The Role of Simulation Science in Public Health at the Agency for Toxic Substances and Disease Registry: An Overview and Analysis of the Last Decade
Abstract
:1. Introduction
- Physiologically Based Pharmacokinetic (PBPK) modeling;
- Quantitative Structure–Activity Relationship (QSAR) analysis;
- Computational systems biology;
- Benchmark dose (BMD) modeling;
- Fate and transport modeling.
2. Overview of Simulation Science Tools for Public Health
2.1. Physiologically Based Pharmacokinetic (PBPK) Modeling
2.2. Quantitative Structure–Activity Relationship (QSAR) Modeling
2.2.1. Endocrine Disruption
2.2.2. Carcinogenicity, Mutagenicity, and Developmental Toxicity
2.3. Computational Systems Biology
2.4. Benchmark Dose (BMD) Modeling
2.5. Fate and Transport Modeling
Water Modeling: Reconstruction of Historical Drinking Water Contamination
- Pease International Tradeport of Portsmouth, New HampshireThe historical reconstruction used a materials mass balance model to compute flow-weighted average concentrations of PFASs in public drinking water.
- PFAS Exposure AssessmentsEvaluated 50+ PFAS sites to determine the nationwide representation of concentrations of PFAS in drinking water.
- PFAS Multi-Site StudyHistorical Reconstruction Workgroup oversees fate and transport analyses and water-distribution system analyses to estimate concentrations of PFAS in drinking water. Estimates will be used as input for PBPK modeling.
- Saint-Gobain (Merrimack, NH)Historical reconstruction of concentrations of PFASs in the public drinking water.
- NASA Wallops Flight Facility (Town of Chincoteague, VA)Historical reconstruction of concentrations of PFASs in the public drinking water.
- Warminster and Willow Grove, PennsylvaniaHistorical reconstruction of concentrations of PFASs in the public drinking water.
3. Collaborations
3.1. Internal Collaborations
3.1.1. Inhalation Toxicity and Emergency Response
3.1.2. Biomonitoring, Surveillance, and Literature Reviews
3.2. External Collaborations
3.2.1. Interagency Collaborations
3.2.2. Academic Collaborations
3.2.3. Private Collaborations
4. Challenges and Future Directions
5. Conclusions
- ATSDR’s simulation science methods and tools provide the information needed for the following tasks:
- Interpreting toxicological data for site- and chemical-specific health consultations and exposure assessments;
- Interpreting emergency response activities;
- Interpreting applied toxicology research;
- Developing toxicological profiles;
- Assessing and filling chemical-specific data needs.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bonnell, M.A.; Zidek, A.; Griffiths, A.; Gutzman, D. Fate and exposure modeling in regulatory chemical evaluation: New directions from retrospection. Environ. Sci. Process. Impacts 2018, 20, 20–31. [Google Scholar] [CrossRef] [PubMed]
- Chatterjee, M.; Roy, K. Computational modeling of mixture toxicity. In In Silico Methods for Predicting Drug Toxicity; Springer: Berlin/Heidelberg, Germany, 2022; pp. 561–587. [Google Scholar]
- Ciallella, H.L.; Zhu, H. Advancing computational toxicology in the big data era by artificial intelligence: Data-driven and mechanism-driven modeling for chemical toxicity. Chem. Res. Toxicol. 2019, 32, 536–547. [Google Scholar] [CrossRef] [PubMed]
- Cohen Hubal, E.A.; Wetmore, B.A.; Wambaugh, J.F.; El-Masri, H.; Sobus, J.R.; Bahadori, T. Advancing internal exposure and physiologically-based toxicokinetic modeling for 21st-century risk assessments. J. Expo. Sci. Environ. Epidemiol. 2019, 29, 11–20. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.-Y.; Zhao, W.; Huang, Y.-Q.; Kumar, V.; Zhang, X.; Hao, G.-F. In silico environmental risk assessment improves efficiency for pesticide safety management. Sci. Total Environ. 2024, 908, 167878. [Google Scholar] [CrossRef]
- Isaacs, K.K.; Egeghy, P.; Dionisio, K.L.; Phillips, K.A.; Zidek, A.; Ring, C.; Sobus, J.R.; Ulrich, E.M.; Wetmore, B.A.; Williams, A.J. The chemical landscape of high-throughput new approach methodologies for exposure. J. Expo. Sci. Environ. Epidemiol. 2022, 32, 820–832. [Google Scholar] [CrossRef]
- Tratnyek, P.G.; Bylaska, E.J.; Weber, E.J. In silico environmental chemical science: Properties and processes from statistical and computational modelling. Environ. Sci. Process. Impacts 2017, 19, 188–202. [Google Scholar] [CrossRef]
- ATSDR. ATSDR’s Simulation Science Section. Available online: https://www.atsdr.cdc.gov/simulation-science/ (accessed on 4 December 2023).
