The Acute Toxicity and Cardiotoxic Effects of Protocatechuic Aldehyde on Juvenile Zebrafish
Abstract
:1. Introduction
2. Materials and Methods
2.1. Instrumentation
2.2. Medicines and Reagents
2.3. Animals
3. Methodology
3.1. Breeding and Culture of Zebrafish
3.2. Zebrafish Drug Delivery Solution Preparation
3.3. Grouping Interventions for Zebrafish
3.4. Zebrafish with Acute Exposure to PCA Exhibit Teratogenic Toxicity and Epimorphological Alterations
3.5. Acute Exposure to PCA’s Effects on Zebrafish Larvae’s Behavioral Alterations
3.6. Acute Exposure to PCA and Its Impact on the Zebrafish Heart’s Sinus Venosus–Arteriolar Bulb (SV-BA) Distance
3.7. Morphological Alterations in the Heart of Zebrafish Exposed to PCA
3.8. Acute Exposure to PCA: Effects on the Heart Function of Zebrafish
3.9. The Impact of Brief Exposure to PCA on the Zebrafish Heart’s Histological Composition
3.10. Prediction and Enrichment Analysis of Target Genes for PCA-Induced Cardiotoxicity
3.11. Statistical Analysis
4. Results
4.1. Examination of the Morphological Alterations and Teratogenic Effects of Acute Exposure to PCA in Zebrafish
4.2. An Examination of the Behavior of Zebrafish Larvae Exposed to PCA Acutely
4.3. Evaluation of the Acute Exposure of Zebrafish Larvae Heart SV-BA Distance to PCA
4.4. Examination of the Morphological Alterations in the Heart of Zebrafish Exposed to PCA
4.5. Evaluation of Zebrafish Heart Function after Acute PCA Exposure
4.6. Analysis of the Histopathological Slice of the Heart of a Zebrafish Exposed to PCA
4.7. Cardiotoxic Target Gene Prediction and Enrichment Analysis Triggered by Acute PCA Exposure
4.7.1. Potential Targets for PCA-Induced Cardiotoxicity
4.7.2. Networks of Protein Interactions
4.7.3. GO and KEGG Pathway Enrichment Analysis Results
4.7.4. Acute Exposure to PCA’s Effects on the mRNA Expression of the Main Target Genes for Cardiotoxicity in Zebrafish
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, C.; Guo, L.; Wang, J. Progress of pharmacological studies on protocatechuic aldehyde. Chin. J. Exp. Formulas 2013, 19, 338–342. [Google Scholar]
- Ji, G.L.; Zhou, W.; Ba, R.R.; Lin, C.H.; Liu, Y.L. Determination of six phenolic acid components in Danshen formula granules by double-labeled multi-assay method. J. Pharm. Anal. 2023, 43, 1326–1333. [Google Scholar] [CrossRef]
- Krzysztoforska, K.; Mirowska-Guzel, D.; Widy-Tyszkiewicz, E. Pharmacological effects of protocatechuic acid and its therapeutic potential in neurodegenerative diseases: Review on the basis of in vitro and in vivo studies in rodents and humans. Nutr. Neurosci. 2019, 22, 72–82. [Google Scholar] [CrossRef] [PubMed]
- Xing, Y.L.; Zhou, Z.; Agula; Zhong, Z.Y.; Ma, Y.J.; Zhao, Y.L.; Xiao, X.H.; Wang, S.Q. Protocatechuic aldehyde inhibits lipopolysaccharide-induced human umbilical vein endothelial cell apoptosis via regulation of caspase-3. Phytother. Res. 2012, 26, 1334–1341. [Google Scholar] [CrossRef]
- Fang, X.; Liu, Y.; Lu, J.; Hong, H.; Yuan, J.; Zhang, Y.; Wang, P.; Liu, P.; Ye, J. Protocatechuic aldehyde protects against isoproterenol-induced cardiac hypertrophy via inhibition of the JAK2/STAT3 signaling pathway. Naunyn-Schmiedeberg’s Arch. Pharmacol. 2018, 391, 1373–1385. [Google Scholar] [CrossRef]
