A.M.A.S.; Ismail, L.M.I.; Malarvannan, G.; Kadi, M.W.; Basahi, J.M.A.-B.; Covaci, A. Organohalogenated contaminants in sediments and bivalves from the Northern Arabian Gulf. Ecotoxicol. Environ. Saf. 2015, 122, 432–439. [Google Scholar] [CrossRef]
- Tian, S.; Zhu, L.; Liu, M. Bioaccumulation and distribution of polybrominated diphenyl ethers in marine species from Bohai Bay, China. Environ. Toxicol. Chem. 2010, 29, 2278–2285. [Google Scholar] [CrossRef]
- Xie, Z.; Moeller, A.; Ahrens, L.; Sturm, R.; Ebinghaus, R. Brominated flame retardants in seawater and atmosphere of the Atlantic and the Southern Ocean. Environ. Sci. Technol. 2011, 45, 1820–1826. [Google Scholar] [CrossRef]
- Hall, A.J.; Thomas, G.O.; McConnell, B.J. Exposure to Persistent Organic Pollutants and First-Year Survival Probability in Gray Seal Pups. Environ. Sci. Technol. 2009, 43, 6364–6369. [Google Scholar] [CrossRef] [PubMed]
- Sha, J.; Wang, Y.; Lv, J.; Wang, H.; Chen, H.; Qi, L.; Tang, X. Effects of two polybrominated diphenyl ethers (BDE-47, BDE-209) on the swimming behavior, population growth and reproduction of the rotifer Brachionus plicatilis. J. Environ. Sci. 2015, 28, 54–63. [Google Scholar] [CrossRef] [PubMed]
- Shaw, S.D.; Berger, M.L.; Brenner, D.; Kannan, K.; Lohmann, N.; Paepke, O. Bioaccumulation of polybrominated diphenyl ethers and hexabromocyclododecane in the northwest Atlantic marine food web. Sci. Total Environ. 2009, 407, 3323–3329. [Google Scholar] [CrossRef] [PubMed]
- Ma, X.; Zhang, H.; Yao, Z.; Zhao, X.; Wang, L.; Wang, Z.; Chen, J.; Chen, J. Bioaccumulation and trophic transfer of polybrominated diphenyl ethers (PBDEs) in a marine food web from Liaodong Bay, North China. Mar. Pollut. Bull. 2013, 74, 110–115. [Google Scholar] [CrossRef] [PubMed]
- Kelly, B.C.; Ikonomou, M.G.; Blair, J.D.; Gobas, F.A. Bioaccumulation behaviour of polybrominated diphenyl ethers (PBDEs) in a Canadian Arctic marine food web. Sci. Total Environ. 2008, 401, 60–72. [Google Scholar] [CrossRef]
- Tan, D.-D.; Mu, D.; Wu, H.-Q.; Li, Y.; Liu, X.-H.; Sun, J.; Ji, Z.-Y. Establishment of a comprehensive method to derive seawater quality criteria of BDE-47 in China. Ecotoxicol. Environ. Saf. 2022, 241, 113762. [Google Scholar] [CrossRef]
- Xu, F.; Zhu, L.; Gong, W.; Wang, J.; Lu, M. Toxic Effects of BDE-47 on Two Marine Copepods. Asian J. Ecotoxicol. 2013, 8, 737–747. [Google Scholar]
- Sha, J.; Wang, Y.; Wang, H.; Chen, Y.; Li, X.; Xu, N.; Tang, X. Study on Single and Joint Toxic Effects of Two PBDEs (BDE-47,BDE-209) on Rotifer Brachionus plicatilis. Period. Ocean Univ. China 2015, 45, 69–77. [Google Scholar]
- Zhao, Y.; Wang, Y.; Li, Y.; Santschi, P.H.; Quigg, A. Response of photosynthesis and the antioxidant defense system of two microalgal species (Alexandrium minutum and Dunaliella salina) to the toxicity of BDE-47. Mar. Pollut. Bull. 2017, 124, 459–469. [Google Scholar] [CrossRef]
- Zhang, L.; Jiang, F.; Kong, X.; Wang, Y.; Wang, J.; Zhang, T.; Wang, Z.; Zhang, Y. Toxic effect of BDE-47 on the marine alga Skeletonema costatum: Population dynamics, photosynthesis, antioxidation and morphological changes. Chemosphere 2022, 286, 131674. [Google Scholar] [CrossRef]
