Bacterial Degradation of Petroleum Hydrocarbons in Saudi Arabia
Abstract
:1. Introduction
2. Approach to Data Collections
3. General Findings
3.1. Frequency of Publications, Research Institutions, and Site of Sample Collections
3.2. Bacterial Strain Identification
3.3. In Vitro Culturing of the Bacterial Strains
3.4. Substrates Used in Studies: Crude Oil, Aliphatic, and Polyaromatic Compounds
Study Number (ST #) | Pollutant Used to Isolate Bacterial Strains | Type of Inoculum | Location of Inoculum Collection | Research Center or University | Method of Strain Selection | List of Isolated Bacteria | Other Pollutants Degraded by Bacterial Strains | Type of Bacteria | Main Results | Reference |
---|---|---|---|---|---|---|---|---|---|---|
ST 1 | None | Contaminated Soil | Dammam | King Saud University (KSU) | Prior growth but medium not mentioned | Staphylococcus Corynebacterium | Crude Oil | Mesophile | 30–70% of degradation rate after 28 days, using weighing method | [66] |
ST 2 | None | Crude Oil Samples | No Information | Taif University (TU) | Prior growth in rich medium | Klebsiella Acinetobacter | Phenanthrene, Fluoranthene, Pyrene, Benzene | Mesophile | 58–83% degradation, after 48 h, by weighing method | [67] |
ST 3 | None | Petroleum Sludge | Jeddah | Taif University (TU) | Prior growth in wastewater | Pantoea Acinetobacter Bacillus | n-Hexadecane, Phenol, Phenanthrene | Mesophile | Almost 100% degradation within 4 days, GC | [68] |
ST 4 | None | Crude Oil contaminated Microbial Mats | Dawhat, Al-Daffi, Jubail | King Fahd University of Petroleum and Minerals (KFUPM) | Metagenomic Analysis | Cyanobacterial mat. | Pristane, n-Octadecane, Phenanthrene, Dibenzothiophene | Mesophile | 14–25% of degradation, by GC | [76] |
ST 5 | None | Soil | Not mentioned | Imam Abdul Rahman bin Faisal University (IAU) | Not Specified | Alcanivorax | Crude Oil | Mesophile | Up to 73% reduction, by GC | [73] |
ST 6 | None | Soil | Dammam | Imam Abdul Rahman bin Faisal University (IAU) | Prior growth in rich medium | Bacillus Pseudomonas | Crude Oil | Mesophile | 40–56% of oil degradation after 7 days, by spectrophotometry | [69] |
ST 7 | None | Contaminated Sediments | ARAMCO, Jazan | King Abdulaziz University (KAU) | Prior growth in Bushnell-Haas medium | Pseudomonas Bacillus Staphylococcus Erwinia Nitratireductor | Crude Oil | Mesophile | 67–77% of oil degradation by after 7 days, by spectrophotometry | [70] |
ST8 | None | Marine Soil Sediment | Eastern Province | King Saud University (KSU) | Prior growth in rich medium | Bacillus | Crude Oil | Mesophile | >90% of degradation after 14 days, by HPLC | [71] |
ST 9 | None | Bilge Wastewater | Aljubail Port | King Saud University (KSU) | Prior growth in Bushnell-Haas medium | Acinetobacter Klebsiella Pseudomonas Bacillus Brevibacterium | Crude Oil | Mesophile | 90% of reduction of crude within 3 days, by weighing | [72] |
ST 10 | Crude Oil | Contaminated Soil | Arabian Gulf | King Saud University (KSU) | Enrichment Culture | Pseudomonas | Crude Oil | Mesophile | >80% degradation within 10 days, GC | [18] |
ST 11 | Crude Oil | Sediments | Yanbu | King Abdulaziz University (KAU) | Enrichment Culture | Pseudomonas Nitratireductor | Crude Oil | Mesophile | 65–95% degradation 14 days, by GC | [33] |
ST 12 | Crude Oil | Contaminated Sediment | Jeddah | Taif University (TU) | Enrichment Culture | Enterobacter | Crude Oil | Mesophile | 87–97% of degradation after 14 days, by gravimetric methods | [34] |
ST 13 | Crude Oil | Contaminated Soil | Dhahran | Shaqra University (SU) | Enrichment Culture | Bacillus Pseudomonas | Crude Oil | Mesophile | Not mentioned | [35] |
ST 14 | Crude oil | Soil | Al-Ahsa | King Faisal University (KFU) | Enrichment Culture | Georgina Arthrobacter | Crude Oil, n-alkanes, PAHs (biphenyl, naphthalene, and anthracene) | Mesophile | 67% of PAH degradation within 14 days, by GC | [36] |
ST 15 | Diesel | Contaminated Soil | Al-Majmaah | Majmaah University | Enrichment Culture | Microbacterium | Diesel | Mesophile | 21–78% of degradation after 5 days, by GC-MS | [37] |
ST 16 | Hexadecane | Contaminated Soil | Riyadh | King Saud University (KSU) | Enrichment Culture | Pseudomonas Rhodococcus Bacillus | Hexadecane | Mesophile | 100% degradation in 5–9 days, using GC | [38] |
ST 17 | Pristane and hexadecane | Contaminated Sand Samples | No Information | Vietnam Academy of Science and Technology (VAST) | Enrichment Culture | Nocardia | Pristane, various C6-C16 alkanes | Mesophile | Up to 90% within 3 weeks, using GC | [39] |
ST 18 | n-tetradecane | Contaminated Soil | No Information | Taif University (TU) | Enrichment Culture | Pseudomonas Bacillus | Mesophile | 50–90% within 5 days, by GC | [40] | |
ST 19 | Phenol | Wastewater from Industrial Treatment Plant | Yanbu | King Abdulaziz University (KAU) | Enrichment Culture | Ochrobactrum Pseudomonas | Phenol | Mesophile | 100% degradation within 4 days by Ultra-Fast Liquid Chromatography | [41] |
