Are Microfibers a Threat to Marine Invertebrates? A Sea Urchin Toxicity Assessment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Obtaining Microfibers and Preparation of Stock Solutions
2.2. FT-IR Characterization
2.3. Experimental Design
2.4. Data Analyses
3. Results
3.1. Size and Composition of Microfibers
3.2. Toxicity of New and Aged MFs to Echinometra lucunter
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Textiles Strategy—European Commission. Available online: https://environment.ec.europa.eu/strategy/textiles-strategy_en (accessed on 21 August 2024).
- Maiti, R. Fast Fashion: Its Detrimental Effect on the Environment. Available online: https://earth.org/fast-fashions-detrimental-effect-on-the-environment/ (accessed on 21 August 2024).
- McCay, J.; Mehta, S. Microfiber Fragment Pollution: Sources, Toxicity, Strategies, and Technologies for Remediation. Sustainability 2024, 16, 3077. [Google Scholar] [CrossRef]
- Athey, S.N.; Erdle, L.M. Are We Underestimating Anthropogenic Microfiber Pollution? A Critical Review of Occurrence, Methods, and Reporting. Environ. Toxicol. Chem. 2022, 41, 822–837. [Google Scholar] [CrossRef]
- Avio, C.G.; Pittura, L.; d’Errico, G.; Abel, S.; Amorello, S.; Marino, G.; Gorbi, S.; Regoli, F. Distribution and Characterization of Microplastic Particles and Textile Microfibers in Adriatic Food Webs: General Insights for Biomonitoring Strategies. Environ. Pollut. 2020, 258, 113766. [Google Scholar] [CrossRef]
- Bikker, J.; Lawson, J.; Wilson, S.; Rochman, C.M. Microplastics and Other Anthropogenic Particles in the Surface Waters of the Chesapeake Bay. Mar. Pollut. Bull. 2020, 156, 111257. [Google Scholar] [CrossRef]
- Grbić, J.; Helm, P.; Athey, S.; Rochman, C.M. Microplastics Entering Northwestern Lake Ontario Are Diverse and Linked to Urban Sources. Water Res. 2020, 174, 115623. [Google Scholar] [CrossRef]
- Huntington, A.; Corcoran, P.L.; Jantunen, L.; Thaysen, C.; Bernstein, S.; Stern, G.A.; Rochman, C.M. A First Assessment of Microplastics and Other Anthropogenic Particles in Hudson Bay and the Surrounding Eastern Canadian Arctic Waters of Nunavut. Facets 2020, 5, 432–454. [Google Scholar] [CrossRef]
- Kühn, S.; van Franeker, J.A.; O’Donoghue, A.M.; Swiers, A.; Starkenburg, M.; van Werven, B.; Foekema, E.; Hermsen, E.; Egelkraut-Holtus, M.; Lindeboom, H. Details of Plastic Ingestion and Fibre Contamination in North Sea Fishes. Environ. Pollut. 2020, 257, 113569. [Google Scholar] [CrossRef]
- Suaria, G.; Achtypi, A.; Perold, V.; Lee, J.R.; Pierucci, A.; Bornman, T.G.; Aliani, S.; Ryan, P.G. Microfibers in Oceanic Surface Waters: A Global Characterization. Sci. Adv. 2020, 6, eaay8493. [Google Scholar] [CrossRef]
- Liu, J.; Liang, J.; Ding, J.; Zhang, G.; Zeng, X.; Yang, Q.; Zhu, B.; Gao, W. Microfiber Pollution: An Ongoing Major Environmental Issue Related to the Sustainable Development of Textile and Clothing Industry. Environ. Dev. Sustain. 2021, 23, 11240–11256. [Google Scholar] [CrossRef]
- Xu, Y.; Chan, F.K.S.; Stanton, T.; Johnson, M.F.; Kay, P.; He, J.; Wang, J.; Kong, C.; Wang, Z.; Liu, D.; et al. Synthesis of Dominant Plastic Microfibre Prevalence and Pollution Control Feasibility in Chinese Freshwater Environments. Sci. Total Environ. 2021, 783, 146863. [Google Scholar] [CrossRef]
- Napper, I.E.; Davies, B.F.R.; Clifford, H.; Elvin, S.; Koldewey, H.J.; Mayewski, P.A.; Miner, K.R.; Potocki, M.; Elmore, A.C.; Gajurel, A.P.; et al. Reaching New Heights in Plastic Pollution—Preliminary Findings of Microplastics on Mount Everest. One Earth 2020, 3, 621–630. [Google Scholar] [CrossRef]
- Guidelines for the Monitoring and Assessment of Plastic Litter in the Ocean. Available online: http://www.gesamp.org/publications/guidelines-for-the-monitoring-and-assessment-of-plastic-litter-in-the-ocean (accessed on 21 August 2024).
