An Investigation into the Viability of Portable Proximal Sensor X-Ray Fluorescence Data for Assessing Heavy Metal Contamination in Urban Soils: A Case Study in Changchun, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Overview of the Study Area
2.2. Sampling and Analysis
2.2.1. Sampling and Analysis with Sensors (pXRF)
Quality Assurance and Quality Control (QA/QC)
Analysis of Soil Samples
2.2.2. Data Processing and Methods
Calculation of the Correction for Matrix Effects
Pollution Evaluation Methods
Environmental Impacts
3. Results and Discussion
3.1. Evaluation of Matrix Effect Correction
3.2. Assessment of Pollution Degree
3.3. Assessment of Leopold Matrix
4. Conclusions
- 1.
- The Changchun built-up area as a whole is slightly to moderately polluted, but it needs to be alerted to the contamination of elemental As, as well as Cu and Pb, with the main sources of pollution being metal-related industrial manufacturing, the manufacturing of chemical products, and coal-fired heating. The environmental impacts of activities in the urban areas of Changchun are all within manageable limits and soil remediation should be carried out for the corresponding response sites immediately.
- 2.
- The on-site test data obtained by pXRF can be considered as a reliable dataset after processing by the correction model. The order of correction for each element under this simple correction model is as follows: Cu > Pb > Cr > Zn > As. This exploratory correction method can be extended to the correction of other elements, which also provides a valuable reference for the correction of in situ measurements of other potential soil pollutants.
- 3.
- The pXRF is efficiently calibrated for real-time scanning of regional soil contamination and large-scale sustainable rapid assessment. Therefore, we advocate that calibrated pXRF data from proximal sensors can be used by government agencies or monitoring organizations as complementary information to enhance spatial monitoring of potentially contaminated sites at the local and regional levels to ensure the safety and health of populations in urban environments.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A. Pollution Index Classification Scale
Index | Numerical Range | Classes |
---|---|---|
Single pollution index (PI) | PI < 1 | non-polluting |
1−2 | lightly polluted | |
2−3 | moderately polluted | |
PI > 3 | heavily polluting | |
Geo-accumulation index (I-geo) | I−geo < 0 | non-polluted |
0−1 | Uncontaminated to moderately contaminated | |
1−2 | Moderately contaminated | |
2−3 | Moderately to strongly contaminated | |
3−4 | Strongly contaminated | |
4−5 | Strongly to extremely contaminated | |
I-geo > 5 | Extremely high contaminated | |
Contamination Factor (CF) | CF < 1 | non-polluting |
1−3 | lightly polluted | |
3−6 | moderately polluted | |
CF > 6 | heavily polluted | |
Enrichment factor (EF) | EF < 2 | Minimal enrichment |
EF = 2−5 | Moderate enrichment | |
EF = 5−20 | Significant enrichment | |
EF = 20−40 | Very high enrichment | |
EF > 40 | Extremely high enrichment | |
The pollution load index (PLI) | PLI < 1 | Clearly |
PLI > 1 | Polluted | |
Risk factor (RI) | RI < 20 | Low ecological risk |
20−40 | Moderate ecological risk | |
40−80 | Considerable ecological risk | |
80−160 | High ecological risk | |
>160 | Serious ecological risk | |
Degree of contamination (C-deg) | C−deg < 8 | non-polluting |
8−16 | lightly polluted | |
16−32 | moderately polluted | |
C−deg >32 | heavily polluted | |
Nemerow pollution Index (PI-Nemerow) | PIN < 0.7 | Class I soils (unpolluted) |
0.7−1 | Class II soils (Safety) | |
1−2 | Class III soils (Mild pollution) | |
2 −3 | Super tertiary soils (Moderated) | |