- Sudweeks, S.; Elgethun, K.; Abadin, H.; Zarus, G.; Irvin, E. Applied Toxicology at the Agency for Toxic Substances and Disease Registry (ATSDR); Elsevier: Amsterdam, The Netherlands, 2023. [Google Scholar]
- Abadin, H.G.; Chou, C.H.; Llados, F.T. Health effects classification and its role in the derivation of minimal risk levels: Immunological effects. Regul. Toxicol. Pharmacol. 2007, 47, 249–256. [Google Scholar] [CrossRef]
- Pohl, H.R.; Abadin, H.G. Utilizing uncertainty factors in minimal risk levels derivation. Regul. Toxicol. Pharmacol. 1995, 22, 180–188. [Google Scholar] [CrossRef] [PubMed]
- Przybyla, J.; Buser, M.C.; Abadin, H.G.; Pohl, H.R. Evaluation of ATSDR’s MRL and EPA’s RfCs/RfDs: Similarities, differences, and rationales. J. Toxicol. Pharmacol. 2020, 4, 1. [Google Scholar]
- Wheeler, J.S.; Chou, S. Considerations and procedures in the derivation of ATSDR minimal risk levels. Vaccine 2002, 20 (Suppl. S3), S51–S55. [Google Scholar] [CrossRef]
- Kuepfer, L.; Niederalt, C.; Wendl, T.; Schlender, J.F.; Willmann, S.; Lippert, J.; Block, M.; Eissing, T.; Teutonico, D. Applied concepts in PBPK modeling: How to build a PBPK/PD model. CPT Pharmacomet. Syst. Pharmacol. 2016, 5, 516–531. [Google Scholar] [CrossRef] [PubMed]
- Lipscomb, J.C.; Haddad, S.; Poet, T.; Krishnan, K. Physiologically-based pharmacokinetic (PBPK) models in toxicity testing and risk assessment. Adv. Exp. Med. Biol. 2012, 745, 76–95. [Google Scholar]
- Andersen, M.E. Toxicokinetic modeling and its applications in chemical risk assessment. Toxicol. Lett. 2003, 138, 9–27. [Google Scholar] [CrossRef] [PubMed]
- Deepika, D.; Kumar, V. The role of “physiologically based pharmacokinetic model (PBPK)” new approach methodology (NAM) in pharmaceuticals and environmental chemical risk assessment. Int. J. Environ. Res. Public Health 2023, 20, 3473. [Google Scholar] [CrossRef]
- Agency for Toxic Substances and Disease Registry. ATSDR’s Substance Priority List. Available online: https://www.atsdr.cdc.gov/spl/index.html#2022spl (accessed on 23 March 2023).
- Ruiz, P.; Fowler, B.; Osterloh, J.; Fisher, J.; Mumtaz, M. Physiologically based pharmacokinetic (PBPK) tool kit for environmental pollutants–metals. SAR QSAR Environ. Res. 2010, 21, 603–618. [Google Scholar] [CrossRef]
- Ruiz, P.; Mumtaz, M.; Osterloh, J.; Fisher, J.; Fowler, B.A. Interpreting NHANES biomonitoring data, cadmium. Toxicol. Lett. 2010, 198, 44–48. [Google Scholar] [CrossRef]
- Lanzoni, A.; Castoldi, A.F.; Kass, G.E.; Terron, A.; De Seze, G.; Bal-Price, A.; Bois, F.Y.; Delclos, K.B.; Doerge, D.R.; Fritsche, E.; et al. Advancing human health risk assessment. EFSA J. 2019, 17, e170712. [Google Scholar] [CrossRef]
- Sarigiannis, D.A.; Karakitsios, S.; Dominguez-Romero, E.; Papadaki, K.; Brochot, C.; Kumar, V.; Schuhmacher, M.; Sy, M.; Mielke, H.; Greiner, M.; et al. Physiology-based toxicokinetic modelling in the frame of the European Human Biomonitoring Initiative. Environ. Res. 2019, 172, 216–230. [Google Scholar] [CrossRef]
- Pouillot, R.; Farakos, S.S.; Spungen, J.; Schaefer, H.R.; Flannery, B.M.; Van Doren, J.M. Cadmium physiologically based pharmacokinetic (PBPK) models for forward and reverse dosimetry: Review, evaluation, and adaptation to the U.S. population. Toxicol. Lett. 2022, 367, 67–75. [Google Scholar] [CrossRef]
- Satarug, S.; Swaddiwudhipong, W.; Ruangyuttikarn, W.; Nishijo, M.; Ruiz, P. Modeling Cadmium Exposures in Low- and High-Exposure Areas in Thailand. Environ. Health Perspect. 2013, 121, 531–536. [Google Scholar] [CrossRef]
- Qing, Y.; Yang, J.; Zhang, Q.; Zhu, Y.; Ruiz, P.; Wu, M.; Zhao, G.; Zhao, Q.; Liu, H.; Cai, H.; et al. Bayesian toxicokinetic modeling of cadmium exposure in Chinese population. J. Hazard. Mater. 2021, 413, 125465. [Google Scholar] [CrossRef] [PubMed]
- Mumtaz, M.M.; Ray, M.; Crowell, S.R.; Keys, D.; Fisher, J.; Ruiz, P. Translational research to develop a human PBPK models tool kit—Volatile organic compounds (VOCs). J. Toxicol. Environ. Health Part A 2012, 75, 6–24. [Google Scholar] [CrossRef] [PubMed]
- Najjar, A.; Punt, A.; Wambaugh, J.; Paini, A.; Ellison, C.; Fragki, S.; Bianchi, E.; Zhang, F.; Westerhout, J.; Mueller, D.; et al. Towards best use and regulatory acceptance of generic physiologically based kinetic (PBK) models for in vitro-to-in vivo extrapolation (IVIVE) in chemical risk assessment. Arch. Toxicol. 2022, 96, 3407–3419. [Google Scholar] [CrossRef]
- Lin, Z.; Jaberi-Douraki, M.; He, C.; Jin, S.; Yang, R.S.H.; Fisher, J.W.; Riviere, J.E. Performance Assessment and Translation of Physiologically Based Pharmacokinetic Models From acslX to Berkeley Madonna, MATLAB, and R Language: Oxytetracycline and Gold Nanoparticles As Case Examples. Toxicol. Sci. 2017, 158, 23–35. [Google Scholar] [CrossRef]