- Kwak, J.I.; Liu, H.; Wang, D.; Lee, Y.H.; Lee, J.-S.; An, Y.-J. Critical Review of Environmental Impacts of Microfibers in Different Environmental Matrices. Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 2022, 251, 109196. [Google Scholar] [CrossRef]
- Chen, Y.; Chen, Q.; Zhang, Q.; Zuo, C.; Shi, H. An Overview of Chemical Additives on (Micro)Plastic Fibers: Occurrence, Release, and Health Risks. Rev. Environ. Contam. Toxicol. 2022, 260, 22. [Google Scholar] [CrossRef]
- Schöpel, B.; Stamminger, R. A Comprehensive Literature Study on Microfibres from Washing Machines. Tenside Surfactants Deterg. 2019, 56, 94–104. [Google Scholar] [CrossRef]
- Mishra, S.; Rath, C.c.; Das, A.P. Marine Microfiber Pollution: A Review on Present Status and Future Challenges. Mar. Pollut. Bull. 2019, 140, 188–197. [Google Scholar] [CrossRef]
- Woodall, L.C.; Sanchez-Vidal, A.; Canals, M.; Paterson, G.L.J.; Coppock, R.; Sleight, V.; Calafat, A.; Rogers, A.D.; Narayanaswamy, B.E.; Thompson, R.C. The Deep Sea Is a Major Sink for Microplastic Debris. R. Soc. Open Sci. 2014, 1, 140317. [Google Scholar] [CrossRef]
- Pedrotti, M.L.; Petit, S.; Eyheraguibel, B.; Kerros, M.E.; Elineau, A.; Ghiglione, J.F.; Loret, J.F.; Rostan, A.; Gorsky, G. Pollution by Anthropogenic Microfibers in North-West Mediterranean Sea and Efficiency of Microfiber Removal by a Wastewater Treatment Plant. Sci. Total Environ. 2021, 758, 144195. [Google Scholar] [CrossRef]
- Fernández Severini, M.D.; Villagran, D.M.; Buzzi, N.S.; Sartor, G.C. Microplastics in Oysters (Crassostrea gigas) and Water at the Bahía Blanca Estuary (Southwestern Atlantic): An Emerging Issue of Global Concern. Reg. Stud. Mar. Sci. 2019, 32, 100829. [Google Scholar] [CrossRef]
- Le Guen, C.; Suaria, G.; Sherley, R.B.; Ryan, P.G.; Aliani, S.; Boehme, L.; Brierley, A.S. Microplastic Study Reveals the Presence of Natural and Synthetic Fibres in the Diet of King Penguins (Aptenodytes patagonicus) Foraging from South Georgia. Environ. Int. 2020, 134, 105303. [Google Scholar] [CrossRef]
- Yang, L.; Qiao, F.; Lei, K.; Li, H.; Kang, Y.; Cui, S.; An, L. Microfiber Release from Different Fabrics during Washing. Environ. Pollut. 2019, 249, 136–143. [Google Scholar] [CrossRef]
- Li, Y.; Lu, Q.; Xing, Y.; Liu, K.; Ling, W.; Yang, J.; Yang, Q.; Wu, T.; Zhang, J.; Pei, Z.; et al. Review of Research on Migration, Distribution, Biological Effects, and Analytical Methods of Microfibers in the Environment. Sci. Total Environ. 2023, 855, 158922. [Google Scholar] [CrossRef]