- Jian, X.; Tang, X.; Xu, N.; Sha, J.; Wang, Y. Responses of the rotifer Brachionus plicatilis to flame retardant (BDE-47) stress. Mar. Pollut. Bull. 2017, 116, 298–306. [Google Scholar] [CrossRef] [PubMed]
- Geng, Q.; Guo, M.; Wu, H.; Peng, J.; Zheng, G.; Liu, X.; Zhai, Y.; Tan, Z. Effects of single and combined exposure to BDE-47 and PFOA on distribution, bioaccumulation, and toxicity in blue mussel (Mytilus galloprovincialis). Ecotoxicol. Environ. Saf. 2021, 228, 113014. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Wang, X.; Tang, X.; Zhao, Y. Toxicity of 2, 2′, 4, 4′-tetrabromodiphenyl ether (BDE-47) on the green microalgae Chlorella sp. and the role of cellular oxidative stress. Mar. Pollut. Bull. 2022, 180, 113810. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Tang, X.; Zhang, X.; Yang, Y.; Sun, Z.; Jian, X.; Zhao, Y.; Zhang, X. Evaluation of the toxic response induced by BDE-47 in a marine alga, Phaeodactylum tricornutum, based on photosynthesis-related parameters. Aquat. Toxicol. 2020, 227, 105588. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Z.Y.; Zhou, B.; Chen, H.M.; Tang, X.X.; Wang, Y. Reactive oxygen species (ROS) and the calcium-(Ca2+) mediated extrinsic and intrinsic pathways underlying BDE-47-induced apoptosis in rainbow trout (Oncorhynchus mykiss) gonadal cells. Sci. Total Environ. 2019, 656, 778–788. [Google Scholar] [CrossRef]
- Jiang, Y.; Tang, X.; Sun, T.; Wang, Y. BDE-47 exposure changed the immune function of haemocytes in Mytilus edulis: An explanation based on ROS-mediated pathway. Aquat. Toxicol. 2017, 182, 58–66. [Google Scholar] [CrossRef]
- Wang, B.; Guo, Y.; Zhou, B.; Zhang, H.; Cui, X.; Sun, Y.; Wang, Y. A possible speculation on the involvement of ROS and lysosomes mediated mitochondrial pathway in apoptosis of rotifer Brachionus plicatilis with BDE-47 exposure. Sci. Total Environ. 2021, 787, 147315. [Google Scholar] [CrossRef]
- Zhao, X.; Lin, X.; Qu, K.; Xia, B.; Sun, X.; Chen, B. Toxicity of BDE-47, BDE-99 and BDE-153 on swimming behavior of the unicellular marine microalgae Platymonas subcordiformis and implications for seawater quality assessment. Ecotoxicol. Environ. Saf. 2019, 174, 408–416. [Google Scholar] [CrossRef]
- Munschy, C.; Heas-Moisan, K.; Tixier, C.; Pacepavicius, G.; Alaee, M. Dietary exposure of juvenile common sole (Solea solea L.) to polybrominated diphenyl ethers (PBDEs): Part 2. Formation, bioaccumulation and elimination of hydroxylated metabolites. Environ. Pollut. 2010, 158, 3527–3533. [Google Scholar] [CrossRef]
- Zhuo-na, L.I.; Fan-ping, M.; Shun-shun, Z.; Ruihua, Y.A.O. Acute Toxic Effects of 2,2′,4,4′-Tetrabromodiphenyl Ether(BDE-47)on Four Marine Microalgae. Asian J. Ecotoxicol. 2009, 4, 435–439. [Google Scholar]
- Fanping, M.; Zhuona, L.I.; Shunshun, Z.; Jiao, L.I.U. Effects of BDE-47 on the antioxidase activities of four species of marine microalgae. Ecol. Environ. Sci. 2009, 18, 1659–1664. [Google Scholar]