- Tan, Y.-M.; Worley, R.R.; Leonard, J.A.; Fisher, J.W. Challenges Associated With Applying Physiologically Based Pharmacokinetic Modeling for Public Health Decision-Making. Toxicol. Sci. 2018, 162, 341–348. [Google Scholar] [CrossRef] [PubMed]
- Boerleider, R.Z.; Olie, J.D.N.; van Eijkeren, J.C.H.; Bos, P.M.J.; Hof, B.G.H.; de Vries, I.; Bessems, J.G.M.; Meulenbelt, J.; Hunault, C.C. Evaluation of three physiologically based pharmacokinetic (PBPK) modeling tools for emergency risk assessment after acute dichloromethane exposure. Toxicol. Lett. 2015, 232, 21–27. [Google Scholar] [CrossRef]
- Dyck, R.A.; Sadiq, R.; Rodriguez, M.J. Fuzzy Physiologically Based Pharmacokinetic (PBPK) Model of Chloroform in Swimming Pools. In Recent Developments and the New Direction in Soft-Computing Foundations and Applications: Selected Papers from the 6th World Conference on Soft Computing, 22–25 May 2016, Berkeley, CA, USA; Zadeh, L.A., Yager, R.R., Shahbazova, S.N., Reformat, M.Z., Kreinovich, V., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 497–510. [Google Scholar]
- Ruiz, P.; Aylward, L.L.; Mumtaz, M. Application of pharmacokinetic modelling for 2,3,7,8-tetrachlorodibenzo-p-dioxin exposure assessment. SAR QSAR Environ. Res. 2014, 25, 873–890. [Google Scholar] [CrossRef]
- Vernez, D.; Oltramare, C.; Sauvaget, B.; Demougeot-Renard, H.; Aicher, L.; Roth, N.; Rossi, I.; Radaelli, A.; Lerch, S.; Marolf, V.; et al. Polychlorinated dibenzo-p-dioxins (PCDDs) and dibenzofurans (PCDFs) soil contamination in Lausanne, Switzerland: Combining pollution mapping and human exposure assessment for targeted risk management. Environ. Pollut. 2023, 316, 120441. [Google Scholar] [CrossRef]
- EFSA Panel on Contaminants in the Food Chain; Knutsen, H.K.; Alexander, J.; Barregård, L.; Bignami, M.; Brüschweiler, B.; Ceccatelli, S.; Cottrill, B.; Dinovi, M.; Edler, L.; et al. Risk for animal and human health related to the presence of dioxins and dioxin-like PCBs in feed and food. EFSA J. 2018, 16, e05333. [Google Scholar] [CrossRef]
- Liu, R.; Zacharewski, T.R.; Conolly, R.B.; Zhang, Q. A Physiologically Based Pharmacokinetic (PBPK) Modeling Framework for Mixtures of Dioxin-like Compounds. Toxics 2022, 10, 700. [Google Scholar] [CrossRef]
- Chinen, K.; Malloy, T. QSAR Use in REACH analyses of alternatives to predict human health and environmental toxicity of alternative chemical substances. Integr. Environ. Assess. Manag. 2020, 16, 745–760. [Google Scholar] [CrossRef] [PubMed]
- Gini, G. QSAR methods. In In Silico Methods for Predicting Drug Toxicity; Springer: Berlin/Heidelberg, Germany, 2022; pp. 1–26. [Google Scholar]
- Polishchuk, P. Interpretation of Quantitative Structure-Activity Relationship Models: Past, Present, and Future. J. Chem. Inf. Model. 2017, 57, 2618–2639. [Google Scholar] [CrossRef] [PubMed]
- Thomas, P.C.; Bicherel, P.; Bauer, F.J. How in silico and QSAR approaches can increase confidence in environmental hazard and risk assessment. Integr. Environ. Assess. Manag. 2019, 15, 40–50. [Google Scholar] [CrossRef] [PubMed]
- Ruiz, P.; Ingale, K.; Wheeler, J.S.; Mumtaz, M. 3D QSAR studies of hydroxylated polychlorinated biphenyls as potential xenoestrogens. Chemosphere 2016, 144, 2238–2246. [Google Scholar] [CrossRef] [PubMed]
- Dhakal, K.; Gadupudi, G.S.; Lehmler, H.-J.; Ludewig, G.; Duffel, M.W.; Robertson, L.W. Sources and toxicities of phenolic polychlorinated biphenyls (OH-PCBs). Environ. Sci. Pollut. Res. 2018, 25, 16277–16290. [Google Scholar] [CrossRef]
- Devillers, J.; Bro, E.; Millot, F. Prediction of the endocrine disruption profile of pesticides. SAR QSAR Environ. Res. 2015, 26, 831–852. [Google Scholar] [CrossRef]
- Rybinska, A.; Sosnowska, A.; Barycki, M.; Puzyn, T. Geometry optimization method versus predictive ability in QSPR modeling for ionic liquids. J. Comput.-Aided Mol. Des. 2016, 30, 165–176. [Google Scholar] [CrossRef]
- Wang, P.; Dang, L.; Zhu, B.-T. Use of computational modeling approaches in studying the binding interactions of compounds with human estrogen receptors. Steroids 2016, 105, 26–41. [Google Scholar] [CrossRef]
- Vračko, M.; Bobst, S. Prediction of mutagenicity and carcinogenicity using in silico modelling: A case study of polychlorinated biphenyls. SAR QSAR Environ. Res. 2015, 26, 667–682. [Google Scholar] [CrossRef]
- Baker, K.M.; Bauer, A.C. Green Tea Catechin, EGCG, Suppresses PCB 102-Induced Proliferation in Estrogen-Sensitive Breast Cancer Cells. Int. J. Breast Cancer 2015, 2015, 163591. [Google Scholar] [CrossRef]