ST 20 | Benzene, Toluene, Ethylbenzene, Xylene s | Contaminated Soil, Water and Oily Sludge | Eastern Region | King Abdulaziz City for Science and Technology (KACST) | Enrichment Culture | Bacillus Paenibacillus Burkholderia Proteus | Benzene, Toluene, Ethylbenzene, Xylene | Mesophile | 100% degradation except for Benzene, within 21 days, by HPLC | [42] |
ST 21 | Naphthalene | Contaminated Soil Sample | Dhahran | King Fahd University of Petroleum and Minerals (KFUPM) | Enrichment Culture | Methylobacterium Pseudomonas | Naphthalene | Mesophile | Not directly determined. Degradation was assessed by bacteria growth | [43] |
ST 22 | Anthracene | Marine Water | Abhor, Red Sea, Jeddah | King Saud University (KSU) | Enrichment Culture | Sphingomonas | Anthracene | Psychrophile | [44] | |
ST23 | Phenanthrene | Contaminated Soil | Abha | King Khalid University (KKU) | Enrichment Culture | Sphingomonas Pseudomonas Micrococcus Arthrobacter Stenotrophomonas Kocuria Shinella | Naphthalene, Phenanthrene | Mesophile | Not direct assessment (assessment by bacterial growth) | [45] |
ST 24 | Phenanthrene | Marine Water | Abhor, Red Sea, Jeddah | King Abdulaziz University (KAU) | Enrichment Culture | Ochrobactrum Propionispira Martelella Bacillus Marinobacter Azospira | Phenanthrene, Pyrene, Fluorene, Hexadecane | Halophile | 88–100% degradation within 12 days, by HPLC and GC | [46] |
ST 25 | Phenanthrene | Sediments from Mineral Mining Site | No Information | King Abdulaziz University (KAU) | Enrichment Culture | Stenotrophomonas | Anthracene, Phenanthrene, Naphthalene, Fluorene, Pyrene, Benzo(e)pyrene, Benzo(k)fluoranthene | Acidophile | 80–95% degradation of PAHs by GC | [47] |
ST 26 | Phenanthrene | Contaminated Sediment | Jubail | King Fahd University of Petroleum and Minerals (KFUPM) | Enrichment Culture | Pseudomonas Ochrobactrum | Phenanthrene, Pyrene | Mesophile | 62–94% degradation, by GC | [48] |
ST 27 | Phenanthrene | Brine Water Sample | Jeddah | King Abdulaziz University (KAU) | Enrichment Culture | Ochrobactrum Pseudomonas | Phenanthrene Naphthalene, Anthracene, Fluorene, Pyrene, Benzo(e)pyrene, Benzo(k)fluoranthene | Halothermophile | 81–90% degradation, within 14 days, by GC | [49] |
ST 28 | Phenanthrene | Drilling Site Sediment | Al-Khobar | King Abdulaziz University (KAU) | Enrichment Culture | Pseudomonas Bacillus | Naphthalene, Phenanthrene, Fluorene, Anthracene, Pyrene, Benzo(e)pyrene, Benzo(k)fluoranthene | Thermophile (60 °C) | 81–95% degradation, by HPLC | [65] |
ST 29 | Phenanthrene | Saline Seawater and Sediment | Abhor, Red Sea, Jeddah | King Abdulaziz University (KAU) | Enrichment Culture | Ochrobactrum Stenotrophomonas Achromobacter Mesorhizobium | Phenanthrene, Fluorene, Pyrene | Halophile | 50–90% degradation within 12 days, by GC | [50] |
ST 30 | Phenanthrene | Briny Water and Sediment | Red Sea | King Abdulaziz University (KAU) | Enrichment Culture | Marinobacter (3 strains) | Phenanthrene, Pyrene | Halophile | 71–90% degradation within 12 days, by GC | [51] |
ST 31 | Phenanthrene or Anthracene | Contaminated Soil Sample | Dhahran | King Fahd University of Petroleum and Minerals (KFUPM) | Enrichment Culture | Pseudomonas Stenotrophomonas Ralstonia Thermomonas | Anthracene, Phenanthrene | Mesophile | Up to 75% degradation within 15 days, by GC | [58] |
ST 32 | Phenanthrene or Anthracene | Contaminated Soil | Aseer | King Khalid University (KKU) | Enrichment Culture | Bacillus Ochrobactrum | Anthracene, Phenanthrene | Mesophile | Assessment by bacterial growth | [53] |
ST 33 | Phenanthrene and Anthracene | Contaminated Soil | No Information | King Saud University (KSU) | Enrichment Culture | Halomonas | Anthracene, Phenanthrene | Halophile | 95–100% degradation within 1–2 days, by GC-MS | [55] |
ST 34 | Fluorene | Drilling Site Sample | No Information | King Abdulaziz University (KAU) | Enrichment Culture | Ochrobactrum Bacillus Marinobacter Pseudomonas Martelella Stenotrophomonas Rhodococcus | Anthracene, Phenanthrene, Fluorene, Naphthalene, Pyrene, Benzo(a)pyrene, Benzo(e)pyrene, Benzo(k)fluoranthene. | Halo-alkalo-thermophile (60 °C) | 55–100% degradation within 16 days | [56] |
ST 35 | Pyrene | Contaminated Soil | Jubail | King Fahd University of Petroleum and Minerals (KFUPM) | Enrichment Culture | Burkholderia Caulobacter | Pyrene | Mesophile | 21–59% of degradation within 18 days, by GC | [57] |
ST 36 | Pyrene | Wastewater Sludge | Jubail | King Fahd University of Petroleum and Minerals (KFUPM) | Enrichment Culture | Halomonas | Pyrene, Naphthalene, Anthracene, Phenanthrene, | Halophile | 50% degradation within 18 days, by GC | [52] |
ST 37 | Pyrene | Contaminated Soil | Jubail | King Fahd University of Petroleum and Minerals (KFUPM) | Enrichment Culture | Achromobacter | Pyrene, Naphthalene, Anthracene, Phenanthrene | Mesophile | 50% degradation within 15 days, by GC | [54] |
ST 38 | Pyrene | Contaminated Soil | Abha | King Khalid University (KKU) | Enrichment Culture | Klebsiella | Pyrene, Naphthalene, Anthracene, Phenanthrene, Phenanthrene | Mesophile | 70% degradation after 12 days, by HPLC | [59] |
ST 39 | Benzo(a)Pyrene. | Contaminated Sediment | Dhahran | King Fahd University of Petroleum and Minerals (KFUPM) | Enrichment Culture | Staphylococcus | Benzo(a)pyrene, Pyrene, Naphthalene, Anthracene, Phenanthrene | Halophile | 44–80% degradation within 30 days, by GC | [60] |