- Wan, Y.J.; Guo, Q.; Liu, D.; Jiang, Y.; Zeng, K.W.; Tu, P.F. Protocatechualdehyde reduces myocardial fibrosis by directly targeting conformational dynamics of collagen. Eur. J. Pharmacol. 2019, 855, 183–191. [Google Scholar] [CrossRef]
- Yang, S.Y.; Xiao, Y.; An, C.; Qiu, C.L.; Li, J.A.; Chu, J.X. Neuroprotective mechanism of protocatechuic aldehyde. Chin. Herbal. Med. 2024, 55, 2463–2471. [Google Scholar]
- Cao, Y.G.; Zhang, L.; Ma, C.; Chang, B.B.; Chen, Y.C.; Tang, Y.Q.; Liu, X.D.; Liu, X.Q. Metabolism of protocatechuic acid influences fatty acid oxidation in rat heart: New anti-angina mechanism implication. Biochem. Pharmacol. 2009, 77, 1096–1104. [Google Scholar] [CrossRef]
- Zhou, J.; Zhang, J.; Cao, Y.; Chen, Y.; Yu, D.; Liu, X. Effect of acute myocardial ischemia on methylation metabolism of danshenin in rats. J. China Pharm. Univ. 2009, 40, 72–76. [Google Scholar]
- Zhu, B.T. Catechol-O-Methyltransferase (COMT)-mediated methylation metabolism of endogenous bioactive catechols and modulation by endobiotics and xenobiotics: Importance in pathophysiology and pathogenesis. Curr. Drug Metab 2002, 3, 321–349. [Google Scholar] [CrossRef]
- Xu, M.; Zhang, Z.; Fu, G.; Sun, S.; Sun, J.; Yang, M.; Liu, A.; Han, J.; Guo, D. Liquid chromatography-tandem mass spectrometry analysis of protocatechuic aldehyde and its phase I and II metabolites in rat. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2007, 856, 100–107. [Google Scholar] [CrossRef] [PubMed]
- Cao, W.; Cao, Y.; Zhang, L.; Chang, Z.; Tang, Y.; Liu, X. Effects of acute myocardial ischemia on the pharmacokinetics of protocatechuic acid in rats. J. China Pharm. Univ. 2010, 41, 156–159. [Google Scholar]
- Gao, L.; Wu, W.F.; Dong, L.; Ren, G.L.; Li, H.D.; Yang, Q.; Li, X.F.; Xu, T.; Li, Z.; Wu, B.M.; et al. Protocatechuic Aldehyde Attenuates Cisplatin-Induced Acute Kidney Injury by Suppressing Nox-Mediated Oxidative Stress and Renal Inflammation. Front. Pharmacol. 2016, 7, 479. [Google Scholar] [CrossRef]
- MacRae, C.A.; Peterson, R.T. Zebrafish as tools for drug discovery. Nat. Rev. Drug Discov. 2015, 14, 721–731. [Google Scholar] [CrossRef] [PubMed]
- OECD. Validation Report (Phase 2) for the Zebrafish Embryo Toxicity Test I; OECD Series on Testing and Assessment 179; The OECD Observer; Organisation for Economic Co-Operation and Development: Paris, France, 2012; Volume 25. [Google Scholar]
- OECD. Test No. 236: Fish Embryo Acute Toxicity (FET) Test; OECD: Paris, France, 2013. [Google Scholar]
- Huang, M.; Jiao, J.; Wang, J.; Xia, Z.; Zhang, Y. Exposure to acrylamide induces cardiac developmental toxicity in zebrafish during cardiogenesis. Environ. Pollut. 2018, 234, 656–666. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Chu, T.; Chen, L.; Gui, W.; Zhu, G. In vivo cardiovascular toxicity induced by acetochlor in zebrafish larvae. Chemosphere 2017, 181, 600–608. [Google Scholar] [CrossRef]
- Xue, D. Construction and Study of Vasopressor and Cardiac Injury Model in Zebrafish. Master’s Thesis, Shanxi Medical University, Taiyuan, China, 2016. [Google Scholar]