- Routti, H.; Andersen, M.S.; Fuglei, E.; Polder, A.; Yoccoz, N.G. Concentrations and patterns of hydroxylated polybrominated diphenyl ethers and polychlorinated biphenyls in arctic foxes (Vulpes lagopus) from Svalbard. Environ. Pollut. 2016, 216, 264–272. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Qiu, Y.; Zhou, B. In silico exploration of hydroxylated polychlorinated biphenyls as estrogen receptor β ligands by 3D-QSAR, molecular docking and molecular dynamics simulations. J. Biomol. Struct. Dyn. 2022, 40, 6798–6809. [Google Scholar] [CrossRef] [PubMed]
- Ashtekar, S.S.; Bhatia, N.M.; Bhatia, M.S. Exploration of Leads from Natural Domain Targeting HER2 in Breast Cancer: An In-Silico Approach. Int. J. Pept. Res. Ther. 2019, 25, 659–667. [Google Scholar] [CrossRef]
- Ashtekar, S.S.; Bhatia, N.M.; Bhatia, M.S. Development of leads targeting ER-α in breast cancer: An in silico exploration from natural domain. Steroids 2018, 131, 14–22. [Google Scholar] [CrossRef]
- Farasani, A.; Darbre, P.D. Long-term exposure to triclosan increases migration and invasion of human breast epithelial cells in vitro. J. Appl. Toxicol. 2021, 41, 1115–1126. [Google Scholar] [CrossRef]
- Lindqvist, D. Screening of halogenated phenolic compounds in plasma and serum from marine wildlife. Int. J. Environ. Sci. Technol. 2020, 17, 2177–2184. [Google Scholar] [CrossRef]
- Hamid, N.; Junaid, M.; Manzoor, R.; Duan, J.-J.; Lv, M.; Xu, N.; Pei, D.-S. Tissue distribution and endocrine disruption effects of chronic exposure to pharmaceuticals and personal care products mixture at environmentally relevant concentrations in zebrafish. Aquat. Toxicol. 2022, 242, 106040. [Google Scholar] [CrossRef]
- Zhao, W.; Cui, N.; Huang, Y.; Wang, Z.; Wang, P.; Liang, H.; Wang, R.; Su, X. Development of an Ultra-Performance Liquid Chromatography-Tandem Mass Spectrometry Method for Hydroxylated Polychlorinated Biphenyls in Animal-Derived Food. Molecules 2022, 27, 7247. [Google Scholar] [CrossRef]
- Benfenati, E.; Chaudhry, Q.; Gini, G.; Dorne, J.L. Integrating in silico models and read-across methods for predicting toxicity of chemicals: A step-wise strategy. Environ. Int. 2019, 131, 105060. [Google Scholar] [CrossRef]
- Valsecchi, C.; Grisoni, F.; Consonni, V.; Ballabio, D. Consensus versus Individual QSARs in Classification: Comparison on a Large-Scale Case Study. J. Chem. Inf. Model. 2020, 60, 1215–1223. [Google Scholar] [CrossRef]
- Stanojević, M.; Vračko Grobelšek, M.; Sollner Dolenc, M. Computational evaluation of endocrine activity of biocidal active substances. Chemosphere 2021, 267, 129284. [Google Scholar] [CrossRef] [PubMed]
- Collins, S.P.; Barton-Maclaren, T.S. Novel machine learning models to predict endocrine disruption activity for high-throughput chemical screening. Front. Toxicol. 2022, 4, 981928. [Google Scholar] [CrossRef] [PubMed]
- Browne, P.; Van Der Wal, L.; Gourmelon, A. OECD approaches and considerations for regulatory evaluation of endocrine disruptors. Mol. Cell. Endocrinol. 2020, 504, 110675. [Google Scholar] [CrossRef]
- Sellami, A.; Réau, M.; Montes, M.; Lagarde, N. Review of in silico studies dedicated to the nuclear receptor family: Therapeutic prospects and toxicological concerns. Front. Endocrinol. 2022, 13, 986016. [Google Scholar] [CrossRef] [PubMed]
- Koh, W.X.; Hornbuckle, K.C.; Thorne, P.S. Human Serum from Urban and Rural Adolescents and Their Mothers Shows Exposure to Polychlorinated Biphenyls Not Found in Commercial Mixtures. Environ. Sci. Technol. 2015, 49, 8105–8112. [Google Scholar] [CrossRef]
- Pradeep, P.; Carlson, L.M.; Judson, R.; Lehmann, G.M.; Patlewicz, G. Integrating data gap filling techniques: A case study predicting TEFs for neurotoxicity TEQs to facilitate the hazard assessment of polychlorinated biphenyls. Regul. Toxicol. Pharmacol. 2019, 101, 12–23. [Google Scholar] [CrossRef]
- Dickerson, S.M.; Guevara, E.; Woller, M.J.; Gore, A.C. Cell death mechanisms in GT1-7 GnRH cells exposed to polychlorinated biphenyls PCB74, PCB118, and PCB153. Toxicol. Appl. Pharmacol. 2009, 237, 237–245. [Google Scholar] [CrossRef]
- Zhang, C.; Lai, Y.; Jin, G.; Glatt, H.; Wei, Q.; Liu, Y. Human CYP2E1-dependent mutagenicity of mono- and dichlorobiphenyls in Chinese hamster (V79)-derived cells. Chemosphere 2016, 144, 1908–1915. [Google Scholar] [CrossRef]
- Liu, Y.; Hu, K.; Jia, H.; Jin, G.; Glatt, H.; Jiang, H. Potent mutagenicity of some non-planar tri- and tetrachlorinated biphenyls in mammalian cells, human CYP2E1 being a major activating enzyme. Arch. Toxicol. 2017, 91, 2663–2676. [Google Scholar] [CrossRef]
- Ruiz, P.; Mumtaz, M.; Gombar, V. Assessing the toxic effects of ethylene glycol ethers using Quantitative Structure Toxicity Relationship models. Toxicol. Appl. Pharmacol. 2011, 254, 198–205. [Google Scholar] [CrossRef]