PIN > 3 | Severe pollution |
References
- Tang, S.; Wang, C.; Song, J.; Ihenetu, S.C.; Li, G. Advances in Studies on Heavy Metals in Urban Soil: A Bibliometric Analysis. Sustainability 2024, 16, 860. [Google Scholar] [CrossRef]
- Zhao, M.; Zhao, Y.; Shen, T.; Li, S. Co-Kriging Interpolation of Mn and Zn Pollution Distribution and High-Score Mapping Based on in situ PXRF Data. Res. Environ. Sci. 2023, 36, 600–609. [Google Scholar] [CrossRef]
- Tešić, M.; Stojanović, N.; Knežević, M.; Đunisijević-Bojović, D.; Petrović, J.; Pavlović, P. The Impact of the Degree of Urbanization on Spatial Distribution, Sources and Levels of Heavy Metals Pollution in Urban Soils—A Case Study of the City of Belgrade (Serbia). Sustainability 2022, 14, 13126. [Google Scholar] [CrossRef]
- Chen, L.; Ren, B.; Deng, X.; Yin, W.; Xie, Q.; Cai, Z.; Zou, H. Black shale bedrock control of soil heavy metal typical high geological background in China Loushao Basin: Pollution characteristics, source and Influence assessment based on spatial analysis. J. Hazard. Mater. 2024, 477, 135072. [Google Scholar] [CrossRef] [PubMed]
- Sun, Q.; Sun, B.; Wang, D.; Pu, Y.; Zhan, M.; Xu, X.; Wang, J.; Jiao, W. A review on the chemical speciation and influencing factors of heavy metals in Municipal Solid Waste landfill humus. Waste Dispos. Sustain. Energy 2024, 6, 209–218. [Google Scholar] [CrossRef]
- Bao, W.; Wan, W.; Sun, Z.; Hong, M.; Li, H. Spatial Distribution and Migration of Heavy Metals in Dry and Windy Area Polluted by Their Production in the North China. Processes 2024, 12, 160. [Google Scholar] [CrossRef]
- He, A.; Li, X.; Ai, Y.; Li, X.; Li, X.; Zhang, Y.; Gao, Y.; Liu, B.; Zhang, X.; Zhang, M.; et al. Potentially toxic metals and the risk to children’s health in a coal mining city: An investigation of soil and dust levels, bioaccessibility and blood lead levels. Environ. Int. 2020, 141, 105788. [Google Scholar] [CrossRef]
- Jiang, R.; Wang, M.; Xie, T.; Chen, W. Site-specific ecological effect assessment at community level for polymetallic contaminated soil. J. Hazard. Mater. 2023, 445, 130531. [Google Scholar] [CrossRef]
- Shao, Y.; Chen, W.; Li, J.; Yan, B.; He, H.; Zhang, Y. Influencing Factors, Risk Assessment, and Source Identification of Heavy Metals in Purple Soil in the Eastern Region of Guang’an City, Sichuan Province, China. Minerals 2024, 14, 495. [Google Scholar] [CrossRef]
- Adnan, M.; Xiao, B.; Ali, M.U.; Xiao, P.; Zhao, P.; Wang, H.; Bibi, S. Heavy metals pollution from smelting activities: A threat to soil and groundwater. Ecotoxicol. Environ. Saf. 2024, 274, 116189. [Google Scholar] [CrossRef]
- Crocombe, R.A. Portable Spectroscopy. Appl. Spectrosc. 2018, 72, 1701–1751. [Google Scholar] [CrossRef] [PubMed]
- da Costa, M.V.; Lima, G.J.d.O.; Guilherme, L.R.G.; Carneiro, M.A.C.; Ribeiro, B.T. Towards direct and eco-friendly analysis of plants using portable X-ray fluorescence spectrometry: A methodological approach. Chemosphere 2023, 339, 139613. [Google Scholar] [CrossRef] [PubMed]
- Da Silva, A.; Triantafyllou, A.; Delmelle, N. Portable x-ray fluorescence calibrations: Workflow and guidelines for optimizing the analysis of geological samples. Chem. Geol. 2023, 623, 121395. [Google Scholar] [CrossRef]
- Santos, N.F.; Guilherme, L.R.G.; Carneiro, M.A.C.; Guerra, M.B.B. A simple and reliable calibration method for direct analysis of ground-roasted coffee by portable XRF: An accurate analytical tool for total diet studies. J. Anal. At. Spectrom. 2024, 39, 1152–1159. [Google Scholar] [CrossRef]
- Ravansari, R.; Wilson, S.C.; Tighe, M. Portable X-ray fluorescence for environmental assessment of soils: Not just a point and shoot method. Environ. Int. 2020, 134, 105250. [Google Scholar] [CrossRef]