ST 40 | Benzo(a)Pyrene. | Contaminated Sediment | Dhahran | King Fahd University of Petroleum and Minerals (KFUPM) | Enrichment Culture | Bradyrhizobium Micrococcus Bacillus | Benzo(a)pyrene, Pyrene, Naphthalene, Anthracene, Phenanthrene | Mesophile | 44–75% within 30 days, by GC | [61] |
ST 41 | Coronene | Contaminated Sediment | Dhahran | King Fahd University of Petroleum and Minerals (KFUPM) | Enrichment Culture | Halomonas, | Coronene, Benzo(a)pyrene, Pyrene, Naphthalene, Anthracene, Phenanthrene | halophilic | 48% degradation within 20 days, and 76% within 80 days, by GC | [63] |
ST 42 | Not mentioned | Sediments from Industrial Area | Taif | Taif University (TU) | Not mentioned | Bacillus Actinomyces Pseudomonas | Crude Oil | Mesophile | 52–63% degradation, by gravimetric methods | [64] |
ST 43 | Not mentioned | Contaminated Sediment | Jubail | King Fahd University of Petroleum and Minerals (KFUPM) | Not mentioned | Brevibacillus Proteus Rhodococcus | Naphthalene, Pyrene. | Mesophile | 35–62% within 18 days, by GC | [62] |
3.5. Mesophilic, Halophilic, and Thermophilic Bacteria
3.6. Identification of Metabolites, Enzymes, and Biochemical Degradation Pathways of PAHs
4. Knowledge Gaps
4.1. Studies on Higher PAHs and Complex Oil Products
4.2. Omics Studies: Whole-Genome Analysis, Transcriptomics or Proteomics
4.3. The Potential of Fungi and Algae in the Degradation of Petroleum Products
4.4. Biodegradation Stimulation Methods
4.5. Degradation of Petroleum Products in Anaerobic Conditions
5. Conclusions and Future Perspective
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fakher, S.; Ahdaya, M.; Elturki, M.; Imqam, A. Critical review of asphaltene properties and factors impacting its stability in crude oil. J. Pet. Explor. Prod. Technol. 2020, 10, 1183–1200. [Google Scholar] [CrossRef]
- Chen, B.; Ye, X.; Zhang, B.; Jing, L.; Lee, K. Chapter 22—Marine Oil Spills—Preparedness and Countermeasures. In World Seas: An Environmental Evaluation; Sheppard, C.B.T., Ed.; Academic Press: London, UK, 2019; pp. 407–426. [Google Scholar]
- Fakhru’l-Razi, A.; Pendashteh, A.; Abdullah, L.C.; Biak, D.R.A.; Madaeni, S.S.; Abidin, Z.Z. Review of technologies for oil and gas produced water treatment. J. Hazard. Mater. 2009, 170, 530–551. [Google Scholar] [CrossRef] [PubMed]
- Nzila, A.; Musa, M. Current Knowledge and Future Challenges on Bacterial Degradation of the Highly Complex Petroleum Products Asphaltenes and Resins. Front. Environ. Sci. 2021, 9, 779644. [Google Scholar] [CrossRef]
- Sakshi; Haritash, A.K. A comprehensive review of metabolic and genomic aspects of PAH-degradation. Arch. Microbiol. 2020, 202, 2033–2058. [Google Scholar] [CrossRef]
- Nzila, A. Biodegradation of high-molecular-weight polycyclic aromatic hydrocarbons under anaerobic conditions: Overview of studies, proposed pathways and future perspectives. Environ. Pollut. 2018, 239, 788–802. [Google Scholar] [CrossRef]
- Nzila, A. Current status of the degradation of aliphatic and aromatic petroleum hydrocarbons by thermophilic microbes and future perspectives. Int. J. Environ. Res. Public Health 2018, 15, 2782. [Google Scholar] [CrossRef]
- Sun, K.; Song, Y.; He, F.; Jing, M.; Tang, J.; Liu, R. A review of human and animals exposure to polycyclic aromatic hydrocarbons: Health risk and adverse effects, photo-induced toxicity and regulating effect of microplastics. Sci. Total Environ. 2021, 773, 145403. [Google Scholar] [CrossRef]
- Patel, A.; Shaikh, S.; Jain, K.; Desai, C.; Madamvar, D. Polycyclic Aromatic Hydrocarbons: Sources, Toxicity, and Remediation Approaches. Front. Microbiol. 2020, 11, 562813. [Google Scholar] [CrossRef]
- Ramesh, A.; Harris, K.J.; Archibong, A.E. Chapter 40—Reproductive Toxicity of Polycyclic Aromatic Hydrocarbons. In Reproductive and Developmental Toxicology, 2nd ed.; Gupta, R.C., Ed.; Academic Press: London, UK, 2017; pp. 745–763. [Google Scholar]
- Jesus, F.; Pereira, J.L.; Campos, I.; Santos, M.; Ré, A.; Keizer, J.; Nogueira, A.; Gonçalves, F.J.M.; Abrantes, N.; Serpa, D. A review on polycyclic aromatic hydrocarbons distribution in freshwater ecosystems and their toxicity to benthic fauna. Sci. Total Environ. 2022, 820, 153282. [Google Scholar] [CrossRef]
- Sayed, K.; Baloo, L.; Sharma, N.K. Bioremediation of Total Petroleum Hydrocarbons (TPH) by Bioaugmentation and Biostimulation in Water with Floating Oil Spill Containment Booms as Bioreactor Basin. Int. J. Environ. Res. Public Health 2021, 18, 2226. [Google Scholar] [CrossRef]
- Davoodi, S.M.; Miri, S.; Taheran, M.; Brar, S.K.; Galvez-Cloutier, R.; Martel, R. Bioremediation of Unconventional Oil Contaminated Ecosystems under Natural and Assisted Conditions: A Review. Environ. Sci. Technol. 2020, 54, 2054–2067. [Google Scholar] [CrossRef] [PubMed]
- Adedeji, J.; Tetteh, E.; Amankwa, M.; Asante-Sackey, D.; Frimpong, S.; Armah, E.; Rathilal, S.; Mohammadi, A.; Manimagalay, C. Microbial Bioremediation and Biodegradation of Petroleum Products—A Mini Review. Appl. Sci. 2022, 12, 12212. [Google Scholar] [CrossRef]