- Stanton, T.; Johnson, M.; Nathanail, P.; MacNaughtan, W.; Gomes, R.L. Freshwater and Airborne Textile Fibre Populations Are Dominated by ‘Natural’, Not Microplastic, Fibres. Sci. Total Environ. 2019, 666, 377–389. [Google Scholar] [CrossRef]
- Rovira, J.; Domingo, J.L. Human Health Risks Due to Exposure to Inorganic and Organic Chemicals from Textiles: A Review. Environ. Res. 2019, 168, 62–69. [Google Scholar] [CrossRef]
- Wiesinger, H.; Wang, Z.; Hellweg, S. Deep Dive into Plastic Monomers, Additives, and Processing Aids. Environ. Sci. Technol. 2021, 55, 9339–9351. [Google Scholar] [CrossRef]
- Wang, F.; Wong, C.S.; Chen, D.; Lu, X.; Wang, F.; Zeng, E.Y. Interaction of Toxic Chemicals with Microplastics: A Critical Review. Water Res. 2018, 139, 208–219. [Google Scholar] [CrossRef]
- Walkinshaw, C.; Tolhurst, T.J.; Lindeque, P.K.; Thompson, R.C.; Cole, M. Impact of Polyester and Cotton Microfibers on Growth and Sublethal Biomarkers in Juvenile Mussels. Microplastics Nanoplastics 2023, 3, 5. [Google Scholar] [CrossRef]
- Agnetta, D.; Bonaviri, C.; Badalamenti, F.; Scianna, C.; Vizzini, S.; Gianguzza, P. Functional Traits of Two Co-Occurring Sea Urchins across a Barren/Forest Patch System. J. Sea Res. 2013, 76, 170–177. [Google Scholar] [CrossRef]
- Dethier, M.N.; Hoins, G.; Kobelt, J.; Lowe, A.T.; Galloway, A.W.E.; Schram, J.B.; Raymore, M.; Duggins, D.O. Feces as Food: The Nutritional Value of Urchin Feces and Implications for Benthic Food Webs. J. Exp. Mar. Biol. Ecol. 2019, 514–515, 95–102. [Google Scholar] [CrossRef]
- Mariante, F.L.F.; Lemos, G.B.; Eutrópio, F.J.; Gomes, L.C. Biologia reprodutiva de Echinometra lucunter (Echinodermata: Echinoidea) na Praia da Costa, Vila Velha, Espírito Santo. Zool. Curitiba 2009, 26, 641–646. [Google Scholar] [CrossRef]
- ABNT NBR15350 DE 03/2023; Ecotoxicologia Aquática—Toxicidade Crônica de Curta Duração—Método de Ensaio Com Ouriço-Do-Mar (Echinodermata: Echinoidea). ABNT-Associação Brasileira de Normas Técnicas: Rio de Janeiro, Brazil, 2023.
- ASTM/E 1563-95; Standard Guide for Conducting Static Acute Toxicity Tests with Echinoid Embryos. ASTM-American Society for Testing and Materials: West Conshehoken, PA, USA, 1995.
- Thorson, G. Some Factors Influencing the Recruitment and Establishment of Marine Benthic Communities. Neth. J. Sea Res. 1966, 3, 267–293. [Google Scholar] [CrossRef]
- The Weakest Link: Sensitivity to Climate Extremes across Life Stages of Marine Invertebrates-Pandori-2019-Oikos-Wiley Online Library. Available online: https://nsojournals.onlinelibrary.wiley.com/doi/full/10.1111/oik.05886 (accessed on 21 August 2024).