- DiScenza, D.J.; Levine, M. Sensitive and selective detection of alcohols via fluorescence modulation. Supramol. Chem. 2016, 28, 881–891. [Google Scholar] [CrossRef]
- Trawiński, J.; Skibiński, R. Photolytic and photocatalytic degradation of the antipsychotic agent tiapride: Kinetics, transformation pathways and computational toxicity assessment. J. Hazard. Mater. 2017, 321, 841–858. [Google Scholar] [CrossRef] [PubMed]
- Trawiński, J.; Skibiński, R. Photolytic and photocatalytic transformation of an antipsychotic drug asenapine: Comparison of kinetics, identification of transformation products, and in silico estimation of their properties. Ecotoxicol. Environ. Saf. 2018, 162, 272–286. [Google Scholar] [CrossRef]
- Pohl, H.R.; Chou, C.H.S.J.; Ruiz, P.; Holler, J.S. Chemical risk assessment and uncertainty associated with extrapolation across exposure duration. Regul. Toxicol. Pharmacol. 2010, 57, 18–23. [Google Scholar] [CrossRef] [PubMed]
- Ruiz, P.; Begluitti, G.; Tincher, T.; Wheeler, J.; Mumtaz, M. Prediction of Acute Mammalian Toxicity Using QSAR Methods: A Case Study of Sulfur Mustard and Its Breakdown Products. Molecules 2012, 17, 8982–9001. [Google Scholar] [CrossRef] [PubMed]
- Chen, L. Computational systems biology for omics data analysis. J. Mol. Cell. Biol. 2019, 11, 631–632. [Google Scholar] [CrossRef] [PubMed]
- Knudsen, T.B.; Spencer, R.M.; Pierro, J.D.; Baker, N.C. Computational biology and in silico toxicodynamics. Curr. Opin. Toxicol. 2020, 23, 119–126. [Google Scholar] [CrossRef]
- Villeneuve, D.L.; Crump, D.; Garcia-Reyero, N.; Hecker, M.; Hutchinson, T.H.; LaLone, C.A.; Landesmann, B.; Lettieri, T.; Munn, S.; Nepelska, M. Adverse outcome pathway (AOP) development I: Strategies and principles. Toxicol. Sci. 2014, 142, 312–320. [Google Scholar] [CrossRef]
- Yue, R.; Dutta, A. Computational systems biology in disease modeling and control, review and perspectives. NPJ Syst. Biol. Appl. 2022, 8, 37. [Google Scholar] [CrossRef]
- Ruiz, P.; Perlina, A.; Mumtaz, M.; Fowler, B.A. A Systems Biology Approach Reveals Converging Molecular Mechanisms that Link Different POPs to Common Metabolic Diseases. Environ. Health Perspect. 2016, 124, 1034–1041. [Google Scholar] [CrossRef]
- Mustieles, V.; Fernández, M.F.; Martin-Olmedo, P.; González-Alzaga, B.; Fontalba-Navas, A.; Hauser, R.; Olea, N.; Arrebola, J.P. Human adipose tissue levels of persistent organic pollutants and metabolic syndrome components: Combining a cross-sectional with a 10-year longitudinal study using a multi-pollutant approach. Environ. Int. 2017, 104, 48–57. [Google Scholar] [CrossRef] [PubMed]
- Singh, K.; Chan, H.M. Persistent organic pollutants and diabetes among Inuit in the Canadian Arctic. Environ. Int. 2017, 101, 183–189. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.F.; Singh, K.; Kenny, T.-A.; Chan, H.M. Prevalence of heart attack and stroke and associated risk factors among Inuit in Canada: A comparison with the general Canadian population. Int. J. Hyg. Environ. Health 2019, 222, 319–326. [Google Scholar] [CrossRef] [PubMed]
- Schulz, M.C.; Sargis, R.M. Chapter Eleven—Inappropriately sweet: Environmental endocrine-disrupting chemicals and the diabetes pandemic. In Advances in Pharmacology; Vandenberg, L.N., Turgeon, J.L., Eds.; Academic Press: Cambridge, MA, USA, 2021; Volume 92, pp. 419–456. [Google Scholar]
- Ruiz, P.; Emond, C.; McLanahan, E.D.; Joshi-Barr, S.; Mumtaz, M. Exploring mechanistic toxicity of mixtures using PBPK modeling and computational systems biology. Toxicol. Sci. 2020, 174, 38–50. [Google Scholar] [CrossRef] [PubMed]
- Davis, J.A.; Gift, J.S.; Zhao, Q.J. Introduction to benchmark dose methods and US EPA’s benchmark dose software (BMDS) version 2.1.1. Toxicol. Appl. Pharmacol. 2011, 254, 181–191. [Google Scholar] [CrossRef]
- Crump, K.S. A new method for determining allowable daily intakes. Toxicol. Sci. 1984, 4, 854–871. [Google Scholar] [CrossRef]
- Filipsson, A.F.; Sand, S.; Nilsson, J.; Victorin, K. The benchmark dose method--review of available models, and recommendations for application in health risk assessment. Crit. Rev. Toxicol. 2003, 33, 505–542. [Google Scholar]
- Hardy, A.; Benford, D.; Halldorsson, T.; Jeger, M.J.; Knutsen, K.H.; More, S.; Mortensen, A.; Naegeli, H.; Noteborn, H.; Ockleford, C.; et al. Update: Use of the benchmark dose approach in risk assessment. EFSA J. 2017, 15, e04658. [Google Scholar] [CrossRef]
- Quentin, T.; Franke, H.; Lachenmeier, D.W. Risk Assessment of Isoeugenol in Food Based on Benchmark Dose—Response Modeling. Toxics 2023, 11, 991. [Google Scholar] [CrossRef]
- Kullar, S.S.; Shao, K.; Surette, C.; Foucher, D.; Mergler, D.; Cormier, P.; Bellinger, D.C.; Barbeau, B.; Sauvé, S.; Bouchard, M.F. A benchmark concentration analysis for manganese in drinking water and IQ deficits in children. Environ. Int. 2019, 130, 104889. [Google Scholar] [CrossRef]