- Michel, J. Chapter 37—1991 Gulf War Oil Spill. In Oil Spill Science and Technology; Fingas, M., Ed.; Gulf Professional Publishing: Boston, MA, USA, 2011; pp. 1127–1132. [Google Scholar]
- Marzooq, H.; Naser, H.A.; Elkanzi, E.M. Quantifying exposure levels of coastal facilities to oil spills in Bahrain, Arabian Gulf. Environ. Monit. Assess. 2019, 191, 160. [Google Scholar] [CrossRef] [PubMed]
- Al-Ghouti, M.A.; Al-Kaabi, M.A.; Ashfaq, M.Y.; Da’na, D.A. Produced water characteristics, treatment and reuse: A review. J. Water Process Eng. 2019, 28, 222–239. [Google Scholar] [CrossRef]
- El-Sayed, A.A.H.; Al-Blehed, M.S. Bacterial Isolate from Arabian Gulf Coast Soils in Saudi Arabia Able to Degrade Arab Crude Oil. J. King Saud Univ.-Eng. Sci. 1999, 11, 251–260. [Google Scholar] [CrossRef]
- Palleroni, N.J.; Pieper, D.H.; Moore, E.R.B. Microbiology of Hydrocarbon-Degrading Pseudomonas. In Handbook of Hydrocarbon and Lipid Microbiology; Timmis, K.N., Ed.; Springer: Berlin/Heidelberg, Germany, 2010; pp. 1787–1798. [Google Scholar]
- Söhngen, N.L. Benzin, petroleum, paraffinöl und paraffin als kohlenstoff-und energiequelle für mikroben. Zentr. Bacteriol. Parasitenk. Abt. II 1913, 37, 595–609. [Google Scholar]
- van Beilen, J.B.; Witholt, B. Alkane degradation by pseudomonads. In Pseudomonas: Volume 3 Biosynthesis of Macromolecules and Molecular Metabolism; Springer: New York, NY, USA, 2004; pp. 397–423. [Google Scholar]
- Jiménez, J.I.; Miñambres, B.; García, J.L.; Díaz, E. Genomic insights in the metabolism of aromatic compounds in Pseudomonas. In Pseudomonas: Volume 3 Biosynthesis of Macromolecules and Molecular Metabolism; Springer: New York, NY, USA, 2004; pp. 425–462. [Google Scholar]
- Pieper, D.H.; Reineke, W. Degradation of chloroaromatics by Pseudomona(d)s. In Pseudomonas: Volume 3 Biosynthesis of Macromolecules and Molecular Metabolism; Springer: New York, NY, USA, 2004; pp. 509–574. [Google Scholar]
- Gilani, R.A.; Rafique, M.; Rehman, A.; Munis, M.F.H.; ur Rehman, S.; Chaudhary, H.J. Biodegradation of chlorpyrifos by bacterial genus Pseudomonas. J. Basic. Microbiol. 2016, 56, 105–119. [Google Scholar] [CrossRef]
- Wilkes, R.A.; Aristilde, L. Degradation and metabolism of synthetic plastics and associated products by Pseudomonas sp. capabilities and challenges. J. Appl. Microbiol. 2017, 123, 582–593. [Google Scholar] [CrossRef]
- Arora, P.K. Bacilli-Mediated Degradation of Xenobiotic Compounds and Heavy Metals. Front. Bioeng. Biotechnol. 2020, 8, 570307. [Google Scholar] [CrossRef]
- Mishra, S.; Lin, Z.; Pang, S.; Zhang, Y.; Bhatt, P.; Chen, S. Biosurfactant is a powerful tool for the bioremediation of heavy metals from contaminated soils. J. Hazard. Mater. 2021, 418, 126253. [Google Scholar] [CrossRef]
- Eras-Muñoz, E.; Farré, A.; Sánchez, A.; Font, X.; Gea, T. Microbial biosurfactants: A review of recent environmental applications. Bioengineered 2022, 13, 12365–12391. [Google Scholar] [CrossRef] [PubMed]
- Rache-Arce, D.; Machacado-Salas, M.; Rosero-García, D. Hydrocarbon-degrading bacteria in Colombia: Systematic review. Biodegradation 2022, 33, 99–116. [Google Scholar] [CrossRef] [PubMed]
- Christine, M. Microbial Diversity Unbound: What DNA-based techniques are revealing about the planet’s hidden biodiversity. Bioscience 2004, 54, 1064–1068. [Google Scholar] [CrossRef]
- Wade, W. Unculturable Bacteria—The Uncharacterized organisms that Cause Oral Infections. J. R. Soc. Med. 2002, 95, 81–83. [Google Scholar] [CrossRef]
- Gu, J.-D. On Enrichment Culturing and Transferring Technique. Appl. Environ. Biotechnol. 2021, 6, 1–5. [Google Scholar] [CrossRef]
- El Hanafy, A.A.E.M.; Anwar, Y.; Mohamed, S.A.; Al-Garni, S.M.S.; Sabir, J.S.M.; Abuzinadah, O.A.; Al Mehdar, H.; Alfaidi, A.W.; Ahmed, M.M.M. Isolation and identification of bacterial consortia responsible for degrading oil spills from the coastal area of Yanbu, Saudi Arabia. Biotechnol. Biotechnol. Equip. 2016, 30, 69–74. [Google Scholar] [CrossRef]
- El-Rab, S.M.F.G.; Hassan, A.M.; Abdelmigid, H.M. Evaluation of genotoxicity and mutagenicity induced by crude oil contaminated water before and after biodegradation. Res. J. Pharm. Biol. Chem. Sci. 2016, 7, 2912–2924. [Google Scholar]
- Al-Dhabaan, F.A. Morphological, biochemical and molecular identification of petroleum hydrocarbons biodegradation bacteria isolated from oil polluted soil in Dhahran, Saud Arabia. Saudi J. Biol. Sci. 2019, 26, 1247–1252. [Google Scholar] [CrossRef]
- Afkar, E.; Hafez, A.; Ibrahim, R.; Aldayel, M. Effective Removal of Alkanes and Polycyclic Aromatic Hydrocarbons by Bacteria from Soil Chronically Exposed to Crude Petroleum Oil. Appl. Ecol. Environ. Res. 2021, 21, 725–733. [Google Scholar] [CrossRef]
- Hazaimeh, M.; Kanaan, B.M.; AlFaleh, F.A.; Elhaig, M.M.; Khamaiseh, E.I.; Zia, Q.; Alaidarous, M.; Seth, C.S.; Alsowayeh, N.; Ahmad, F. Biodegradation of petroleum hydrocarbons using a novel bacterial strain isolated from hydrocarbons contaminated soil of Saudi Arabia. Biocatal. Agric. Biotechnol. 2024, 57, 103074. [Google Scholar] [CrossRef]