- Chi, X.; Xia, B.; Zhu, L.; Chen, B.; Sun, X.; Zhao, X.; Tang, X.; Qu, K. Acute Toxicity of Four Polybrominated Diphenyl Ether Congeners to Marine Organisms: Chlorella pyrenoidosa, Daphnia magna, and Scophthalmus maximus. Prog. Fish. Sci. 2019, 40, 88–97. [Google Scholar]
- Hu, H.; Yu, T.; Meng, F.; Du, X.; Li, X. Acute toxicity of five brominated diphenyl ether congeners to marine bait-algae species: Platymonas subcordiformis and Dunaliella saliva. Mar. Environ. Sci. 2015, 34, 654–660. [Google Scholar]
- Zhuo-na, L.I.; Fan-ping, M.; Shun-shun, Z.; Teng, Y.U. Efects of BDE-47 on the chlorophyll fluorescence parameters of two species of marine microalgae. China Environ. Sci. 2010, 30, 233–238. [Google Scholar]
- Zhao, Y.; Tang, X.; Lv, M.; Liu, Q.; Li, J.; Zhang, B.; Li, L.; Zhang, X.; Zhao, Y. The molecular response mechanisms of a diatom Thalassiosira pseudonana to the toxicity of BDE-47 based on whole transcriptome analysis. Aquat. Toxicol. 2020, 229, 105669. [Google Scholar] [CrossRef]
- Zhao, Y.; Tang, X.; Qu, F.; Lv, M.; Liu, Q.; Li, J.; Li, L.; Zhang, B.; Zhao, Y. ROS-mediated programmed cell death (PCD) of Thalassiosira pseudonana under the stress of BDE-47. Environ. Pollut. 2020, 262, 114342. [Google Scholar] [CrossRef]
- Zhao, Y.; Tang, X.; Quigg, A.; Lv, M.; Zhao, Y. The toxic mechanisms of BDE-47 to the marine diatom Thalassiosira pseudonana-a study based on multiple physiological processes. Aquat. Toxicol. 2019, 212, 20–27. [Google Scholar] [CrossRef]
- Heo, S.; Lee, J.W.; Park, Y.H.; Park, N.Y.; Lee, I.S.; Hwang, U.K.; Choi, H. Toxic Assessment of BDE-47 and BDE-209 using the Population Growth Rates of Skeletonema costatum. Korean J. Environ. Biol. 2018, 36, 385–391. [Google Scholar] [CrossRef]
- Kallqvist, T.; Grung, M.; Tollefsen, K.-E. Chronic toxicity of 2,4,2′,4′-tetrabromodiphenyl ether on the marine alga Skeletonema costatum and the crustacean Daphnia magna. Environ. Toxicol. Chem. 2006, 25, 1657–1662. [Google Scholar] [CrossRef]
- Wang, H.; Tang, X.; Sha, J.; Chen, H.; Sun, T.; Wang, Y. The reproductive toxicity on the rotifer Brachionus plicatilis induced by BDE-47 and studies on the effective mechanism based on antioxidant defense system changes. Chemosphere 2015, 135, 129–137. [Google Scholar] [CrossRef]
- Cao, S.; Wang, J.; You, X.; Zhou, B.; Wang, Y.; Zhou, Z. Purine Metabolism and Pyrimidine Metabolism Alteration Is a Potential Mechanism of BDE-47-Induced Apoptosis in Marine Rotifer Brachionus plicatilis. Int. J. Mol. Sci. 2023, 24, 12726. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Jian, X.; Tang, X.; Ma, W.; Sun, Z.; Zhang, X.; Fang, K.; Zhang, X. Feeding behavior toxicity in the marine rotifer Brachionus plicatilis caused by 2,2′,4,4′-tetrabromodiphenyl ether (BDE-47): Characteristics and mechanisms. Chemosphere 2021, 271, 129512. [Google Scholar] [CrossRef] [PubMed]