- Nobre, C.R.; Santana, M.F.M.; Maluf, A.; Cortez, F.S.; Cesar, A.; Pereira, C.D.S.; Turra, A. Assessment of Microplastic Toxicity to Embryonic Development of the Sea Urchin Lytechinus variegatus (Echinodermata: Echinoidea). Mar. Pollut. Bull. 2015, 92, 99–104. [Google Scholar] [CrossRef]
- Martínez-Gómez, C.; León, V.M.; Calles, S.; Gomáriz-Olcina, M.; Vethaak, A.D. The Adverse Effects of Virgin Microplastics on the Fertilization and Larval Development of Sea Urchins. Mar. Environ. Res. 2017, 130, 69–76. [Google Scholar] [CrossRef]
- Rendell-Bhatti, F.; Paganos, P.; Pouch, A.; Mitchell, C.; D’Aniello, S.; Godley, B.J.; Pazdro, K.; Arnone, M.I.; Jimenez-Guri, E. Developmental Toxicity of Plastic Leachates on the Sea Urchin Paracentrotus Lividus. Environ. Pollut. 2021, 269, 115744. [Google Scholar] [CrossRef]
- Beiras, R.; Verdejo, E.; Campoy-López, P.; Vidal-Liñán, L. Aquatic Toxicity of Chemically Defined Microplastics Can Be Explained by Functional Additives. J. Hazard. Mater. 2021, 406, 124338. [Google Scholar] [CrossRef]
- Di Natale, M.V.; Carroccio, S.C.; Dattilo, S.; Cocca, M.; Nicosia, A.; Torri, M.; Bennici, C.D.; Musco, M.; Masullo, T.; Russo, S.; et al. Polymer Aging Affects the Bioavailability of Microplastics-Associated Contaminants in Sea Urchin Embryos. Chemosphere 2022, 309, 136720. [Google Scholar] [CrossRef]
- Sevillano-González, M.; González-Sálamo, J.; Díaz-Peña, F.J.; Hernández-Sánchez, C.; Catalán Torralbo, S.; Ródenas Seguí, A.; Hernández-Borges, J. Assessment of Microplastic Content in Diadema africanum Sea Urchin from Tenerife (Canary Islands, Spain). Mar. Pollut. Bull. 2022, 175, 113174. [Google Scholar] [CrossRef]
- Feng, Z.; Wang, R.; Zhang, T.; Wang, J.; Huang, W.; Li, J.; Xu, J.; Gao, G. Microplastics in Specific Tissues of Wild Sea Urchins along the Coastal Areas of Northern China. Sci. Total Environ. 2020, 728, 138660. [Google Scholar] [CrossRef]
- Yadav, V.; Pal, D. Comparative Analysis of Microplastic Measurement Units: Concatenating Items/M3, Particles/Kg, and Mg/Kg. Sustain. Chem. One World 2024, 3, 100019. [Google Scholar] [CrossRef]
- Covernton, G.A.; Dietterle, M.; Pearce, C.M.; Gurney-Smith, H.J.; Dower, J.F.; Dudas, S.E. Depuration of Anthropogenic Particles by Pacific Oysters (Crassostrea gigas): Feasibility and Efficacy. Mar. Pollut. Bull. 2022, 181, 113886. [Google Scholar] [CrossRef]
- Environment Canada. Biological Test Method: Fertilization Assay Using Echinoids. (Sea Urchins and Sand Dollars); EPS 1/RM/27 Second Edition—February 2011; EC—Environment Canada: Gatineau, QC, Canada, 2011.