- Berman, N.; Lectura, M.; Thurman, J.; Reinecke, J.; Raff, A.C.; Melamed, M.L.; Reinecke, J.; Quan, Z.; Evans, T.; Meyer, T.W.; et al. A zebrafish model for uremic toxicity: Role of the complement pathway. Blood Purif. 2013, 35, 265–269. [Google Scholar] [CrossRef]
- Brown, M.A.; Magee, L.A.; Kenny, L.C.; Karumanchi, S.A.; McCarthy, F.P.; Saito, S.; Hall, D.R.; Warren, C.E.; Adoyi, G.; Ishaku, S. Hypertensive Disorders of Pregnancy: ISSHP Classification, Diagnosis, and Management Recommendations for International Practice. Hypertension 2018, 72, 24–43. [Google Scholar] [CrossRef]
- Yang, Y.; Cao, J.; Xu, X.; Xing, W.; Liu, Z.; Xu, J.; Shi, Y.; Wang, M.; Wang, G.; Yang, J. Distribution, excretion and toxicity of protocatechualdehyde in animals. Jiangsu Med. 1979, 10, 16–17+19. [Google Scholar] [CrossRef]
- Zhou, S.Y.; Chen, J.P.; Liu, Z.D.; Zhou, J.R.; Liu, Y.; Liu, S.H.; Tian, C.W.; Chen, C.Q. Progress in the study of chemical composition and pharmacological effects of Yam bean root. Chin. Herb. Med. 2021, 52, 1510–1521. [Google Scholar]
- Jang, S.M.; Bae, S.H.; Choi, W.K.; Park, J.B.; Kim, D.; Min, J.S.; Yoo, H.; Kang, M.; Ryu, K.H.; Bae, S.K. Pharmacokinetic properties of trifolirhizin, (-)-maackiain, (-)-isophorone and 2-(2,4-dihydroxy phenyl)-5,6-methylenedioxybenzofuran after intravenous and oral administration of Sophora tonkinensis extract in rats. Xenobiotica 2015, 45, 1092–1104. [Google Scholar] [CrossRef] [PubMed]
- Duan, J.; Hu, H.; Li, Q.; Jiang, L.; Zou, Y.; Wang, Y.; Sun, Z. Combined toxicity of silica nanoparticles and methylmercury on the cardiovascular system in zebrafish (Danio rerio) embryos. Environ. Toxicol. Pharmacol. 2016, 44, 120–127. [Google Scholar] [CrossRef] [PubMed]
- Duan, J.; Yu, Y.; Li, Y.; Li, Y.; Liu, H.; Jing, L.; Yang, M.; Wang, J.; Li, C.; Sun, Z. Low-dose exposure of silica nanoparticles induces cardiac dysfunction via neutrophil-mediated inflammation and cardiac contraction in zebrafish embryos. Nanotoxicology 2016, 10, 575–585. [Google Scholar] [CrossRef] [PubMed]
- Han, Y.; Zhang, J.P.; Qian, J.Q.; Hu, C.Q. Cardiotoxicity evaluation of anthracyclines in zebrafish (Danio rerio). J. Appl. Toxicol. 2015, 35, 241–252. [Google Scholar] [CrossRef] [PubMed]
- Han, Y.; Li, X.; Yan, M.; Yang, M.; Wang, S.; Pan, J.; Li, L.; Tan, J. Oxidative damage induces apoptosis and promotes calcification in disc cartilage endplate cell through ROS/MAPK/NF-κB pathway: Implications for disc degeneration. Biochem. Biophys. Res. Commun. 2019, 516, 1026–1032. [Google Scholar] [CrossRef]
- Shen, R.; Yu, Y.; Lan, R.; Yu, R.; Yuan, Z.; Xia, Z. The cardiovascular toxicity induced by high doses of gatifloxacin and ciprofloxacin in zebrafish. Environ. Pollut. 2019, 254, 112861. [Google Scholar] [CrossRef]
- Miao, W.; Zhu, X.; Xu, Y.; Jiang, Y.; Shao, L. Derivation of dose conversion factors for zebrafish and rodents based on experimental data. Chin. Sci. Technol. J. Database (Full Text. Version) Nat. Sci. 2022, 3, 61–69. [Google Scholar]
- Rofaani, E.; Mardani, M.W.; Yutiana, P.N.; Amanda, O.; Darmawan, N. Differentiation of mesenchymal stem cells into vascular endothelial cells in 3D culture: A mini-review. Mol. Biol. Rep. 2024, 51, 781. [Google Scholar] [CrossRef]