- Choi, H.; Lee, J.-W.; Park, Y.-H.; Lee, I.-S.; Heo, S.; Hwang, U.-K. Ecotoxic Evaluations of BDE-47 and BDE-209 using Rotifer (Brachionus plicatilis). Korean J. Environ. Biol. 2018, 36, 43–49. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, Y.; Zhou, B.; Sun, K.-M.; Tang, X. Reproductive Effects of Two Polybrominated Diphenyl Ethers on the Rotifer Brachionus plicatilis. Bull. Environ. Contam. Toxicol. 2016, 97, 198–202. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, Y.; Sun, K.-M.; Fang, K.; Tang, X. A study of oxidative stress induced by two polybrominated diphenyl ethers in the rotifer Brachionus plicatilis. Mar. Pollut. Bull. 2016, 113, 408–413. [Google Scholar] [CrossRef]
- Sha, J.; Wang, Y.; Chen, H.; Wang, M.; Wang, H.; Li, X.; Qi, L.; Tang, X. Using population demographic parameters to assess impacts of two polybrominated diphenyl ethers (BDE-47, BDE-209) on the rotifer Brachionus plicatilis. Ecotoxicol. Environ. Saf. 2015, 119, 106–115. [Google Scholar] [CrossRef]
- Han, J.; Won, E.-J.; Lee, M.-C.; Seo, J.S.; Lee, S.-J.; Lee, J.-S. Developmental retardation, reduced fecundity, and modulated expression of the defensome in the intertidal copepod Tigriopus japonicus exposed to BDE-47 and PFOS. Aquat. Toxicol. 2015, 165, 136–143. [Google Scholar] [CrossRef]
- Lee, M.-C.; Puthumana, J.; Lee, S.-H.; Kang, H.-M.; Park, J.C.; Jeong, C.-B.; Han, J.; Hwang, D.-S.; Seo, J.S.; Park, H.G.; et al. BDE-47 induces oxidative stress, activates MAPK signaling pathway, and elevates de novo lipogenesis in the copepod Paracyclopina nana. Aquat. Toxicol. 2016, 181, 104–112. [Google Scholar] [CrossRef]
- Miao, J.; Pan, L.; Zhang, W.; Liu, D.; Cai, Y.; Li, Z. Identification of differentially expressed genes in the digestive gland of manila clam Ruditapes philippinarum exposed to BDE-47. Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 2014, 161, 15–20. [Google Scholar] [CrossRef]
- Zhou, S.; Liu, J. In vitro immunotoxicity and possible mechanisms of 2,2′,4,4′-tetrabromodiphenyl ether (BDE-47) on Ruditapes philippinarum hemocytes. Fish Shellfish. Immunol. 2022, 127, 386–395. [Google Scholar] [CrossRef]
- Apraiz, I.; Mi, J.; Cristobal, S. Identification of proteomic signatures of exposure to marine pollutants in mussels (Mytilus edulis). Mol. Cell. Proteom. 2006, 5, 1274–1285. [Google Scholar] [CrossRef] [PubMed]
- Barsiene, J.; Syvokiene, J.; Bjornstad, A. Induction of micronuclei and other nuclear abnormalities in mussels exposed to bisphenol A, diallyl phthalate and tetrabromodiphenyl ether-47. Aquat. Toxicol. 2006, 78, S105–S108. [Google Scholar] [CrossRef] [PubMed]
- Ji, C.; Zhao, J.; Wu, H. Gender-specific metabolic responses in gonad of mussel Mytilus galloprovincialis to 2,2′,4,4′-tetrabromodiphenyl ether. Environ. Toxicol. Pharmacol. 2014, 37, 1116–1122. [Google Scholar] [CrossRef]
- Xie, J.; Yang, D.; Sun, X.; Cao, R.; Chen, L.; Wang, Q.; Li, F.; Wu, H.; Ji, C.; Cong, M.; et al. Individual and Combined Toxicities of Benzo[a]pyrene and 2,2′,4,4′-Tetrabromodiphenyl Ether on Early Life Stages of the Pacific Oyster, Crassostrea gigas. Bull. Environ. Contam. Toxicol. 2017, 99, 582–588. [Google Scholar] [CrossRef]
- Zhou, Z.; Zhou, B.; Chen, H.; Lu, K.; Wang, Y. Oxidative stress activates the Nrf2-mediated antioxidant response and P38 MAPK pathway: A possible apoptotic mechanism induced by BDE-47 in rainbow trout (Oncorhynchus mykiss) gonadal RTG-2 cells. Environ. Pollut. 2021, 287, 117341. [Google Scholar] [CrossRef]