- Anderson, M.J. Permutational Multivariate Analysis of Variance (PERMANOVA). In Wiley StatsRef: Statistics Reference Online; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2017; pp. 1–15. ISBN 978-1-118-44511-2. [Google Scholar]
- Desforges, J.-P.W.; Galbraith, M.; Dangerfield, N.; Ross, P.S. Widespread Distribution of Microplastics in Subsurface Seawater in the NE Pacific Ocean. Mar. Pollut. Bull. 2014, 79, 94–99. [Google Scholar] [CrossRef]
- Vilela, C.; Sousa, A.F.; Fonseca, A.C.; Serra, A.C.; Coelho, J.F.J.; Freire, C.S.R.; Silvestre, A.J.D. The Quest for Sustainable Polyesters—Insights into the Future. Polym. Chem. 2014, 5, 3119–3141. [Google Scholar] [CrossRef]
- Batista, M.A.J.; Moraes, R.P.; Barbosa, J.C.S.; Oliveira, P.C.; Santos, A.M. Effect of the Polyester Chemical Structure on the Stability of Polyester–Melamine Coatings When Exposed to Accelerated Weathering. Prog. Org. Coat. 2011, 71, 265–273. [Google Scholar] [CrossRef]
- Belhaj Khalifa, I.; Ladhari, N. Hydrophobic Behavior of Cotton Fabric Activated with Air Atmospheric-Pressure Plasma. J. Text. Inst. 2020, 111, 1191–1197. [Google Scholar] [CrossRef]
- Sharma, K.; Khilari, V.; Chaudhary, B.U.; Jogi, A.B.; Pandit, A.B.; Kale, R.D. Cotton Based Composite Fabric Reinforced with Waste Polyester Fibers for Improved Mechanical Properties. Waste Manag. 2020, 107, 227–234. [Google Scholar] [CrossRef]
- Halim, Z.A.A.; Yajid, M.A.M.; Idris, M.H.; Hamdan, H. Effects of Rice Husk Derived Amorphous Silica on the Thermal-Mechanical Properties of Unsaturated Polyester Composites. J. Macromol. Sci. Part B 2018, 57, 479–496. [Google Scholar] [CrossRef]
- Parvinzadeh, M.; Ebrahimi, I. Influence of Atmospheric-Air Plasma on the Coating of a Nonionic Lubricating Agent on Polyester Fiber. Radiat. Eff. Defects Solids 2011, 166, 408–416. [Google Scholar] [CrossRef]
- Yousef, S.; Tatariants, M.; Tichonovas, M.; Kliucininkas, L.; Lukošiūtė, S.-I.; Yan, L. Sustainable Green Technology for Recovery of Cotton Fibers and Polyester from Textile Waste. J. Clean. Prod. 2020, 254, 120078. [Google Scholar] [CrossRef]
- Liu, C.F.; Xu, F.; Sun, J.X.; Ren, J.L.; Curling, S.; Sun, R.C.; Fowler, P.; Baird, M.S. Physicochemical Characterization of Cellulose from Perennial Ryegrass Leaves (Lolium perenne). Carbohydr. Res. 2006, 341, 2677–2687. [Google Scholar] [CrossRef]
- Reddy, K.O.; Zhang, J.; Zhang, J.; Rajulu, A.V. Preparation and Properties of Self-Reinforced Cellulose Composite Films from Agave Microfibrils Using an Ionic Liquid. Carbohydr. Polym. 2014, 114, 537–545. [Google Scholar] [CrossRef]
- Gorade, V.G.; Kotwal, A.; Chaudhary, B.U.; Kale, R.D. Surface Modification of Microcrystalline Cellulose Using Rice Bran Oil: A Bio-Based Approach to Achieve Water Repellency. J. Polym. Res. 2019, 26, 217. [Google Scholar] [CrossRef]
- Kim, L.; Kim, S.A.; Kim, T.H.; Kim, J.; An, Y.-J. Synthetic and Natural Microfibers Induce Gut Damage in the Brine Shrimp Artemia franciscana. Aquat. Toxicol. 2021, 232, 105748. [Google Scholar] [CrossRef]
- Granek, E.F.; Traylor, S.D.; Tissot, A.G.; Hurst, P.T.; Wood, R.S.; Brander, S.M. Clothes Encounters of the Microfibre Kind: The Effects of Natural and Synthetic Textiles on Organisms. In Polluting Textiles; Routledge: London, UK, 2022; ISBN 978-1-00-316538-5. [Google Scholar]