- Hu, Y.Y. PI3K/Akt/GSK-3β and Mitochondrial ATP-Sensitive Potassium Channels Mediate the Protective Effect of Procyanidins against Myocardial Ischemia-Reperfusion Injury. Ph.D. Thesis, Shandong University, Jinan, China, 2013. [Google Scholar]
- Han, J.; Xuan, J.; Hu, H.; Chen, Z. Relationship between the effects of hypericin preconditioning to attenuate myocardial ischemia-reperfusion injury in rats and the PI3K/Akt signalling pathway. Chin. J. Tradit. Chin. Med. 2015, 40, 118–123. [Google Scholar]
- Díaz, R.; Goyal, A.; Mehta, S.R.; Afzal, R.; Xavier, D.; Pais, P.; Chrolavicius, S.; Zhu, J.; Kazmi, K.; Liu, L.; et al. Glucose-insulin-potassium therapy in patients with ST-segment elevation myocardial infarction. JAMA 2007, 298, 2399–2405. [Google Scholar] [CrossRef]
- Raghunath, A.; Perumal, E. Analysis of Lethality and Malformations During Zebrafish (Danio rerio) Development. Methods Mol. Biol. 2018, 1797, 337–363. [Google Scholar] [PubMed]
- Sun, L.; Cui, K.; Xing, F.; Liu, X. Akt dependent adult hippocampal neurogenesis regulates the behavioral improvement of treadmill running to mice model of post-traumatic stress disorder. Behav. Brain Res. 2020, 379, 112375. [Google Scholar] [CrossRef]
- Vicent, L.; Cinca, J.; Vazquez-García, R.; Gonzalez-Juanatey, J.R.; Rivera, M.; Segovia, J.; Pascual-Figal, D.; Bover, R.; Worner, F.; Delgado-Jiménez, J.; et al. Discharge treatment with angiotensin-converting enzyme inhibitor/angiotensin receptor blocker after a heart failure hospitalization is associated with a better prognosis irrespective of left ventricular ejection fraction. Intern. Med. J. 2019, 49, 1505–1513. [Google Scholar] [CrossRef] [PubMed]
- McMurray, J.J.; Packer, M.; Desai, A.S.; Gong, J.; Lefkowitz, M.; Rizkala, A.R.; Rouleau, J.L.; Shi, V.C.; Solomon, S.D.; Swedberg, K.; et al. Baseline characteristics and treatment of patients in prospective comparison of ARNI with ACEI to determine the impact on global mortality and morbidity in heart failure trial (PARADIGM-HF). Eur. J. Heart Fail. 2014, 16, 817–825. [Google Scholar] [CrossRef] [PubMed]
- He, Y. Study on Exosome-Derived Mir-320a Regulating PIK3CA against Myocardial Fibrosis in Chronic Heart Failure by Wenzhong Yiqi Fang. Master’s Thesis, Guangxi Traditional Chinese Medical University, Nanning, China, 2019. [Google Scholar]
- Wu, R.C.; Ayhan, A.; Maeda, D.; Kim, K.R.; Clarke, B.A.; Shaw, P.; Chui, M.H.; Rosen, B.; Shih Ie, M.; Wang, T.L. Frequent somatic mutations of the telomerase reverse transcriptase promoter in ovarian clear cell carcinoma but not in other major types of gynecological malignancy. J. Pathol. 2014, 232, 473–481. [Google Scholar] [CrossRef] [PubMed]
- Embi, N.; Rylatt, D.B.; Cohen, P. Glycogen synthase kinase-3 from rabbit skeletal muscle. Separation from cyclic-AMP-dependent protein kinase and phosphorylase kinase. Eur. J. Biochem. 1980, 107, 519–527. [Google Scholar] [CrossRef]
- Men, R.; Wang, Y.; Zhang, L.; Men, L.; Lan, W.; Meng, Q.; Yu, J. Mechanism of action of metoprolol combined with clopidogrel in mice with myocardial ischemia-reperfusion injury. West. Med. 2024, 36, 365–371. [Google Scholar]