- Liu, C.; Wang, B.; Zhou, B.; Jian, X.; Zhang, X.; Wang, Y. The responses of Oncorhynchus mykiss coping with BDE-47 stress via PXR-mediated detoxification and Nrf2-mediated antioxidation system. Aquat. Toxicol. 2019, 207, 63–71. [Google Scholar] [CrossRef]
- Chi, X.; Chen, B.; Sun, X.; Zhu, L.; Tang, X.; Xia, B.; Qu, K. Toxic Effects of BDE-47 and BDE-153 on Cynoglossus semilaevis Gunther Based on IBR Model. Asian J. Ecotoxicol. 2020, 15, 192–202. [Google Scholar]
- Wang, W.; Hao, J.; Zhang, S.; Wang, H.; Jiang, Z. Effect of polybrominated diphenyl ether exposure on Gadus macrocephalus Tilesius. Chem. Speciat. Bioavailab. 2015, 27, 183–190. [Google Scholar] [CrossRef]
- Deane, E.E.; van de Merwe, J.P.; Hui, J.H.L.; Wu, R.S.S.; Woo, N.Y.S. PBDE-47 exposure causes gender specific effects on apoptosis and heat shock protein expression in marine medaka, Oryzias melastigma. Aquat. Toxicol. 2014, 147, 57–67. [Google Scholar] [CrossRef]
- van de Merwe, J.P.; Chan, A.K.Y.; Lei, E.N.Y.; Yau, M.S.; Lam, M.H.W.; Wu, R.S.S. Bioaccumulation and maternal transfer of PBDE 47 in the marine medaka (Oryzias melastigma) following dietary exposure. Aquat. Toxicol. 2011, 103, 199–204. [Google Scholar] [CrossRef]
- Mhadhbi, L.; Fumega, J.; Boumaiza, M.; Beiras, R. Acute toxicity of polybrominated diphenyl ethers (PBDEs) for turbot (Psetta maxima) early life stages (ELS). Environ. Sci. Pollut. Res. 2012, 19, 708–717. [Google Scholar] [CrossRef] [PubMed]
- Rajput, I.R.; Yaqoob, S.; Sun, Y.; Sanganyado, E.; Liu, W. Polybrominated diphenyl ethers exert genotoxic effects in pantropic spotted dolphin fibroblast cell lines. Environ. Pollut. 2021, 271, 116131. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Rajput, I.R.; Sanganyado, E.; Yajing, S.; Yu, F.; Liang, B.; Liu, W. Immune stimulation effect of PBDEs via prostaglandin pathway in pantropical spotted dolphin: An in vitro study. Chemosphere 2020, 254, 126717. [Google Scholar] [CrossRef]
- Soulen, B.K.; Venables, B.J.; Johnston, D.W.; Roberts, A.P. Accumulation of PBDEs in stranded harp (Pagophilus groenlandicus) and hooded seals (Cystophora cristata) from the Northeastern United States. Mar. Environ. Res. 2018, 138, 96–101. [Google Scholar] [CrossRef] [PubMed]
- Durante, C.A.; Manhaes, B.; Neto, E.B.S.; Azevedo, A.D.; Crespo, E.A.; Lailson-Brito, J. Natural and anthropogenic organic brominated compounds in the southwestern Atlantic ocean: Bioaccumulation in coastal and oceanic dolphin species. Environ. Pollut. 2024, 341, 123005. [Google Scholar] [CrossRef]
- Frantzen, S.; Mage, A.; Iversen, S.A.; Julshamn, K. Seasonal variation in the levels of organohalogen compounds in herring (Clupea harengus) from the Norwegian Sea. Chemosphere 2011, 85, 179–187. [Google Scholar] [CrossRef]
- Rajput, I.R.; Xiao, Z.; Yajing, S.; Yaqoob, S.; Sanganyado, E.; Ying, H.; Fei, Y.; Liu, W. Establishment of pantropic spotted dolphin (Stenella attenuata) fibroblast cell line and potential influence of polybrominated diphenyl ethers (PBDEs) on cytokines response. Aquat. Toxicol. 2018, 203, 1–9. [Google Scholar] [CrossRef]