- Caldwell, A.; Brander, S.; Wiedenmann, J.; Clucas, G.; Craig, E. Incidence of Microplastic Fiber Ingestion by Common Terns (Sterna hirundo) and Roseate Terns (S. dougallii) Breeding in the Northwestern Atlantic. Mar. Pollut. Bull. 2022, 177, 113560. [Google Scholar] [CrossRef]
- Zambrano, M.C. Aerobic Biodegradation in Freshwater and Marine Environments of Textile Microfibers Generated in Clothes Laundering: Effects of Cellulose and Polyester-Based Microfibers on the Microbiome. Mar. Pollut. Bull. 2020, 151, 110826. [Google Scholar] [CrossRef]
- Zambrano, M.C.; Pawlak, J.J.; Daystar, J.; Ankeny, M.; Venditti, R.A. Impact of Dyes and Finishes on the Microfibers Released on the Laundering of Cotton Knitted Fabrics. Environ. Pollut. 2021, 272, 115998. [Google Scholar] [CrossRef]
- Sørensen, L.; Groven, A.S.; Hovsbakken, I.A.; Del Puerto, O.; Krause, D.F.; Sarno, A.; Booth, A.M. UV Degradation of Natural and Synthetic Microfibers Causes Fragmentation and Release of Polymer Degradation Products and Chemical Additives. Sci. Total Environ. 2021, 755, 143170. [Google Scholar] [CrossRef]
- Compa, M.; Ventero, A.; Iglesias, M.; Deudero, S. Ingestion of Microplastics and Natural Fibres in Sardina pilchardus (Walbaum, 1792) and Engraulis encrasicolus (Linnaeus, 1758) along the Spanish Mediterranean Coast. Mar. Pollut. Bull. 2018, 128, 89–96. [Google Scholar] [CrossRef]
- Siddiqui, S.; Hutton, S.J.; Dickens, J.M.; Pedersen, E.I.; Harper, S.L.; Brander, S.M. Natural and Synthetic Microfibers Alter Growth and Behavior in Early Life Stages of Estuarine Organisms. Front. Mar. Sci. 2023, 9, 991650. [Google Scholar] [CrossRef]
- Au, S.Y.; Bruce, T.F.; Bridges, W.C.; Klaine, S.J. Responses of Hyalella Azteca to Acute and Chronic Microplastic Exposures. Environ. Toxicol. Chem. 2015, 34, 2564–2572. [Google Scholar] [CrossRef]
- Jemec, A.; Horvat, P.; Kunej, U.; Bele, M.; Kržan, A. Uptake and Effects of Microplastic Textile Fibers on Freshwater Crustacean Daphnia Magna. Environ. Pollut. 2016, 219, 201–209. [Google Scholar] [CrossRef]
- Woods, M.N.; Stack, M.E.; Fields, D.M.; Shaw, S.D.; Matrai, P.A. Microplastic Fiber Uptake, Ingestion, and Egestion Rates in the Blue Mussel (Mytilus Edulis). Mar. Pollut. Bull. 2018, 137, 638–645. [Google Scholar] [CrossRef]
- Manzo, S. Physical and Chemical Threats Posed by Micro(Nano)Plastic to Sea Urchins. Sci. Total Environ. 2022, 808, 152105. [Google Scholar] [CrossRef]
- Oliviero, M.; Tato, T.; Schiavo, S.; Fernández, V.; Manzo, S.; Beiras, R. Leachates of Micronized Plastic Toys Provoke Embryotoxic Effects upon Sea Urchin Paracentrotus lividus. Environ. Pollut. 2019, 247, 706–715. [Google Scholar] [CrossRef]
- Piccardo, M.; Provenza, F.; Grazioli, E.; Cavallo, A.; Terlizzi, A.; Renzi, M. PET Microplastics Toxicity on Marine Key Species Is Influenced by pH, Particle Size and Food Variations. Sci. Total Environ. 2020, 715, 136947. [Google Scholar] [CrossRef]
- Détrée, C.; Labbé, C.; Paul-Pont, I.; Prado, E.; El Rakwe, M.; Thomas, L.; Delorme, N.; Le Goïc, N.; Huvet, A. On the Horns of a Dilemma: Evaluation of Synthetic and Natural Textile Microfibre Effects on the Physiology of the Pacific Oyster Crassostrea gigas. Environ. Pollut. 2023, 331, 121861. [Google Scholar] [CrossRef]