- Abdel-Megeed, A.; Al-Harbi, N.; Al-Deyab, S. Hexadecane degradation by bacterial strains isolated from contaminated soils. Afr. J. Biotechnol. 2010, 9, 7487–7494. [Google Scholar] [CrossRef]
- Le, T.N.; Mikolasch, A.; Awe, S.; Sheikhany, H.; Klenk, H.P.; Schauer, F. Oxidation of aliphatic, branched chain, and aromatic hydrocarbons by Nocardia cyriacigeorgica isolated from oil-polluted sand samples collected in the Saudi Arabian Desert. J. Basic. Microbiol. 2010, 50, 241–253. [Google Scholar] [CrossRef] [PubMed]
- El Tarrs, A.E.; Shahaby, A.F.; Awad, N.S.; Bahobial, A.S.; El Abib, O.A. In vitro screening for oil degrading bacteria and evaluation of their biodegradation potential for hydrocarbon. Afr. J. Microbiol. Res. 2012, 6, 7534–7544. [Google Scholar] [CrossRef]
- Chandrasekaran, S.; Pugazhendi, A.; Banu, R.J.; Ismail, I.M.I.; Qari, H.A. Biodegradation of phenol by a moderately halophilic bacterial consortium. Environ. Prog. Sustain. Energy 2018, 37, 1587–1593. [Google Scholar] [CrossRef]
- Arafa, M.A. Biodegradation of Some Aromatic Hydrocarbons (BTEXs) by a Bacterial Consortium Isolated from Polluted Site in Saudi Arabia. Pak. J. Biol. Sci. 2003, 6, 1482–1486. [Google Scholar] [CrossRef]
- Nzila, A.; Thukair, A.; Sankara, S.; Chanbasha, B.; Musa, M.M.M.M. Isolation and characterization of naphthalene biodegrading Methylobacterium radiotolerans bacterium from the eastern coastline of the Kingdom of Saudi Arabia. Arch. Environ. Prot. 2016, 42, 25–32. [Google Scholar] [CrossRef]
- Farraj, D.; Alkufeidy, R.; Alkubaisi, N.; Alshammari, M. Polynuclear aromatic anthracene biodegradation by psychrophilic Sphingomonas sp., cultivated with tween-80. Chemosphere 2020, 263, 128115. [Google Scholar] [CrossRef]
- Hesham, A.E.L.; Alrumman, S.A.; Al-Amari, J.A. 16S rDNA Phylogenetic and RAPD–PCR Analyses of Petroleum Polycyclic Aromatic Hydrocarbons-Degrading Bacteria Enriched from Oil-Polluted Soils. Arab. J. Sci. Eng. 2016, 41, 2095–2106. [Google Scholar] [CrossRef]
- Amran, R.H.; Jamal, M.T.; Pugazhendi, A.; Al- Harbi, M.; Bowrji, S. Petroleum Hydrocarbon Degradation and Treatment of Automobile Service Station Wastewater by Halophilic Consortia Under Saline Conditions. Nat. Environ. Pollut. Technol. 2022, 2022, 1629. [Google Scholar] [CrossRef]
- Arulazhagan, P.; Al-Shekri, K.; Huda, Q.; Godon, J.J.; Basahi, J.M.; Jeyakumar, D. Biodegradation of polycyclic aromatic hydrocarbons by an acidophilic Stenotrophomonas maltophilia strain AJH1 isolated from a mineral mining site in Saudi Arabia. Extremophiles 2017, 21, 163–174. [Google Scholar] [CrossRef]
- Oyehan, T.A.; Al-Thukair, A.A. Isolation and characterization of PAH-degrading bacteria from the Eastern Province, Saudi Arabia. Mar. Pollut. Bull. 2017, 115, 39–46. [Google Scholar] [CrossRef] [PubMed]
- Pugazhendi, A.; Qari, H.; Al-Badry Basahi, J.M.; Godon, J.J.; Dhavamani, J. Role of a halothermophilic bacterial consortium for the biodegradation of PAHs and the treatment of petroleum wastewater at extreme conditions. Int. Biodeterior. Biodegrad. 2017, 121, 44–54. [Google Scholar] [CrossRef]
- Jamal, M.; Pugazhendi, A. Degradation of petroleum hydrocarbons and treatment of refinery wastewater under saline condition by a halophilic bacterial consortium enriched from marine environment (Red Sea), Jeddah, Saudi Arabia. 3Biotech 2018, 8, 276. [Google Scholar] [CrossRef] [PubMed]
- Jamal, M. Enrichment of Potential Halophilic Marinobacter Consortium for Mineralization of Petroleum Hydrocarbons and Also as Oil Reservoir Indicator in Red Sea, Saudi Arabia. Polycycl. Aromat. Compd. 2020, 42, 400–411. [Google Scholar] [CrossRef]
- Budiyanto, F.; Thukair, A.; Al-Momani, M.; Musa, M.M.; Nzila, A. Characterization of Halophilic Bacteria Capable of Efficiently Biodegrading the High-Molecular-Weight Polycyclic Aromatic Hydrocarbon Pyrene. Environ. Eng. Sci. 2018, 35, 616–626. [Google Scholar] [CrossRef]
- Alrumman, S.; Hesham, A.E.-L.; Alamri, S. Isolation, fingerprinting and genetic identification of indigenous PAHs degrading bacteria from oil-polluted soils. J. Environ. Biol. 2016, 37, 75–81. [Google Scholar]
- Nzila, A.; Ramirez, C.O.; Musa, M.M.; Sankara, S.; Basheer, C.; Li, Q.X. Pyrene biodegradation and proteomic analysis in Achromobacter xylosoxidans, PY4 strain. Int. Biodeterior. Biodegrad. 2018, 130, 40–47. [Google Scholar] [CrossRef]
- Al Farraj, D.A.; Hadibarata, T.; Yuniarto, A.; Alkufeidy, R.M.; Alshammari, M.K.; Syafiuddin, A. Exploring the potential of halotolerant bacteria for biodegradation of polycyclic aromatic hydrocarbon. Bioprocess. Biosyst. Eng. 2020, 43, 2305–2314. [Google Scholar] [CrossRef]
- Al-Mur, B.A.; Pugazhendi, A.; Jamal, M.T. Application of integrated extremophilic (halo-alkalo-thermophilic) bacterial consortium in the degradation of petroleum hydrocarbons and treatment of petroleum refinery wastewater under extreme condition. J. Hazard. Mater. 2021, 413, 125351. [Google Scholar] [CrossRef]
- Al-Thukair, A.A.; Malik, K. Pyrene metabolism by the novel bacterial strains Burkholderia fungorum (T3A13001) and Caulobacter sp (T2A12002) isolated from an oil-polluted site in the Arabian Gulf. Int. Biodeterior. Biodegrad. 2016, 110, 32–37. [Google Scholar] [CrossRef]