- Li, T.; Sun, Y.J.; Zeng, Y.; Sanganyado, E.; Liang, B.; Liu, W.H. 6-OH-BDE-47 inhibited proliferation of skin fibroblasts from pygmy killer whale by inducing cell cycle arrest. Sci. Total Environ. 2022, 807, 150561. [Google Scholar] [CrossRef]
- Yang, Y.; Tang, X.; Hu, H.; Zhan, X.; Zhang, X.; Zhang, X. Molecular insight into the binding properties of marine algogenic dissolved organic matter for polybrominated diphenyl ethers and their combined effect on marine zooplankton. Sci. Total Environ. 2024, 921, 171131. [Google Scholar] [CrossRef]
- Lee, M.C.; Han, J.; Lee, S.H.; Kim, D.H.; Kang, H.M.; Won, E.J.; Hwang, D.S.; Park, J.C.; Om, A.S.; Lee, J.S. A brominated flame retardant 2,2′,4,4′ tetrabrominated diphenyl ether (BDE-47) leads to lipogenesis in the copepod Tigriopus japonicus. Aquat. Toxicol. 2016, 178, 19–26. [Google Scholar] [CrossRef]
- Zhang, H.; Pan, L.; Zhang, L. Molecular cloning and characterization of estrogen receptor gene in the scallop Chlamys farreri: Expression profiles in response to endocrine disrupting chemicals. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 2012, 156, 51–57. [Google Scholar] [CrossRef] [PubMed]
- Shi, P.; Dong, S.; Zhang, H.; Wang, P.; Niu, Z.; Fang, Y. Transcriptome profiling analysis of Mactra veneriformis by deep sequencing after exposure to 2,2′,4,4′-tetrabromodiphenyl ether. J. Oceanol. Limnol. 2018, 36, 490–507. [Google Scholar] [CrossRef]
- Geng, Q.; Zou, L.; Guo, M.; Peng, J.; Li, F.; Bi, Y.; Jiang, S.; Qin, H.; Tan, Z. Insights into the combined toxicity and mechanisms of BDE-47 and PFOA in marine blue mussel: An integrated study at the physiochemical and molecular levels. Aquat. Toxicol. 2024, 273, 106999. [Google Scholar] [CrossRef] [PubMed]
- Ding, K.; Xu, Q.; Zhang, X.; Liu, S. Metabolomic insights into neurological effects of BDE-47 exposure in the sea cucumber Apostichopus japonicus. Ecotoxicol. Environ. Saf. 2023, 266, 115558. [Google Scholar] [CrossRef]
- Yu, W.K.; Shi, Y.F.; Fong, C.C.; Chen, Y.; van de Merwe, J.P.; Chan, A.K.Y.; Wei, F.; Bo, J.; Ye, R.; Au, D.W.T.; et al. Gender-specific transcriptional profiling of marine medaka (Oryzias melastigma) liver upon BDE-47 exposure. Comp. Biochem. Physiol. D-Genom. Proteom. 2013, 8, 255–262. [Google Scholar] [CrossRef]
- Wang, Z.; Cao, S.; Liu, Q.; Cui, X.; Zhou, B.; Wang, Y.; Zhou, Z. The compound BDE-47 induces apoptotic mechanisms in the rotifer Brachionus plicatilis through both lysosomal-intrinsic and extrinsic pathways. China Environ. Sci. 2024, 44, 528–536. [Google Scholar]
- Gustafsson, J.; Legradi, J.; Lamoree, M.H.; Asplund, L.; Leonards, P.E.G. Metabolite alterations in zebrafish embryos exposed to hydroxylated polybrominated diphenyl ethers. Sci. Total Environ. 2023, 857, 159269. [Google Scholar] [CrossRef]
- Su, G.; Xia, J.; Liu, H.; Lam, M.H.W.; Yu, H.; Giesy, J.P.; Zhang, X. Dioxin-like potency of HO- and MeO-analogues of PBDEs’ the potential risk through consumption of fish from eastern China. Environ. Sci. Technol. 2012, 46, 10781–10788. [Google Scholar] [CrossRef]