- Sait, S.T.L.; Sørensen, L.; Kubowicz, S.; Vike-Jonas, K.; Gonzalez, S.V.; Asimakopoulos, A.G.; Booth, A.M. Microplastic Fibres from Synthetic Textiles: Environmental Degradation and Additive Chemical Content. Environ. Pollut. 2021, 268, 115745. [Google Scholar] [CrossRef]
- Hermabessiere, L.; Dehaut, A.; Paul-Pont, I.; Lacroix, C.; Jezequel, R.; Soudant, P.; Duflos, G. Occurrence and Effects of Plastic Additives on Marine Environments and Organisms: A Review. Chemosphere 2017, 182, 781–793. [Google Scholar] [CrossRef]
- Richardson, C.R.; Burritt, D.J.; Allan, B.J.M.; Lamare, M.D. Microplastic Ingestion Induces Asymmetry and Oxidative Stress in Larvae of the Sea Urchin Pseudechinus huttoni. Mar. Pollut. Bull. 2021, 168, 112369. [Google Scholar] [CrossRef]
- So, W.K.; Chan, K.; Not, C. Abundance of Plastic Microbeads in Hong Kong Coastal Water. Mar. Pollut. Bull. 2018, 133, 500–505. [Google Scholar] [CrossRef]
- Byrne, M.; Ho, M.; Selvakumaraswamy, P.; Nguyen, H.D.; Dworjanyn, S.A.; Davis, A.R. Temperature, but Not pH, Compromises Sea Urchin Fertilization and Early Development under near-Future Climate Change Scenarios. Proc. R. Soc. B Biol. Sci. 2009, 276, 1883–1888. [Google Scholar] [CrossRef]
- R McEdward, L.; G Miner, B. Chapter 5 Echinoid Larval Ecology. In Developments in Aquaculture and Fisheries Science; Lawrence, J.M., Ed.; Edible Sea Urchins: Biology and Ecology; Elsevier: Amsterdam, The Netherlands, 2007; Volume 37, pp. 71–93. [Google Scholar]
- Martin, S.; Richier, S.; Pedrotti, M.-L.; Dupont, S.; Castejon, C.; Gerakis, Y.; Kerros, M.-E.; Oberhänsli, F.; Teyssié, J.-L.; Jeffree, R.; et al. Early Development and Molecular Plasticity in the Mediterranean Sea Urchin Paracentrotus lividus Exposed to CO2-Driven Acidification. J. Exp. Biol. 2011, 214, 1357–1368. [Google Scholar] [CrossRef]
- Murano, C. Occurrence of Microfibres in Wild Specimens of Adult Sea Urchin Paracentrotus lividus (Lamarck, 1816) from a Coastal Area of the Central Mediterranean Sea. Mar. Pollut. Bull. 2022, 176, 113448. [Google Scholar] [CrossRef]
- Hennicke, A.; Macrina, L.; Malcolm-Mckay, A.; Miliou, A. Assessment of Microplastic Accumulation in Wild Paracentrotus lividus, a Commercially Important Sea Urchin Species, in the Eastern Aegean Sea, Greece. Reg. Stud. Mar. Sci. 2021, 45, 101855. [Google Scholar] [CrossRef]
- Dupont, S.; Ortega-Martínez, O.; Thorndyke, M. Impact of Near-Future Ocean Acidification on Echinoderms. Ecotoxicology 2010, 19, 449–462. [Google Scholar] [CrossRef]
- Bernal-Ibáñez, A.; Cacabelos, E.; Melo, R.; Gestoso, I. The Role of Sea-Urchins in Marine Forests From Azores, Webbnesia, and Cabo Verde: Human Pressures, Climate-Change Effects and Restoration Opportunities. Front. Mar. Sci. 2021, 8, 649873. [Google Scholar] [CrossRef]
- Farina, S.; Baroli, M.; Brundu, R.; Conforti, A.; Cucco, A.; De Falco, G.; Guala, I.; Guerzoni, S.; Massaro, G.; Quattrocchi, G.; et al. The Challenge of Managing the Commercial Harvesting of the Sea Urchin Paracentrotus lividus: Advanced Approaches Are Required. PeerJ 2020, 8, e10093. [Google Scholar] [CrossRef]