- Nzila, A.; Sankara, S.; Al-Momani, M.; Musa Musa, M.; Musa, M.M. Isolation and characterisation of bacteria degrading polycyclic aromatic hydrocarbons: Phenanthrene and anthracene. Arch. Environ. Prot. 2017, 44, 43–54. [Google Scholar] [CrossRef]
- Alfaify, A.; Mir, M.; Alrumman, S. Klebsiella oxytoca: An efficient pyrene-degrading bacterial strain isolated from petroleum-contaminated soil. Arch. Microbiol. 2022, 204, 248. [Google Scholar] [CrossRef] [PubMed]
- Nzila, A.; Musa, M.M.; Sankara, S.; Al-Momani, M.; Xiang, L.; Li, Q.X. Degradation of benzo[a]pyrene by halophilic bacterial strain Staphylococcus haemoliticus strain 10SBZ1A. PLoS ONE 2021, 16, e0247723. [Google Scholar] [CrossRef]
- Nzila, A.; Musa, M.M.; Afuecheta, E.; Al-Thukair, A.; Sankaran, S.; Xiang, L.; Li, Q.X. Benzo[A]Pyrene Biodegradation by Multiple and Individual Mesophilic Bacteria under Axenic Conditions and in Soil Samples. Int. J. Environ. Res. Public Health 2023, 20, 1855. [Google Scholar] [CrossRef]
- Al-Thukair, A.A.; Malik, K.; Nzila, A. Biodegradation of selected hydrocarbons by novel bacterial strains isolated from contaminated Arabian Gulf sediment. Sci. Rep. 2020, 10, 21846. [Google Scholar] [CrossRef]
- Okeyode, A.H.; Al-Thukair, A.; Chanbasha, B.; Nazal, M.K.; Afuecheta, E.; Musa, M.M.; Algarni, S.; Nzila, A. Degradation of the highly complex polycyclic aromatic hydrocarbon coronene by the halophilic bacterial strain Halomonas caseinilytica, 10SCRN4D. Arch. Environ. Prot. 2023, 49, 78–86. [Google Scholar] [CrossRef]
- Shahaby, A.F.; Alharthi, A.A.; El Tarras, A.E. Bioremediation of Petroleum Oil by Potential Biosurfactant-Producing Bacteria using Gravimetric Assay. Int. J. Curr. Microbiol. App. Sci. 2015, 4, 390–403. [Google Scholar]
- Pugazhendi, A.; Abbad Wazin, H.; Qari, H.; Basahi, J.M.A.B.; Godon, J.J.; Dhavamani, J. Biodegradation of low and high molecular weight hydrocarbons in petroleum refinery wastewater by a thermophilic bacterial consortium. Environ. Technol. 2017, 38, 2381–2391. [Google Scholar] [CrossRef]
- Ibrahim, M.M.; Al-Turki, A.; Al-Sewedi, D.; Arif, I.A.; El-Gaaly, G.A. Molecular application for identification of polycyclic aromatic hydrocarbons degrading bacteria (PAHD) species isolated from oil polluted soil in Dammam, Saud Arabia. Saudi J. Biol. Sci. 2015, 22, 651–655. [Google Scholar] [CrossRef]
- Eman, A.H.M.; Naeima, M.H.Y.; Azza, G. F Isolation and molecular identification of polyaromatic hydrocarbons- utilizing bacteria from crude petroleum oil samples. Afr. J. Microbiol. Res. 2012, 6, 7479–7484. [Google Scholar] [CrossRef]
- Bahobail, A.; Gad El-Rab, S.M.F.; Amin, G.A. Locally Isolated Bacterial Strains with Multiple Degradation Potential Capabilities on Petroleum Hydrocarbon Pollutants. Adv. Microbiol. 2016, 6, 852–866. [Google Scholar] [CrossRef]
- Alghamdi, A.; El-bendary, M.; Alabdalall, A.; Ababutain, I. Petroleum oil biodegradation potential of some isolated bacteria from Saudi Arabia. J. Food Agric. Environ. 2017, 15, 92–97. [Google Scholar]
- Anwar, Y.; El-Hanafy, A.A.; Sabir, J.S.M.; Al-Garni, S.M.S.; Al-Ghamdi, K.; Almehdar, H.; Waqas, M. Characterization of Mesophilic Bacteria Degrading Crude Oil from Different Sites of Aramco, Saudi Arabia. Polycycl. Aromat. Compd. 2017, 40, 135–143. [Google Scholar] [CrossRef]
- Al-Dhabi, N.A.; Esmail, G.A.; Arasu, M.V. Enhanced production of biosurfactant from bacillus subtilis strain al-dhabi-130 under solid-state fermentation using date molasses from saudi arabia for bioremediation of crude-oil-contaminated soils. Int. J. Environ. Res. Public Health 2020, 17, 8446. [Google Scholar] [CrossRef]
- Ameen, F.; Al-Homaidan, A.A. Oily bilge water treatment using indigenous soil bacteria: Implications for recycling the treated sludge in vegetable farming. Chemosphere 2023, 334, 139040. [Google Scholar] [CrossRef]
- Yaman, C. Performance and Kinetics of Bioaugmentation, Biostimulation, and Natural Attenuation Processes for Bioremediation of Crude Oil-Contaminated Soils. Processes 2020, 8, 883. [Google Scholar] [CrossRef]
- Róźalska, S.; Iwanicka-Nowicka, R. Organic Pollutants Degradation by Microorganisms: Genomics, Metagenomics and Metatranstriptomics Backgrounds. In Microbial Biodegradation: From Omics to Function and Application; Długoński, J., Ed.; Caister Academic Press: Norfolk, UK, 2016; pp. 1–12. [Google Scholar]
- Hidalgo, K.J.; Sierra-Garcia, I.N.; Dellagnezze, B.M.; de Oliveira, V.M. Metagenomic Insights into the Mechanisms for Biodegradation of Polycyclic Aromatic Hydrocarbons in the Oil Supply Chain. Front. Microbiol. 2020, 11, 561506. [Google Scholar] [CrossRef]
- Abed, R.M.M.; Al-Thukair, A.; De Beer, D. Bacterial diversity of a cyanobacterial mat degrading petroleum compounds at elevated salinities and temperatures. FEMS Microbiol. Ecol. 2006, 57, 290–301. [Google Scholar] [CrossRef]
- An, D.; Caffrey, S.M.; Soh, J.; Agrawal, A.; Brown, D.; Budwill, K.; Dong, X.; Dunfield, P.F.; Foght, J.; Gieg, L.M.; et al. Metagenomics of Hydrocarbon Resource Environments Indicates Aerobic Taxa and Genes to be Unexpectedly Common. Environ. Sci. Technol. 2013, 47, 10708–10717. [Google Scholar] [CrossRef]