- Shrestha, G.; Calvelo-Pereira, R.; Roudier, P.; Martin, A.; Turnbull, R.; Kereszturi, G.; Jeyakumar, P.; Anderson, C. Quantification of multiple soil trace elements by combining portable X-ray fluorescence and reflectance spectroscopy. Geoderma 2022, 409, 115649. [Google Scholar] [CrossRef]
- Wang, D.; Lu, J.; Wu, J.; Li, B.; Nyasha, N.K. Enrichment Characteristics of Hazardous Trace Elements in Feed Coal and Coal Ash in Huaibei Area under Leaching. Toxics 2023, 11, 308. [Google Scholar] [CrossRef]
- Korbel, C.; Mezoued, N.; Demeusy, B.; Fabre, C.; Cauzid, J.; Filippova, I.V.; Filippov, L.O. Quantification of lithium using handheld instruments: Application of LIBS and XRF spectroscopy to assay the lithium content of mineral processing products. J. Anal. At. Spectrom. 2024, 39, 1838–1853. [Google Scholar] [CrossRef]
- Adimalla, N.; Chen, J.; Qian, H. Spatial characteristics of heavy metal contamination and potential human health risk assessment of urban soils: A case study from an urban region of South India. Ecotoxicol. Environ. Saf. 2020, 194, 110406. [Google Scholar] [CrossRef]
- Xia, F.; Hu, B.; Zhu, Y.; Ji, W.; Chen, S.; Xu, D.; Shi, Z. Improved Mapping of Potentially Toxic Elements in Soil via Integration of Multiple Data Sources and Various Geostatistical Methods. Remote Sens. 2020, 12, 3775. [Google Scholar] [CrossRef]
- Shi, J.; Zhao, D.; Ren, F.; Huang, L. Spatiotemporal variation of soil heavy metals in China: The pollution status and risk assessment. Sci. Total. Environ. 2023, 871, 161768. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Zhao, Y.; Hao, L.; Zhao, X.; Lu, J.; Wei, Q.; Shi, Y.; Ma, C. Evaluation and Source Identification of Heavy Metal Pollution in Black Soils, Central-Eastern Changchun, China. Sustainability 2023, 15, 7419. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, Y.; Wang, L.; Li, X.; Zhou, X.; Li, X.; Yan, M.; Lu, Q.; Tang, Z.; Zhang, G.; et al. Characteristics and Risk Assessments of Mercury Pollution Levels at Domestic Garbage Collection Points Distributed within the Main Urban Areas of Changchun City. Toxics 2021, 9, 309. [Google Scholar] [CrossRef]
- Zhang, P.; Dong, Y.; Guo, Y.; Wang, C.; Wang, G.; Ma, Z.; Zhou, W.; Zhang, D.; Ren, Z.; Wang, W. Urban forest soil is becoming alkaline under rapid urbanization: A case study of Changchun, northeast China. Catena 2023, 224, 106993. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, J.; Li, C.; Zhou, G.; Fu, Z.; Liu, D. Influential intensity of urban agglomeration on evolution of eco-environmental pressure: A case study of Changchun, China. Chin. Geogr. Sci. 2017, 27, 638–647. [Google Scholar] [CrossRef]
- Ma, Z.; He, X.G.; Tong, X.Z.; Duan, H.Y.; Wang, X.E.; Dong, D.M. The Study on Carbon Emission Influencing Factors of Industrial Energy Consumption of Changchun City. Appl. Mech. Mater. 2012, 164, 302–305. [Google Scholar] [CrossRef]
- Wang, J.; Yang, J.; Chen, T. Source appointment of potentially toxic elements (PTEs) at an abandoned realgar mine: Combination of multivariate statistical analysis and three common receptor models. Chemosphere 2022, 307, 135923. [Google Scholar] [CrossRef]
- Ministry of Ecology and Environment, PRC. Potentiometric Method for the Determination of Soil pH: HJ962-2018[S]. 2018. Available online: https://www.scirp.org/reference/referencespapers?referenceid=3795318 (accessed on 27 October 2024).
- Ministry of Ecology and Environment, PRC. Determination of Organic Matter in Forest Soil and Calculation Carbon-Nitrogen Ratio:LY/T1237-1999[S]. 1999. Available online: https://www.cnki.com.cn/Article/CJFDTOTAL-NXNL903.006.htm (accessed on 27 October 2024).