- Carreras, C.; García-Cisneros, A.; Wangensteen, O.S.; Ordóñez, V.; Palacín, C.; Pascual, M.; Turon, X. East Is East and West Is West: Population Genomics and Hierarchical Analyses Reveal Genetic Structure and Adaptation Footprints in the Keystone Species Paracentrotus lividus (Echinoidea). Divers. Distrib. 2020, 26, 382–398. [Google Scholar] [CrossRef]
- Bonnail, E.; Vera, S.; Blasco, J.; DelValls, T.Á. Towards a Cleaner Textile Industry: Using ASEC to Decrease the Water Footprint to Zero Liquid Discharge. Water 2023, 15, 3781. [Google Scholar] [CrossRef]
Microfiber | Concentration (g/L) | Microfiber Itens/L |
---|---|---|
Cotton | 0.0001 | 835 |
Cotton | 0.001 | 6206 |
Cotton | 0.01 | 66,220 |
Cotton | 0.1 | 238,546 |
Polyester | 0.0001 | 884 |
Polyester | 0.001 | 8523 |
Polyester | 0.01 | 59,336 |
Polyester | 0.1 | 268,884 |
Mixed fibers | 0.0001 | 916 |
Mixed fibers | 0.001 | 5940 |
Mixed fibers | 0.01 | 68,530 |
Mixed fibers | 0.1 | 284,900 |
Control treatment | -- | 37 |
Airbone | -- | 60 |
Main Test | df | MS | Pseudo-F | P (perm) |
---|---|---|---|---|
Cotton | ||||
Condition | 1 | 1500.6 | 10.099 | 0.006 |
Concentration | 4 | 627.55 | 4.223 | 0.007 |
Condition vs. Concentration | 4 | 279.87 | 1.884 | 0.114 |
Polyester | ||||
Condition | 1 | 1210 | 13.378 | 0.003 |
Concentration | 4 | 1224.1 | 13.533 | 0.001 |
Condition vs. Concentration | 4 | 889.12 | 9.83 | 0.001 |
Mixed | ||||
Condition | 1 | 1276.9 | 9.203 | 0.002 |
Concentration | 4 | 495.96 | 3.575 | 0.012 |
Condition vs. Concentration | 4 | 196.09 | 1.4132 | 0.26 |
Three-way PERMANOVA with all treatments | ||||
Type of MF | 1 | 5922 | 42.539 | 0.001 |
Condition | 2 | 239.95 | 1.666 | 0.185 |
Concentration | 3 | 473.74 | 3.403 | 0.025 |
Type × Condition × Concentration | 6 | 502.04 | 3.606 | 0.002 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
dos Santos, J.B.; Choueri, R.B.; dos Santos, F.E.M.; Santos, L.A.d.O.; da Silva, L.F.; Nobre, C.R.; Cardoso, M.A.; de Britto Mari, R.; Simões, F.R.; Delvalls, T.A.; et al. Are Microfibers a Threat to Marine Invertebrates? A Sea Urchin Toxicity Assessment. Toxics 2024, 12, 753. https://doi.org/10.3390/toxics12100753
dos Santos JB, Choueri RB, dos Santos FEM, Santos LAdO, da Silva LF, Nobre CR, Cardoso MA, de Britto Mari R, Simões FR, Delvalls TA, et al. Are Microfibers a Threat to Marine Invertebrates? A Sea Urchin Toxicity Assessment. Toxics. 2024; 12(10):753. https://doi.org/10.3390/toxics12100753
Chicago/Turabian Styledos Santos, Jennifer Barbosa, Rodrigo Brasil Choueri, Francisco Eduardo Melo dos Santos, Laís Adrielle de Oliveira Santos, Letícia Fernanda da Silva, Caio Rodrigues Nobre, Milton Alexandre Cardoso, Renata de Britto Mari, Fábio Ruiz Simões, Tomas Angel Delvalls, and et al. 2024. "Are Microfibers a Threat to Marine Invertebrates? A Sea Urchin Toxicity Assessment" Toxics 12, no. 10: 753. https://doi.org/10.3390/toxics12100753
APA Styledos Santos, J. B., Choueri, R. B., dos Santos, F. E. M., Santos, L. A. d. O., da Silva, L. F., Nobre, C. R., Cardoso, M. A., de Britto Mari, R., Simões, F. R., Delvalls, T. A., & Gusso-Choueri, P. K. (2024). Are Microfibers a Threat to Marine Invertebrates? A Sea Urchin Toxicity Assessment. Toxics, 12(10), 753. https://doi.org/10.3390/toxics12100753