- Abbasian, F.; Lockington, R.; Mallavarapu, M.; Naidu, R. A Comprehensive Review of Aliphatic Hydrocarbon Biodegradation by Bacteria. Appl. Biochem. Biotechnol. 2015, 176, 670–699. [Google Scholar] [CrossRef]
- Dhar, K.; Subashchandrabose, S.R.; Venkateswarlu, K.; Krishnan, K.; Megharaj, M. Anaerobic Microbial Degradation of Polycyclic Aromatic Hydrocarbons: A Comprehensive Review. Rev. Environ. Contam. Toxicol. 2020, 251, 25–108. [Google Scholar] [CrossRef] [PubMed]
- Ghosal, D.; Ghosh, S.; Dutta, T.K.; Ahn, Y. Current State of Knowledge in Microbial Degradation of Polycyclic Aromatic Hydrocarbons (PAHs): A Review. Front. Microbiol. 2016, 7, 1369. [Google Scholar] [CrossRef] [PubMed]
- Méndez García, M.; García de Llasera, M.P. A review on the enzymes and metabolites identified by mass spectrometry from bacteria and microalgae involved in the degradation of high molecular weight PAHs. Sci. Total Environ. 2021, 797, 149035. [Google Scholar] [CrossRef] [PubMed]
- Nzila, A.; Musa, M.M. Current Status of and Future Perspectives in Bacterial Degradation of Benzo[a]pyrene. Int. J. Environ. Res. Public Health 2020, 18, 262. [Google Scholar] [CrossRef]
- Juhasz, A.L.; Britz, M.L.; Stanley, G.A. Degradation of benzo[a]pyrene, dibenz[a,h]anthracene and coronene by Burkholderia cepacia. Water Sci. Technol. 1997, 36, 45–51. [Google Scholar] [CrossRef]
- He, X.; Zheng, X.; You, Y.; Zhang, S.; Zhao, B.; Wang, X.; Huang, G.; Chen, T.; Cao, Y.; He, L.; et al. Comprehensive chemical characterization of gaseous I/SVOC emissions from heavy-duty diesel vehicles using two-dimensional gas chromatography time-of-flight mass spectrometry. Environ. Pollut. 2022, 305, 119284. [Google Scholar] [CrossRef]
- Tse, C.; Ma, K. Growth and Metabolism of Extremophilic Microorganisms. In Biotechnology of Extremophiles: Advances and Challenges; Rampelotto, P.H., Ed.; Springer International Publishing: Cham, Switzerland, 2016; pp. 1–46. [Google Scholar]
- Fathepure, B.Z. Recent studies in microbial degradation of petroleum hydrocarbons in hypersaline environments. Front. Microbiol. 2014, 5, 173. [Google Scholar] [CrossRef]
- Arulazhagan, P.; Vasudevan, N. Biodegradation of polycyclic aromatic hydrocarbons by a halotolerant bacterial strain Ochrobactrum sp. VA1. Mar. Pollut. Bull. 2011, 62, 388–394. [Google Scholar] [CrossRef]
- Wu, C.; Li, F.; Yi, S.; Ge, F. Genetically engineered microbial remediation of soils co-contaminated by heavy metals and polycyclic aromatic hydrocarbons: Advances and ecological risk assessment. J. Environ. Manag. 2021, 296, 113185. [Google Scholar] [CrossRef]
- Xiang, L.; Li, G.; Wen, L.; Su, C.; Liu, Y.; Tang, H.; Dai, J. Biodegradation of aromatic pollutants meets synthetic biology. Synth. Syst. Biotechnol. 2021, 6, 153–162. [Google Scholar] [CrossRef]
- Seo, J.; Keum, Y.; Li, Q.X. Bacterial Degradation of Aromatic Compounds. Int. J. Environ. Res. Public Health 2009, 6, 278–309. [Google Scholar] [CrossRef] [PubMed]
- Khan, A.A.; Wang, R.F.; Cao, W.W.; Doerge, D.R.; Wennerstrom, D.; Cerniglia, C.E. Molecular cloning, nucleotide sequence, and expression of genes encoding a polycyclic aromatic ring dioxygenase from Mycobacterium sp. strain PYR-1. Appl. Environ. Microbiol. 2001, 67, 3577–3585. [Google Scholar] [CrossRef] [PubMed]
- Ripp, S.; Nivens, D.; Ahn, Y.; Werner, C.; Jarrell Easter, J.; Cox, C.; Burlage, R.; Sayler, G. Controlled Field Release of a Bioluminescent Genetically Engineered Microorganism for Bioremediation Process Monitoring and Control. Environ. Sci. Technol. 2000, 34, 2068. [Google Scholar] [CrossRef]
- Filonov, A.E.; Akhmetov, L.I.; Puntus, I.F.; Esikova, T.Z.; Gafarov, A.B.; Izmalkova TYu Sokolov, S.L.; Kosheleva, I.A.; Boronin, A.M. The Construction and Monitoring of Genetically Tagged, Plasmid-Containing, Naphthalene-Degrading Strains in Soil. Microbiology 2005, 74, 453–458. [Google Scholar] [CrossRef]
- Sayler, G.; Ripp, S. Field applications of genetically engineered microorganisms for bioremediation processes. Curr. Opin. Biotechnol. 2000, 11, 286–289. [Google Scholar] [CrossRef]
- Szewczyk, R.; Kowalski, K. Metabolomics and Crucial Enzymes in Microbial Degradation of Contaminants. In Microbial Biodegradation: From Omics to Function and Application; Długoński, J., Ed.; Caister Academic Press: Norfolk, UK, 2016; pp. 43–66. [Google Scholar]
- Debruyn, J.M.; Chewning, C.S.; Sayler, G.S. Comparative quantitative prevalence of Mycobacteria and functionally abundant nidA, nahAc, and nagAc dioxygenase genes in coal tar contaminated sediments. Environ. Sci. Technol. 2007, 41, 5426–5432. [Google Scholar] [CrossRef]
- DeBruyn, J.M.; Mead, T.J.; Sayler, G.S. Horizontal transfer of PAH catabolism genes in Mycobacterium: Evidence from comparative genomics and isolated pyrene-degrading bacteria. Environ. Sci. Technol. 2012, 46, 99–106. [Google Scholar] [CrossRef]