- Po, B.H.K.; Ho, K.-L.; Lam, M.H.W.; Giesy, J.P.; Chiu, J.M.Y. Uptake and biotransformation of 2,2′,4,4′-tetrabromodiphenyl ether (BDE-47) in four marine microalgae species. Sci. Rep. 2017, 7, 44263. [Google Scholar] [CrossRef]
- Wen, Q.; Liu, H.-L.; Zhu, Y.-T.; Zheng, X.-M.; Su, G.-Y.; Zhang, X.-W.; Yu, H.-X.; Giesy, J.P.; Lam, M.H.W. Maternal transfer, distribution, and metabolism of BDE-47 and its related hydroxylated, methoxylated analogs in zebrafish (Danio rerio). Chemosphere 2015, 120, 31–36. [Google Scholar] [CrossRef]
- Liu, C.; Tang, X.; Zhou, B.; Jiang, Y.; Lv, M.; Zang, Y.; Wang, Y. Is it photosensitization or photodegradation when UV-B irradiation is combined with BDE-47? Evidence from the growth and reproduction changes of rotifer Brachionus plicatilis. Sci. Total Environ. 2018, 628–629, 562–572. [Google Scholar] [CrossRef]
- Browne, M.A.; Niven, S.J.; Galloway, T.S.; Rowland, S.J.; Thompson, R.C. Microplastic moves pollutants and additives to worms, reducing functions linked to health and biodiversity. Curr. Biol. 2013, 23, 2388–2392. [Google Scholar] [CrossRef]
Phylum | Species | Life Stage | Duration of Exposure | LC50 (µg/L) | Ref. |
---|---|---|---|---|---|
Rotifera | Brachionus plicatilis | 0–2 h | 48 h | 2113 411 | [38] [36] |
72 h | 376 | [38] | |||
96 h | 163 | [38] | |||
Arthropoda | Eurytemora pacifica | 0–2 h | 96 h | 57 | [37] |
Tigriopus japonicas | 0–2 h | 96 h | 851 | [37] | |
Fenneropenaeus chinensis | Post-larval juvenile shrimp | 96 h | 44.0 | [36] | |
Acartia bifilosa | BL = 0.08 ± 0.01 cm | 48 h | 341 | [36] | |
Mollusca | Argopecten irradians | BL = 0.012 ± 0.002 cm | 96 h | 69.7 | [36] |
Sinonovacula constricta | BW = 0.0051 ± 0.0005 g BL = 0.2 ± 0.05 cm | 96 h | 147 | [36] | |
Crassostrea gigas | egg | 96 h | 244.5 | [39] | |
Chordata | Takifugu rubripes | BW = 0.042 ± 0.005 g BL = 1.0 ± 0.2 cm | 96 h | 387 | [36] |
Psetta maxima | BW = 0.075 ± 0.007 g BL = 1.5 ± 0.2 cm | 96 h | 44.4 | [36] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, B.; Shao, Y.; Liu, C.; Wang, J.; Zhu, Y.; Li, X. Toxicological Effects and Mechanisms of 2,2′,4,4′-Tetrabromodiphenyl Ether (BDE-47) on Marine Organisms. Toxics 2024, 12, 747. https://doi.org/10.3390/toxics12100747
Li B, Shao Y, Liu C, Wang J, Zhu Y, Li X. Toxicological Effects and Mechanisms of 2,2′,4,4′-Tetrabromodiphenyl Ether (BDE-47) on Marine Organisms. Toxics. 2024; 12(10):747. https://doi.org/10.3390/toxics12100747
Chicago/Turabian StyleLi, Boyang, Yun Shao, Chen Liu, Jie Wang, Yanzhong Zhu, and Xiaoqian Li. 2024. "Toxicological Effects and Mechanisms of 2,2′,4,4′-Tetrabromodiphenyl Ether (BDE-47) on Marine Organisms" Toxics 12, no. 10: 747. https://doi.org/10.3390/toxics12100747
APA StyleLi, B., Shao, Y., Liu, C., Wang, J., Zhu, Y., & Li, X. (2024). Toxicological Effects and Mechanisms of 2,2′,4,4′-Tetrabromodiphenyl Ether (BDE-47) on Marine Organisms. Toxics, 12(10), 747. https://doi.org/10.3390/toxics12100747