- Zendehdel, R.; Parsarad, M.; Asgari Gandomani, E.; Panjali, Z.; Rafieepour, A.; Mohammadi, Z.; Moradpour, Z.; Vahabi, M.; Mohammad Alipour, M.; Gholamiarjenaki, R. Risk assessment of chemical mixtures by benchmark dose-principle component analysis approach in occupational exposure. Environ. Sci. Pollut. Res. Int. 2021, 28, 58781–58786. [Google Scholar] [CrossRef] [PubMed]
- Barlow, S.; Chesson, A.; Collins, J.D.; Flynn, A.; Hardy, A.; Jany, K.-D.; Knaap, A.; Kuiper, H.; Larsen, J.-C.; Lovell, D. Use of the benchmark dose approach in risk assessment Guidance of the Scientific Committee. EFSA J. 2009, 7, 1150. [Google Scholar]
- Risk Assessment Forum, U.S. Environmental Protection Agency. Benchmark Dose Technical Guidance; Risk Assessment Forum, U.S. Environmental Protection Agency: Washington, DC, USA, 2012. [Google Scholar]
- Shao, K.; Shapiro, A.J. A web-based system for Bayesian benchmark dose estimation. Environ. Health Perspect. 2018, 126, 017002. [Google Scholar] [CrossRef]
- Committee, E.S.; More, S.J.; Bampidis, V.; Benford, D.; Bragard, C.; Halldorsson, T.I.; Hernández-Jerez, A.F.; Bennekou, S.H.; Koutsoumanis, K.; Lambré, C. Guidance on the use of the benchmark dose approach in risk assessment. EFSA J. 2022, 20, e07584. [Google Scholar]
- Breivik, K.; Eckhardt, S.; McLachlan, M.S.; Wania, F. Introducing a nested multimedia fate and transport model for organic contaminants (NEM). Environ. Sci. Process. Impacts 2021, 23, 1146–1157. [Google Scholar] [CrossRef] [PubMed]
- Cai, C.; Zhu, L.; Hong, B. A review of methods for modeling microplastic transport in the marine environments. Mar. Pollut. Bull. 2023, 193, 115136. [Google Scholar] [CrossRef]
- Datta, A.R.; Kang, Q.; Chen, B.; Ye, X. Fate and Transport Modelling of Emerging Pollutants from Watersheds to Oceans: A Review. Adv. Mar. Biol. 2018, 81, 97–128. [Google Scholar] [CrossRef] [PubMed]
- Dogan, F.N.; Karpuzcu, M.E. Modeling fate and transport of pesticides from dryland agriculture using SWAT model. J. Environ. Manag. 2023, 334, 117457. [Google Scholar] [CrossRef]
- Falakdin, P.; Terzaghi, E.; Di Guardo, A. Spatially resolved environmental fate models: A review. Chemosphere 2022, 290, 133394. [Google Scholar] [CrossRef]
- Moodley, T.; Abunama, T.; Kumari, S.; Amoah, D.; Seyam, M. Applications of mathematical modelling for assessing microplastic transport and fate in water environments: A comparative review. Environ. Monit. Assess. 2024, 196, 667. [Google Scholar] [CrossRef]
- Rumschlag, S.L.; Bessler, S.M.; Rohr, J.R. Evaluating improvements to exposure estimates from fate and transport models by incorporating environmental sampling effort and contaminant use. Water Res. 2019, 156, 372–382. [Google Scholar] [CrossRef] [PubMed]
- Shin, H.M.; Vieira, V.M.; Ryan, P.B.; Detwiler, R.; Sanders, B.; Steenland, K.; Bartell, S.M. Environmental fate and transport modeling for perfluorooctanoic acid emitted from the Washington Works Facility in West Virginia. Environ. Sci. Technol. 2011, 45, 1435–1442. [Google Scholar] [CrossRef] [PubMed]
- Tong, X.; Mohapatra, S.; Zhang, J.; Tran, N.H.; You, L.; He, Y.; Gin, K.Y. Source, fate, transport and modelling of selected emerging contaminants in the aquatic environment: Current status and future perspectives. Water Res. 2022, 217, 118418. [Google Scholar] [CrossRef] [PubMed]
- Whelan, M.J.; Kim, J. Application of multimedia models for understanding the environmental behavior of volatile methylsiloxanes: Fate, transport, and bioaccumulation. Integr. Environ. Assess. Manag. 2022, 18, 599–621. [Google Scholar] [CrossRef] [PubMed]
- Zhu, S.; Zhang, Z.; Žagar, D. Mercury transport and fate models in aquatic systems: A review and synthesis. Sci. Total Environ. 2018, 639, 538–549. [Google Scholar] [CrossRef]
- Ruckart, P.Z.; Bove, F.J.; Maslia, M. Evaluation of exposure to contaminated drinking water and specific birth defects and childhood cancers at Marine Corps Base Camp Lejeune, North Carolina: A case-control study. Environ. Health 2013, 12, 104. [Google Scholar] [CrossRef]
- Ruckart, P.Z.; Bove, F.J.; Maslia, M. Evaluation of contaminated drinking water and preterm birth, small for gestational age, and birth weight at Marine Corps Base Camp Lejeune, North Carolina: A cross-sectional study. Environ. Health 2014, 13, 99. [Google Scholar] [CrossRef]
- Bove, F.J.; Ruckart, P.Z.; Maslia, M.; Larson, T.C. Evaluation of mortality among marines and navy personnel exposed to contaminated drinking water at USMC base Camp Lejeune: A retrospective cohort study. Environ. Health 2014, 13, 10. [Google Scholar] [CrossRef]