- Nzila, A.; Jung, B.K.; Kim, M.-C.; Ibal, J.C.; Budiyanto, F.; Musa, M.M.; Thukair, A.; Kim, S.-J.; Shin, J.-H. Complete genome sequence of the polycyclic aromatic hydrocarbons biodegrading bacterium Idiomarina piscisalsi strain 10PY1A isolated from oil-contaminated soil. Korean J. Microbiol. 2018, 54, 289–292. [Google Scholar] [CrossRef]
- Hassanshahian, M.; Amirinejad, N.; Behzadi, M. Crude oil pollution and biodegradation at the Persian Gulf: A comprehensive and review study. J. Environ. Health Sci. Eng. 2020, 18, 1415–1435. [Google Scholar] [CrossRef]
- Torres-Farradá, G.; Thijs, S.; Rineau, F.; Guerra, G.; Vangronsveld, J. White Rot Fungi as Tools for the Bioremediation of Xenobiotics: A Review. J. Fungi 2024, 10, 167. [Google Scholar] [CrossRef]
- da Silva, A.F.; Banat, I.M.; Robl, D.; Giachini, A.J. Fungal bioproducts for petroleum hydrocarbons and toxic metals remediation: Recent advances and emerging technologies. Bioprocess. Biosyst. Eng. 2023, 46, 393–428. [Google Scholar] [CrossRef] [PubMed]
- Al Farraj, D.A.; Hadibarata, T.; Yuniarto, A.; Syafiuddin, A.; Surtikanti, H.K.; Elshikh, M.S.; Al Khulaifi, M.M.; Al-Kufaidy, R. Characterization of pyrene and chrysene degradation by halophilic Hortaea sp. B15. Bioprocess Biosyst. Eng. 2019, 42, 963–969. [Google Scholar] [CrossRef] [PubMed]
- Ayu, R.; Hadibarata, T.; Farraj, D.; Elshikh, M.; Alkufeidy, R. Biodegradation Mechanism of Phenanthrene by Halophilic Hortaea sp. B15. Water Air Soil Pollut. 2018, 229, 324. [Google Scholar] [CrossRef]
- Cerniglia, C.E.; Sutherland, J.B. Degradation of Polycyclic Aromatic Hydrocarbons by Fungi. In Handbook of Hydrocarbon and Lipid Microbiology; Timmis, K.N., Ed.; Springer: Berlin/Heidelberg, Germany, 2010; pp. 2079–2110. [Google Scholar]
- Ahmad, I. Microalgae–Bacteria Consortia: A Review on the Degradation of Polycyclic Aromatic Hydrocarbons (PAHs). Arab. J. Sci. Eng. 2022, 47, 19–43. [Google Scholar] [CrossRef]
- Dell’ Anno, F.; Rastelli, E.; Sansone, C.; Brunet, C.; Ianora, A.; Dell’ Anno, A. Bacteria, Fungi and Microalgae for the Bioremediation of Marine Sediments Contaminated by Petroleum Hydrocarbons in the Omics Era. Microorganisms 2021, 9, 1695. [Google Scholar] [CrossRef]
- Satpati, G.G.; Gupta, S.; Biswas, R.K.; Choudhury, A.K.; Kim, J.-W.; Davoodbasha, M. Microalgae mediated bioremediation of polycyclic aromatic hydrocarbons: Strategies, advancement and regulations. Chemosphere 2023, 344, 140337. [Google Scholar] [CrossRef]
- Abate, R.; Oon, Y.-S.; Oon, Y.-L.; Bi, Y. Microalgae-Bacteria Nexus for Environmental Remediation and Renewable Energy Resources: Advances, Mechanisms and Biotechnological Applications. Heliyon 2024, 10, e31170. [Google Scholar] [CrossRef]
- Hoque, M.Z.; Alqahtani, A.; Sankaran, S.; Anand, D.; Musa, M.M.; Nzila, A.; Guerriero, G.; Siddiqui, K.S.; Ahmad, I. Enhanced biodegradation of phenanthrene and anthracene using a microalgal-bacterial consortium. Front. Microbiol. 2023, 14, 1227210. [Google Scholar] [CrossRef]
- Guo, W.; Ren, H.; Jin, Y.; Chai, Z.; Liu, B. The bioremediation of the typical persistent organic pollutants (POPs) by microalgae-bacteria consortia: A systematic review. Chemosphere 2024, 355, 141852. [Google Scholar] [CrossRef]
- Huang, Y.; Zhou, Z.; Cai, Y.; Li, X.; Huang, Y.; Hou, J.; Liu, W. Response of petroleum-contaminated soil to chemical oxidation combined with biostimulation. Ecotoxicol. Environ. Saf. 2024, 282, 116694. [Google Scholar] [CrossRef]
- Adams, G.O.; Fufeyin, P.T.; Okoro, S.E.; Ehinomen, I. Bioremediation, Biostimulation and Bioaugmention: A Review. Int. J. Environ. Bioremediat Biodegrad. 2015, 3, 28–39. [Google Scholar]
- Ambust, S.; Das, A.J.; Kumar, R. Bioremediation of petroleum contaminated soil through biosurfactant and Pseudomonas sp. SA3 amended design treatments. Curr. Res. Microb. Sci. 2021, 2, 100031. [Google Scholar] [CrossRef] [PubMed]
- Ng, Y.J.; Lim, H.R.; Khoo, K.S.; Chew, K.W.; Chan, D.J.C.; Bilal, M.; Munawaroh, H.S.H.; Show, P.L. Recent advances of biosurfactant for waste and pollution bioremediation: Substitutions of petroleum-based surfactants. Environ. Res. 2022, 212, 113126. [Google Scholar] [CrossRef] [PubMed]
- Wartell, B.; Boufadel, M.; Rodriguez-Freire, L. An effort to understand and improve the anaerobic biodegradation of petroleum hydrocarbons: A literature review. Int. Biodeterior. Biodegrad. 2021, 157, 105156. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mordecai, J.; Al-Thukair, A.; Musa, M.M.; Ahmad, I.; Nzila, A. Bacterial Degradation of Petroleum Hydrocarbons in Saudi Arabia. Toxics 2024, 12, 800. https://doi.org/10.3390/toxics12110800
Mordecai J, Al-Thukair A, Musa MM, Ahmad I, Nzila A. Bacterial Degradation of Petroleum Hydrocarbons in Saudi Arabia. Toxics. 2024; 12(11):800. https://doi.org/10.3390/toxics12110800
Chicago/Turabian StyleMordecai, James, Assad Al-Thukair, Musa M. Musa, Irshad Ahmad, and Alexis Nzila. 2024. "Bacterial Degradation of Petroleum Hydrocarbons in Saudi Arabia" Toxics 12, no. 11: 800. https://doi.org/10.3390/toxics12110800
APA StyleMordecai, J., Al-Thukair, A., Musa, M. M., Ahmad, I., & Nzila, A. (2024). Bacterial Degradation of Petroleum Hydrocarbons in Saudi Arabia. Toxics, 12(11), 800. https://doi.org/10.3390/toxics12110800