- Xie, S.; Yang, F.; Feng, H.; Wei, C.; Wu, F. Assessment of Potential Heavy Metal Contamination in the Peri-urban Agricultural Soils of 31 Provincial Capital Cities in China. Environ. Manag. 2019, 64, 366–380. [Google Scholar] [CrossRef]
- Hao, L.; Tian, M.; Zhao, X.; Zhao, Y.; Lu, J.; Bai, R. Spatial distribution and sources of trace elements in surface soils, Changchun, China: Insights from stochastic models and geostatistical analyses. Geoderma 2016, 273, 54–63. [Google Scholar] [CrossRef]
- Tardani, D.; Vera, F.; Álvarez-Amado, F.; Tolorza, V.; Lacassie, J.P.; Jullian, D.; Sepúlveda, C.; Sánchez-Alfaro, P.; Daniele, L.; Gutiérrez, L. Evaluating natural and anthropogenic inputs on the distribution of potentially toxic elements in urban soil of Valdivia, Chile. Environ. Geochem. Health 2023, 45, 7841–7859. [Google Scholar] [CrossRef]
- Horf, M.; Gebbers, R.; Vogel, S.; Ostermann, M.; Piepel, M.-F.; Olfs, H.-W. Determination of Nutrients in Liquid Manures and Biogas Digestates by Portable Energy-Dispersive X-ray Fluorescence Spectrometry. Sensors 2021, 21, 3892. [Google Scholar] [CrossRef]
- Piikki, K.; Söderström, M.; Eriksson, J.; John, J.M.; Muthee, P.I.; Wetterlind, J.; Lund, E. Performance Evaluation of Proximal Sensors for Soil Assessment in Smallholder Farms in Embu County, Kenya. Sensors 2016, 16, 1950. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.; Lu, J.; Chen, Z.; Zhao, X.; Wei, Q.; Fan, Y.; Lan, T. Geochemical study of the Ashele Copper-Zinc Deposit using portable X-ray fluorescence spectrometry based on matrix effect correction, Northwest China. Appl. Geochem. 2022, 146, 105461. [Google Scholar] [CrossRef]
- Kazimoto, E.O.; Messo, C.; Magidanga, F.; Bundala, E. The use of portable X-ray spectrometer in monitoring anthropogenic toxic metals pollution in soils and sediments of urban environment of Dar es Salaam Tanzania. J. Geochem. Explor. 2018, 186, 100–113. [Google Scholar] [CrossRef]
- Wang, C.; Lv, J.; Wang, X.; Khumalo, A.; Hong, A. A novel algorithm combined X-ray fluorescence and Neural Network (XRF-NN) for coal ash content prediction: Algorithm design and performance evaluation. Physicochem. Probl. Miner. Process. 2024, 60, 193187. [Google Scholar] [CrossRef]
- Lu, J.; Guo, J.; Wei, Q.; Tang, X.; Lan, T.; Hou, Y.; Zhao, X. A Matrix Effect Correction Method for Portable X-ray Fluorescence Data. Appl. Sci. 2022, 12, 568. [Google Scholar] [CrossRef]
- Tulla, P.S.; Kumar, P.; Vishwakarma, D.K.; Kumar, R.; Kuriqi, A.; Kushwaha, N.L.; Rajput, J.; Srivastava, A.; Pham, Q.B.; Panda, K.C.; et al. Daily suspended sediment yield estimation using soft-computing algorithms for hilly watersheds in a data-scarce situation: A case study of Bino watershed, Uttarakhand. Theor. Appl. Clim. 2024, 155, 4023–4047. [Google Scholar] [CrossRef]
- He, S.; Zhang, Y.; Luo, L.; Song, Y. Establishment of Remote Sensing Inversion Model and Its Application in Pollution Source Identification: A Case Study of East Lake in Wuhan. Remote Sens. 2024, 16, 3402. [Google Scholar] [CrossRef]
- da Silva, T.R.; de Almeida, E.; Tavares, T.R.; Melquiades, F.L.; Baesso, M.M.; de Camargo, R.F.; Gomes, M.H.F.; de Carvalho, H.W.P. In situ determination of soybean leaves nutritional status by portable X-ray fluorescence: An initial approach for data collection and predictive modelling. Biosyst. Eng. 2024, 247, 143–152. [Google Scholar] [CrossRef]
- Bashir, O.; Bangroo, S.A.; Shafai, S.S.; Senesi, N.; Kader, S.; Alamri, S. Geostatistical modeling approach for studying total soil nitrogen and phosphorus under various land uses of North-Western Himalayas. Ecol. Informatics 2024, 80, 102520. [Google Scholar] [CrossRef]