- Fang, X.; Yu, S.X.; Lu, Y.; Bast, R.C., Jr.; Woodgett, J.R.; Mills, G.B. Phosphorylation and inactivation of glycogen synthase kinase 3 by protein kinase A. Proc. Natl. Acad. Sci. USA 2000, 97, 11960–11965. [Google Scholar] [CrossRef]
- Zhu, H.; Zhang, W.; Zhao, Y.; Shu, X.; Wang, W.; Wang, D.; Yang, Y.; He, Z.; Wang, X.; Ying, Y. GSK3β-mediated tau hyperphosphorylation triggers diabetic retinal neurodegeneration by disrupting synaptic and mitochondrial functions. Mol. Neurodegener. 2018, 13, 62. [Google Scholar] [CrossRef]
- Takahashi-Yanaga, F. Roles of Glycogen Synthase Kinase-3 (GSK-3) in Cardiac Development and Heart Disease. J. Uoeh 2018, 40, 147–156. [Google Scholar] [CrossRef]
- Zhou, B.P.; Deng, J.; Xia, W.; Xu, J.; Li, Y.M.; Gunduz, M.; Hung, M.C. Dual regulation of Snail by GSK-3beta-mediated phosphorylation in control of epithelial-mesenchymal transition. Nat. Cell Biol. 2004, 6, 931–940. [Google Scholar] [CrossRef] [PubMed]
- Götschel, F.; Kern, C.; Lang, S.; Sparna, T.; Markmann, C.; Schwager, J.; McNelly, S.; von Weizsäcker, F.; Laufer, S.; Hecht, A.; et al. Inhibition of GSK3 differentially modulates NF-kappaB, CREB, AP-1, and beta-catenin signaling in hepatocytes, but fails to promote TNF-alpha-induced apoptosis. Exp. Cell Res. 2008, 314, 1351–1366. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Zha, Y.; Du, F.; Liu, J.; Li, X.; Zhao, X. Contributions of PARP-1 rs1136410 C>T polymorphism to the development of cancer. J. Cell Mol. Med. 2020, 24, 14639–14644. [Google Scholar] [CrossRef]
- Deng, S.; Dai, G.; Chen, S.; Nie, Z.; Zhou, J.; Fang, H.; Peng, H. Dexamethasone induces osteoblast apoptosis through ROS-PI3K/AKT/GSK3β signaling pathway. Biomed. Pharmacother. 2019, 110, 602–608. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Zou, W.; Li, J.; Cai, G.; Liu, K.; Jia, K.; Wang, T.; Peng, Y. Mechanistic study on the myocardial protective effect of cardiostatin on MIRI rats based on PI3K/Akt/GSK-3β signaling pathway. J. Chin. Med. 2020, 48, 6–11. [Google Scholar] [CrossRef]
- Li, S. Study on the Protective Mechanism of Myocardial Ischemia-Reperfusion Injury via ALKBH5/GSK3β/mTOR Signaling Pathway by Quick-Acting Heart-Saving Pill. Master’s Thesis, Shanghai University of Traditional Chinese Medicine, Shanghai, China, 2021. [Google Scholar]
- Huang, J.; Lei, Y.; Hua, X.; Zhou, H.; Zhu, X. The intervention of miR-208a based on down-regulation of PI3K/AKT/GSK3β signaling pathway in acute myocardial infarction model rats. Hebei Med. 2022, 44, 3530–3533+3537. [Google Scholar]
- Sinha, K.; Das, J.; Pal, P.B.; Sil, P.C. Oxidative stress: The mitochondria-dependent and mitochondria-independent pathways of apoptosis. Arch. Toxicol. 2013, 87, 1157–1180. [Google Scholar] [CrossRef]
- Burgos-Aceves, M.A.; Cohen, A.; Smith, Y.; Faggio, C. MicroRNAs and their role on fish oxidative stress during xenobiotic environmental exposures. Ecotoxicol. Environ. Saf. 2018, 148, 995–1000. [Google Scholar] [CrossRef]
- Burgos-Aceves, M.A.; Cohen, A.; Paolella, G.; Lepretti, M.; Smith, Y.; Faggio, C.; Lionetti, L. Modulation of mitochondrial functions by xenobiotic-induced microRNA: From environmental sentinel organisms to mammals. Sci. Total Environ. 2018, 645, 79–88. [Google Scholar] [CrossRef]