- Bove, F.J.; Ruckart, P.Z.; Maslia, M.; Larson, T.C. Mortality study of civilian employees exposed to contaminated drinking water at USMC Base Camp Lejeune: A retrospective cohort study. Environ. Health 2014, 13, 68. [Google Scholar] [CrossRef]
- Ruckart, P.Z.; Bove, F.J.; Shanley, E., 3rd; Maslia, M. Evaluation of contaminated drinking water and male breast cancer at Marine Corps Base Camp Lejeune, North Carolina: A case control study. Environ. Health 2015, 14, 74. [Google Scholar] [CrossRef]
- ten Berge, W.F.; Zwart, A.; Appelman, L.M. Concentration—Time mortality response relationship of irritant and systemically acting vapours and gases. J. Hazard. Mater. 1986, 13, 301–309. [Google Scholar] [CrossRef]
- Demchuk, E.; Ball, S.L.; Le, S.L.; Prussia, A.J. Concentration-time extrapolation of short-term inhalation exposure levels: Dimethyl sulfide, a case study using a chemical-specific toxic load exponent. Inhal. Toxicol. 2018, 30, 448–462. [Google Scholar] [CrossRef]
- Prussia, A.J.; Hill, J.; Cornwell, C.R.; Siwakoti, R.C.; Demchuk, E. Meta-analysis of animal studies applied to short-term inhalation exposure levels of hazardous chemicals. Regul. Toxicol. Pharmacol. 2020, 115, 104682. [Google Scholar] [CrossRef]
- Shim, Y.K.; Lewin, M.D.; Ruiz, P.; Eichner, J.E.; Mumtaz, M.M. Prevalence and associated demographic characteristics of exposure to multiple metals and their species in human populations: The United States NHANES, 2007–2012. J. Toxicol. Environ. Health Part A 2017, 80, 502–512. [Google Scholar] [CrossRef]
- Faroon, O.; Ruiz, P. Polychlorinated biphenyls: New evidence from the last decade. Toxicol. Ind. Health 2016, 32, 1825–1847. [Google Scholar] [CrossRef] [PubMed]
- Hu, G.; Feng, K.; Sun, L.; Baiocchi, G. Tracing toxic chemical releases embodied in U.S. interstate trade and their unequal distribution. Environ. Int. 2023, 171, 107681. [Google Scholar] [CrossRef] [PubMed]
- ICCVAM. Biennial Progress Report 2020–2021; National Institute of Environmental Health Science: Durham, NC, USA, 2022.
- ICCVAM. A Strategic Roadmap for Establishing New Approaches to Evaluate the Safety of Chemicals and Medical Products in the United States; Interagency Coordintating Committee on the Validation of Alternative Methods, ICCVAM: Reston, VA, USA, 2018.
- Mansouri, K.; Kleinstreuer, N.; Abdelaziz, A.M.; Alberga, D.; Alves, V.M.; Andersson, P.L.; Andrade, C.H.; Bai, F.; Balabin, I.; Ballabio, D.; et al. CoMPARA: Collaborative Modeling Project for Androgen Receptor Activity. Environ. Health Perspect. 2020, 128, 027002. [Google Scholar] [CrossRef]
- Tie, Y.; McPhail, B.; Hong, H.; Pearce, B.A.; Schnackenberg, L.K.; Ge, W.; Buzatu, D.A.; Wilkes, J.G.; Fuscoe, J.C.; Tong, W.; et al. Modeling Chemical Interaction Profiles: II. Molecular Docking, Spectral Data-Activity Relationship, and Structure-Activity Relationship Models for Potent and Weak Inhibitors of Cytochrome P450 CYP3A4 Isozyme. Molecules 2012, 17, 3407–3460. [Google Scholar] [CrossRef] [PubMed]
- Tan, Y.-M.; Chan, M.; Chukwudebe, A.; Domoradzki, J.; Fisher, J.; Hack, C.E.; Hinderliter, P.; Hirasawa, K.; Leonard, J.; Lumen, A.; et al. PBPK model reporting template for chemical risk assessment applications. Regul. Toxicol. Pharmacol. 2020, 115, 104691. [Google Scholar] [CrossRef]
- Uwimana, E.; Ruiz, P.; Li, X.; Lehmler, H.-J. Human CYP2A6, CYP2B6, AND CYP2E1 Atropselectively Metabolize Polychlorinated Biphenyls to Hydroxylated Metabolites. Environ. Sci. Technol. 2019, 53, 2114–2123. [Google Scholar] [CrossRef]
- Zhang, C.-Y.; Flor, S.; Ruiz, P.; Dhakal, R.; Hu, X.; Teesch, L.M.; Ludewig, G.; Lehmler, H.-J. 3,3′-Dichlorobiphenyl Is Metabolized to a Complex Mixture of Oxidative Metabolites, Including Novel Methoxylated Metabolites, by HepG2 Cells. Environ. Sci. Technol. 2020, 54, 12345–12357. [Google Scholar] [CrossRef] [PubMed]
- Satarug, S.; Ruangyuttikarn, W.; Nishijo, M.; Ruiz, P. Urinary Cadmium Threshold to Prevent Kidney Disease Development. Toxics 2018, 6, 26. [Google Scholar] [CrossRef] [PubMed]
- Myatt, G.J.; Ahlberg, E.; Akahori, Y.; Allen, D.; Amberg, A.; Anger, L.T.; Aptula, A.; Auerbach, S.; Beilke, L.; Bellion, P.; et al. In silico toxicology protocols. Regul. Toxicol. Pharmacol. 2018, 96, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Bassan, A.; Alves, V.M.; Amberg, A.; Anger, L.T.; Beilke, L.; Bender, A.; Bernal, A.; Cronin, M.T.D.; Hsieh, J.-H.; Johnson, C.; et al. In silico approaches in organ toxicity hazard assessment: Current status and future needs for predicting heart, kidney and lung toxicities. Comput. Toxicol. 2021, 20, 100188. [Google Scholar] [CrossRef] [PubMed]