- Horta, A.; Azevedo, L.; Neves, J.; Soares, A.; Pozza, L. Integrating portable X-ray fluorescence (pXRF) measurement uncertainty for accurate soil contamination mapping. Geoderma 2021, 382, 114712. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, Z.; Tian, B.; Li, J.; Luo, J.; Wang, X.; Ai, S.; Wang, X. Assessment of soil heavy metal pollution in provinces of China based on different soil types: From normalization to soil quality criteria and ecological risk assessment. J. Hazard. Mater. 2023, 441, 129891. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Lu, X.; Deng, S.; Zhu, T.; Yu, B. Bibliometric and visual analysis of heavy metal health risk assessment: Development, hotspots and trends. Arch. Environ. Prot. 2024, 50, 56–71. [Google Scholar] [CrossRef]
- Dange, S.; Arumugam, K.; Vijayaraghavalu, S.S. Geochemical Insights into Heavy Metal Contamination and Health Hazards in Palar River Basin: A Pathway to Sustainable Solutions. Ecol. Indic. 2024, 166, 112568. [Google Scholar] [CrossRef]
- Guo, G.; Wang, Y.; Zhang, D.; Lei, M. Source-specific ecological and health risks of potentially toxic elements in agricultural soils in Southern Yunnan Province and associated uncertainty analysis. J. Hazard. Mater. 2021, 417, 126144. [Google Scholar] [CrossRef]
- Ferreira, S.L.; da Silva, J.B.; dos Santos, I.F.; de Oliveira, O.M.; Cerda, V.; Queiroz, A.F. Use of pollution indices and ecological risk in the assessment of contamination from chemical elements in soils and sediments—Practical aspects. Trends Environ. Anal. Chem. 2022, 35, e00169. [Google Scholar] [CrossRef]
- Yang, Y.; Lu, X.; Yu, B.; Zuo, L.; Wang, L.; Lei, K.; Fan, P.; Liang, T.; Rennert, T.; Rinklebe, J. Source-specific risk judgement and environmental impact of potentially toxic elements in fine road dust from an integrated industrial city, North China. J. Hazard. Mater. 2023, 458, 131982. [Google Scholar] [CrossRef]
- Buat-Menard, P.; Chesselet, R. Variable influence of the atmospheric flux on the trace metal chemistry of oceanic suspended matter. Earth Planet. Sci. Lett. 1979, 42, 398–411. [Google Scholar] [CrossRef]
- Ardila, P.A.R.; Álvarez-Alonso, R.; Árcega-Cabrera, F.; Valsero, J.J.D.; García, R.M.; Lamas-Cosío, E.; Oceguera-Vargas, I.; DelValls, A. Assessment and Review of Heavy Metals Pollution in Sediments of the Mediterranean Sea. Appl. Sci. 2024, 14, 1435. [Google Scholar] [CrossRef]
- Hossain, M.M.; Mojumdar, S.; Islam, S.; Rahman, A.; Alahmadi, T.A.; Ansari, M.J.; Mistry, S.K. A comprehensive analysis of health risks from metal contamination in the Sundarbans mangrove forest ecosystem in Bangladesh. Toxicol. Environ. Health Sci. 2024, 1–29. [Google Scholar] [CrossRef]
- Alqattan, Z.A.; Artiola, J.F.; Walls, D.; Ramírez-Andreotta, M.D. Evaluating the portable X-ray fluorescence reliability for metal(loid)s detection and soil contamination status. Environ. Monit. Assess. 2024, 196, 765. [Google Scholar] [CrossRef] [PubMed]
- Plak, A.; Telecka, M.; Charzyński, P.; Hanaka, A. Evaluation of hazardous element accumulation in urban soils of Cracow, Lublin and Torun (Poland): Pollution and ecological risk indices. J. Soils Sediments 2024, 24, 3286–3296. [Google Scholar] [CrossRef]
- Gong, C.; Quan, L.; Chen, W.; Tian, G.; Zhang, W.; Xiao, F.; Zhang, Z. Ecological risk and spatial distribution, sources of heavy metals in typical purple soils, southwest China. Sci. Rep. 2024, 14, 11342. [Google Scholar] [CrossRef] [PubMed]
- Arani, M.H.; Mohammadzadeh, M.; Kalantary, R.R.; Rad, S.H.; Moslemzadeh, M.; Jaafarzadeh, N. Environmental impact assessment of a steel industry development plan using combined method involving Leopold matrix and RIAM. J. Environ. Health Sci. Eng. 2021, 19, 1997–2011. [Google Scholar] [CrossRef]