β-Actin | F: AGAGCTATGAGCTGCCTGACG | R: CCGCAAGATTCCATACCCA |
---|---|---|
Pik3ca | F: GATCGCCGAAGCCATCAGGAAG | R: GTCACAGCCGCAGACCTTCAG |
Parp1 | F: CATTTGGGTCCCTGAAGCCT | R: ACCCAGTCTTTGCGATCAGG |
Gsk3β | F: AACTCTGCGACTTTGGCAGT | R:CGGTGGCTCCAAAGATGAGT |
GO Term | Subgroup | Count |
---|---|---|
Phosphatidylinositol-3-phosphate biosynthetic process | Biological Processes | 3 |
Extrinsic apoptotic signaling pathway in the absence of ligand | Biological Processes | 3 |
Protein kinase B signaling | Biological Processes | 3 |
Phosphatidylinositol-mediated signaling | Biological Processes | 3 |
Phosphorylation | Biological Processes | 5 |
Negative regulation of intrinsic apoptotic signaling pathway | Biological Processes | 2 |
Cell migration | Biological Processes | 3 |
Intrinsic apoptotic signaling pathway in response to DNA damage | Biological Processes | 2 |
Phosphatidylinositol 3-kinase complex, class lA | Cellular Components | 2 |
Phosphatidylinositol3-kinase complex, class lB | Cellular Components | 2 |
axon | Cellular Components | 3 |
Cytoplasm | Cellular Components | 10 |
Nuclear membrane | Cellular Components | 2 |
1-Phosphatidylinositol-4-phosphate 3-kinase activity | Molecular Functions | 3 |
1-Phosphatidylinositol-3-kinase activity | Molecular Functions | 3 |
Dopamine neurotransmitter receptor activity | Molecular Functions | 2 |
ATP binding | Molecular Functions | 7 |
Number | Pathway | Enrichment | p-Value | Count |
---|---|---|---|---|
zab00140 | ErbB signaling pathway | 26.31292517 | 0.000364195 | 4 |
zab04210 | Apoptosis | 10.96371882 | 0.000778384 | 5 |
zab04140 | Inositol phosphate metabolism | 8.05028305 | 0.002457148 | 5 |
zab04012 | FoxO signaling pathway | 12.44530245 | 0.003254212 | 4 |
zab04510 | Autophagy-animal | 6.692967885 | 0.004793276 | 5 |
zab04068 | Insulin signaling pathway | 8.372294372 | 0.009852925 | 4 |
zab04910 | Herpes simplex virus 1 infection | 7.804681195 | 0.011931379 | 4 |
zab01100 | Salmonella infection | 2.030969565 | 0.017097321 | 11 |
zab05168 | Human cytomegalovirus infection | 6.771708683 | 0.017480242 | 4 |
zab00562 | Metabolic pathways | 10.62637363 | 0.028938037 | 3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yin, J.; Wang, H.; Zhao, F.; Liang, D.; Yang, W.; Zhang, D. The Acute Toxicity and Cardiotoxic Effects of Protocatechuic Aldehyde on Juvenile Zebrafish. Toxics 2024, 12, 799. https://doi.org/10.3390/toxics12110799
Yin J, Wang H, Zhao F, Liang D, Yang W, Zhang D. The Acute Toxicity and Cardiotoxic Effects of Protocatechuic Aldehyde on Juvenile Zebrafish. Toxics. 2024; 12(11):799. https://doi.org/10.3390/toxics12110799
Chicago/Turabian StyleYin, Jiufeng, Hui Wang, Feng Zhao, Dan Liang, Wenqing Yang, and Dan Zhang. 2024. "The Acute Toxicity and Cardiotoxic Effects of Protocatechuic Aldehyde on Juvenile Zebrafish" Toxics 12, no. 11: 799. https://doi.org/10.3390/toxics12110799
APA StyleYin, J., Wang, H., Zhao, F., Liang, D., Yang, W., & Zhang, D. (2024). The Acute Toxicity and Cardiotoxic Effects of Protocatechuic Aldehyde on Juvenile Zebrafish. Toxics, 12(11), 799. https://doi.org/10.3390/toxics12110799