- Hnin, H.W.; Bonnet, S.; Gheewala, S.H. Environmental impact assessment of electricity production from municipal solid waste in Yangon, Myanmar. Environ. Dev. Sustain. 2024, 1–36. [Google Scholar] [CrossRef]
- Ayiwouo, M.N.; Sriram, S.; Ngounouno, F.Y.; Rajagopal, K.; Ngounouno, I. Assessment of the environmental impacts of gold mining activities at Gankombol (Adamawa-Cameroon) using Leopold matrix, Fecteau grid and remote sensing approach. J. Afr. Earth Sci. 2023, 207, 105050. [Google Scholar] [CrossRef]
- Valizadeh, S.; Hakimian, H. Evaluation of waste management options using rapid impact assessment matrix and Iranian Leopold matrix in Birjand, Iran. Int. J. Environ. Sci. Technol. 2018, 16, 3337–3354. [Google Scholar] [CrossRef]
- Xu, D.; Chen, S.; Xu, H.; Wang, N.; Zhou, Y.; Shi, Z. Data fusion for the measurement of potentially toxic elements in soil using portable spectrometers. Environ. Pollut. 2020, 263, 114649. [Google Scholar] [CrossRef]
- Zhao, M.; Chen, Z.; Qian, C.; Zhao, Y.; Xu, Y.; Liu, Y. Correcting correlation quality of portable X-ray fluorescence to better map heavy metal contamination by spatial co-kriging interpolation. Ecotoxicol. Environ. Saf. 2024, 271, 115962. [Google Scholar] [CrossRef]
- Shahab, A.; Hui, Z.; Rad, S.; Xiao, H.; Siddique, J.; Huang, L.L.; Ullah, H.; Rashid, A.; Taha, M.R.; Zada, N. A comprehensive review on pollution status and associated health risk assessment of human exposure to selected heavy metals in road dust across different cities of the world. Environ. Geochem. Health 2022, 45, 585–606. [Google Scholar] [CrossRef]
- Ma, M.; Fang, L.; Zhao, N.; Ma, X. Detection of Cadmium and Lead Heavy Metals in Soil Samples by Portable Laser-Induced Breakdown Spectroscopy. Chemosensors 2024, 12, 40. [Google Scholar] [CrossRef]
- Mugudamani, I.; Oke, S.A.; Gumede, T.P. Influence of Urban Informal Settlements on Trace Element Accumulation in Road Dust and Their Possible Health Implications in Ekurhuleni Metropolitan Municipality, South Africa. Toxics 2022, 10, 253. [Google Scholar] [CrossRef] [PubMed]
- Ren, Z.; Christakos, G.; Lou, Z.; Xu, H.; Lv, X.; Fei, X. Contamination Assessment and Source Apportionment of Metals and Metalloids Pollution in Agricultural Soil: A Comparison of the APCA-MLR and APCA-GWR Models. Sustainability 2022, 14, 783. [Google Scholar] [CrossRef]
- Li, Y.; Zhou, S.; Liu, K.; Wang, G.; Wang, J. Application of APCA-MLR receptor model for source apportionment of char and soot in sediments. Sci. Total. Environ. 2020, 746, 141165. [Google Scholar] [CrossRef]
- Zhou, Y.; Du, S.; Liu, Y.; Yang, T.; Liu, Y.; Li, Y.; Zhang, L. Source identification and risk assessment of trace metals in surface sediment of China Sea by combining APCA-MLR receptor model and lead isotope analysis. J. Hazard. Mater. 2024, 465, 133310. [Google Scholar] [CrossRef]
- Zhu, Y.; Liu, B.; Jin, G.; Wu, Z.; Wang, D. Identifying the Local Influencing Factors of Arsenic Concentration in Suburban Soil: A Multiscale Geographically Weighted Regression Approach. Toxics 2024, 12, 229. [Google Scholar] [CrossRef]
Cr (pXRF) | Cr (St) | Cu (pXRF) | Cu (St) | Zn (pXRF) | Zn (St) | As (pXRF) | As (St) | Pb (pXRF) | Pb (St) | Si % (pXRF) | Si (St) | Ti (pXRF) | Ti% (St) | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
GSS-1a | 51.2 | 44.00 | 55.0 | 42.00 | 677.0 | 475.00 | 48.6 | 33.00 | 421.8 | 339.00 | 30.62 | 26.46 | 3956.4 | 0.326 |
GSS-1 | 45.0 | 47.00 | 21.60 | 21 | 863.8 | 680 | 44.4 | 34 | 102.6 | 98 | 30.47 | 29.263 | 5885.2 | 0.483 |
GSS-2 | 370.8 | 410.00 | 30.0 | 16.30 | 45.2 | 42.00 | 16.6 | 13.70 | - | 20.00 | 33.87 | 34.29 | 2954.2 | 0.271 |
GSS-3 | 70.8 | 70.00 | 14.00 | 11.4 | 19.6 | 31 | - | 4.4 | 20.0 | 26 | 34.88 | 34.929 | 2378.2 | 0.224 |
GSS-4 | 31.6 | 25.00 | 18.00 | 40 | 214.4 | 210 | 73.0 | 58 | 62.8 | 58 | 23.42 | 23.817 | 13,798.2 | 1.080 |
GSS-5 | 36.8 | 43.00 | 118.0 | 144 | 605.4 | 494 | 530.8 | 412 | 690.6 | 552 | 24.04 | 24.575 | 7633.4 | 0.629 |
GSS-6 | 50.4 | 57.00 | 478.60 | 390 | 101.2 | 97 | 302.2 | 220 | 371.0 | 314 | 25.09 | 26.613 | 5556. | 0.439 |
GSS-7 | 63.4 | 82.00 | 91.4 | 97.00 | 149.6 | 142.00 | - | 4.80 | 18.8 | 14.00 | 16.25 | 15.28 | 25,629.0 | 2.020 |
GSS-8 | 61.0 | 62.00 | 18.00 | 24.3 | 60.4 | 68 | 17.0 | 12.7 | - | 21 | 28.65 | 27.398 | 4510.20 | 0.380 |
GSS-14 | 51.2 | 66.00 | 29.0 | 27.40 | 109.4 | 96.00 | - | 6.50 | 32.6 | 31.00 | 30.28 | 30.16 | 4700.0 | 0.406 |
GSS-17 | 45.0 | 61.00 | 20.4 | 12.60 | 28.2 | 29.00 | 11.6 | 6.20 | - | 17.40 | 36.17 | 36.60 | 1874.0 | 0.191 |
GSS-20 | 80.0 | 92.00 | 25.4 | 28.00 | 54.6 | 61.00 | 11.2 | 8.70 | - | 13.40 | 24.09 | 22.10 | 3392.6 | 0.330 |
GSS-22 | 62.4 | 62 | 19.8 | 18.30 | 65.6 | 59.00 | 13.8 | 7.80 | 25.0 | 26.00 | 32.61 | 31.90 | 4395.8 | 0.380 |
GSS-23 | 28.20 | 32 | 40.4 | 32.00 | 122.4 | 97.00 | 20.8 | 11.80 | - | 28.00 | 29.954 | 27.95 | 5946.4 | 0.500 |
GSS-24 | 351.40 | 370 | 31.6 | 28.00 | 96.2 | 81.00 | 24.0 | 15.80 | 30.2 | 40.00 | 32.130 | 32.31 | 5361.4 | 0.450 |
GSS-25 | 166.40 | 118 | 24.0 | 23.60 | 75.8 | 66.00 | 17.6 | 12.90 | - | 22.00 | 30.894 | 28.48 | 4494.2 | 0.390 |
GSS-26 | 122.20 | 75 | 21.8 | 19.10 | 68.2 | 62.00 | 12.5 | 8.90 | - | 21.00 | 32.830 | 30.92 | 4539.0 | 0.410 |
GSS-27 | 64.60 | 68 | 52.8 | 54.00 | 153.4 | 127.00 | 17.7 | 13.30 | 44.0 | 41.00 | 29.324 | 27.52 | 7457.8 | 0.640 |
Index | Formula | Explain |
---|---|---|
Single pollution index (PI) | Cn—the content of the heavy mental element [48]. Bn—the geochemical background value of Jilin province. | |
Geo-accumulation index (I-geo) | Cn—the measured levels of the heavy metal “n” in the soil sample, Bn—used the same way as PI, and K is the correction factor, which was chosen as 1.5 [44]. | |
Contamination factor (CF) | Cn—the content of heavy metal from at least five samples of individual metals, Cp—pre-industrial reference value for the substances [49]. | |
Enrichment factor (EF) | Cn—content of analyzed heavy metal, Cref—one of the following metals, Ti [50]. Bn—reference content of the analyzed heavy metal, Bref—one of the following metals, Ti in the background [51]. | |
The pollution load index (PLI) | CFn—the contamination factors of the element n [52]. | |
Risk factor (RI) | n—the number of heavy metals, Tr—the toxicity response coefficient of an individual metal, Cf—contamination factor, Er—single index of the ecological risk factor [53]. | |
Degree of contamination (C-deg) | CFi—the contamination factor for each element [54]. | |
Nemerow pollution index (PI-Nemerow) | n—the total number of elements, PI—the value of the single index, PImax—the maximum value of the PI [55]. |
Elements | Soils Background Values (mg⋅kg−1) | Toxicity Factor |
---|---|---|
Cr | 46.7 | 2 |
Cu | 17.1 | 1 |
Zn | 80.4 | 5 |
As | 8.38 | 10 |
Pb | 28.8 | 5 |
In Situ pXRF (mg⋅kg−1) | Mean | Max | Min |
---|---|---|---|
Cr | 38.9 | 203.6 | 5.3 |
Cu | 21.3 | 136.6 | 5.0 |
Pb | 15.8 | 302.2 | 6.0 |
Zn | 90.1 | 1511.6 | 27.8 |
As | 11.2 | 21.8 | 4.0 |
ICP-MS (mg⋅kg−1) | |||
Cr | 49.00 | 146.85 | 15.20 |
Cu | 56.95 | 592.16 | 22.45 |
Pb | 43.94 | 653.32 | 16.98 |
Zn | 91.12 | 758.25 | 18.77 |
As | 18.80 | 48.13 | 5.17 |
The corrected PXRF (mg⋅kg−1) | |||
Cr | 64.22 | 167.68 | 38.93 |
Cu | 43.78 | 392.10 | 3.90 |
Pb | 57.43 | 565.72 | 13.44 |
Zn | 96.23 | 795.20 | 39.66 |
As | 20.90 | 39.86 | 6.40 |
Elements | Multiple Linear Regression Equations | R2 Before Correcting | R2 After Correcting | Degree of Advancement |
---|---|---|---|---|
Cr | Y = 0.652X + 0.001Ti + 0.954Si − 8.381 | 0.612 | 0.755 | 23.37% |
Cu | Y = 1.196X + 0.009Ti − 15.030Si + 399.033 | 0.355 | 0.768 | 116.64% |
Zn | Y = 0.493X − 0.017Ti − 9.932Si + 395.925 | 0.688 | 0.803 | 16.77% |
As | Y = 1.785X + 0.001Ti − 0.569Si + 16.283 | 0.699 | 0.761 | 8.87% |
Pb | Y = 1.795X − 0.008Ti − 4.254Si + 179.420 | 0.586 | 0.863 | 47.29% |
Index | Cr | Cu | Zn | As | Pb |
---|---|---|---|---|---|
PI-Max | 3.59 | 22.93 | 9.89 | 5.02 | 19.64 |
PI-avg | 1.38 | 2.56 | 1.20 | 2.68 | 1.99 |
CF | 0.71 | 0.88 | 0.55 | 1.39 | 0.82 |
Nemerow index | 1.20 |
Elements | Composition Matrix | Rotated Composition Matrix | Pollution Contribution | ||||
---|---|---|---|---|---|---|---|
Component 1 | Component 2 | Component 1 | Component 2 | Source 1 | Source 2 | Unknown Source (s) | |
Cr | 0.192 | 0.816 | 0.015 | 0.838 | 0.16% | 69.37% | 30.47% |
Cu | 0.916 | 0.081 | 0.878 | 0.273 | 30.89% | 37.50% | 31.61% |
Zn | 0.941 | −0.253 | 0.974 | −0.049 | 50.64% | 13.17% | 36.19% |
As | 0.257 | 0.809 | 0.081 | 0.845 | 2.30% | 83.20% | 14.50% |
Pb | 0.923 | −0.217 | 0.948 | −0.017 | 67.65% | 8.26% | 24.09% |
Physiological Environment | Social Environment | Economic Environment | |||||
---|---|---|---|---|---|---|---|
Impact Activities | Soil | Water | Air | Infrastructure | Health | Employment | Value of Land |
Raw materials for metal production | −2/3 | −2/3 | −1/3 | −2/2 | −1/3 | 1/3 | −1/2 |
Vehicle manufacturing and assembly | −2/3 | −2/2 | −1/3 | −1/2 | −2/3 | 4/3 | −1/2 |
Recycling and disposal of abandoned cars | −4/3 | −2/2 | −2/3 | −1/2 | −2/3 | 2/3 | −2/2 |
Input of chemical raw materials | −3/2 | −3/3 | −1/3 | - | −3/3 | 1/3 | - |
Product manufacturing | −4/3 | −3/3 | −2/3 | −1/2 | −3/3 | 4/3 | −1/2 |
Treatment of waste biological products | −3/3 | −2/3 | −1/3 | - | −3/3 | 3/3 | −2/2 |
Fossil fuel usage | −3/3 | −1/2 | −4/3 | −1/1 | −3/3 | 1/2 | - |
Waste gas and waste residue emissions | −2/3 | −3/3 | −4/3 | - | −3/3 | 1/2 | −1/2 |
Fertilizer and pesticide usage | −1/2 | −3/3 | −1/3 | −2/2 | −3/3 | - | −3/3 |
Vehicle exhaust emission | −2/2 | −1/3 | −2/3 | - | −1/3 | - | −1/3 |
Sewage disposal | −2/3 | −3/3 | −1/2 | −1/2 | −3/3 | −1/2 | - |
Solid waste emissions | −3/3 | −2/3 | −1/2 | −2/2 | −3/3 | −1/2 | −1/3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zou, X.; Lu, J.; Zhao, X.; Wei, Q.; Gou, Z.; Hou, Y.; Lai, Y. An Investigation into the Viability of Portable Proximal Sensor X-Ray Fluorescence Data for Assessing Heavy Metal Contamination in Urban Soils: A Case Study in Changchun, China. Toxics 2024, 12, 798. https://doi.org/10.3390/toxics12110798
Zou X, Lu J, Zhao X, Wei Q, Gou Z, Hou Y, Lai Y. An Investigation into the Viability of Portable Proximal Sensor X-Ray Fluorescence Data for Assessing Heavy Metal Contamination in Urban Soils: A Case Study in Changchun, China. Toxics. 2024; 12(11):798. https://doi.org/10.3390/toxics12110798
Chicago/Turabian StyleZou, Xiaoxiao, Jilong Lu, Xinyun Zhao, Qiaoqiao Wei, Zhiyi Gou, Yaru Hou, and Yawen Lai. 2024. "An Investigation into the Viability of Portable Proximal Sensor X-Ray Fluorescence Data for Assessing Heavy Metal Contamination in Urban Soils: A Case Study in Changchun, China" Toxics 12, no. 11: 798. https://doi.org/10.3390/toxics12110798
APA StyleZou, X., Lu, J., Zhao, X., Wei, Q., Gou, Z., Hou, Y., & Lai, Y. (2024). An Investigation into the Viability of Portable Proximal Sensor X-Ray Fluorescence Data for Assessing Heavy Metal Contamination in Urban Soils: A Case Study in Changchun, China. Toxics, 12(11), 798. https://doi.org/10.3390/toxics12110798