- Crofton, K.M.; Bassan, A.; Behl, M.; Chushak, Y.G.; Fritsche, E.; Gearhart, J.M.; Marty, M.S.; Mumtaz, M.; Pavan, M.; Ruiz, P.; et al. Current status and future directions for a neurotoxicity hazard assessment framework that integrates in silico approaches. Comput. Toxicol. 2022, 22, 100223. [Google Scholar] [CrossRef]
- Ji, C.; Weissmann, A.; Shao, K. A computational system for Bayesian benchmark dose estimation of genomic data in BBMD. Environ. Int. 2022, 161, 107135. [Google Scholar] [CrossRef]
- Chang, X.; Tan, Y.M.; Allen, D.G.; Bell, S.; Brown, P.C.; Browning, L.; Ceger, P.; Gearhart, J.; Hakkinen, P.J.; Kabadi, S.V.; et al. IVIVE: Facilitating the Use of In Vitro Toxicity Data in Risk Assessment and Decision Making. Toxics 2022, 10, 232. [Google Scholar] [CrossRef]
- Chou, W.-C.; Lin, Z. Machine learning and artificial intelligence in physiologically based pharmacokinetic modeling. Toxicol. Sci. 2023, 191, 1–14. [Google Scholar] [CrossRef]
- Jeong, J.; Choi, J. Artificial intelligence-based toxicity prediction of environmental chemicals: Future directions for chemical management applications. Environ. Sci. Technol. 2022, 56, 7532–7543. [Google Scholar] [CrossRef]
- Lin, Z.; Chou, W.-C. Machine learning and artificial intelligence in toxicological sciences. Toxicol. Sci. 2022, 189, 7–19. [Google Scholar] [CrossRef]
- Gonnabathula, P.; Choi, M.-K.; Li, M.; Kabadi, S.V.; Fairman, K. Utility of life stage-specific chemical risk assessments based on New Approach Methodologies (NAMs). Food Chem. Toxicol. 2024, 190, 114789. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Wang, Z.; Li, Y.; Du, J.; Gao, X.; Li, Y.; Lai, L. A combination of machine learning and PBPK modeling approach for pharmacokinetics prediction of small molecules in humans. Pharm. Res. 2024, 41, 1369–1379. [Google Scholar] [CrossRef] [PubMed]
- Ozbek, O.; Genc, D.E.; Ulgen, K.O. Advances in Physiologically Based Pharmacokinetic (PBPK) Modeling of Nanomaterials. ACS Pharmacol. Transl. Sci. 2024, 7, 2251–2279. [Google Scholar] [CrossRef] [PubMed]
- Russo, D.P.; Zorn, K.M.; Clark, A.M.; Zhu, H.; Ekins, S. Comparing multiple machine learning algorithms and metrics for estrogen receptor binding prediction. Mol. Pharm. 2018, 15, 4361–4370. [Google Scholar] [CrossRef] [PubMed]
- Wen, M.; Zhang, Z.; Niu, S.; Sha, H.; Yang, R.; Yun, Y.; Lu, H. Deep-learning-based drug–target interaction prediction. J. Proteome Res. 2017, 16, 1401–1409. [Google Scholar] [CrossRef]
- Xu, Y.; Pei, J.; Lai, L. Deep learning based regression and multiclass models for acute oral toxicity prediction with automatic chemical feature extraction. J. Chem. Inf. Model. 2017, 57, 2672–2685. [Google Scholar] [CrossRef]
- Olawade, D.B.; Wada, O.J.; David-Olawade, A.C.; Kunonga, E.; Abaire, O.; Ling, J. Using artificial intelligence to improve public health: A narrative review. Front. Public Health 2023, 11, 1196397. [Google Scholar] [CrossRef]
- Lancellotti, C.; Cancian, P.; Savevski, V.; Kotha, S.R.R.; Fraggetta, F.; Graziano, P.; Di Tommaso, L. Artificial intelligence & tissue biomarkers: Advantages, risks and perspectives for pathology. Cells 2021, 10, 787. [Google Scholar] [CrossRef]
- Tapaswi, A.; Cemalovic, N.; Polemi, K.M.; Sexton, J.Z.; Colacino, J.A. Applying Cell Painting in Non-Tumorigenic Breast Cells to Understand Impacts of Common Chemical Exposures. bioRxiv 2024. bioRxiv:2024.04.30.591893. [Google Scholar] [CrossRef]
- Yasuhiko, Y.; Ishigami, M.; Machino, S.; Fujii, T.; Aoki, M.; Irie, F.; Kanda, Y.; Yoshida, M. Comparison of the lower limit of benchmark dose confidence interval with no-observed-adverse-effect level by applying four different software for tumorigenicity testing of pesticides in Japan. Regul. Toxicol. Pharmacol. 2022, 133, 105201. [Google Scholar] [CrossRef]
- Johnson, K.J.; Auerbach, S.S.; Costa, E. A rat liver transcriptomic point of departure predicts a prospective liver or non-liver apical point of departure. Toxicol. Sci. 2020, 176, 86–102. [Google Scholar] [CrossRef] [PubMed]
- Bell, S.M.; Chang, X.; Wambaugh, J.F.; Allen, D.G.; Bartels, M.; Brouwer, K.L.; Casey, W.M.; Choksi, N.; Ferguson, S.S.; Fraczkiewicz, G. In vitro to in vivo extrapolation for high throughput prioritization and decision making. Toxicol. In Vitro 2018, 47, 213–227. [Google Scholar] [CrossRef] [PubMed]
- Hines, D.E.; Bell, S.; Chang, X.; Mansouri, K.; Allen, D.; Kleinstreuer, N. Application of an accessible interface for pharmacokinetic modeling and in vitro to in vivo extrapolation. Front. Pharmacol. 2022, 13, 864742. [Google Scholar] [CrossRef] [PubMed]
- Ji, C.; Shao, K. The Effect of Historical Data-Based Informative Prior on Benchmark Dose Estimation of Toxicogenomics. Chem. Res. Toxicol. 2023, 36, 1345–1354. [Google Scholar] [CrossRef] [PubMed]
- Serra, A.; Fratello, M.; Cattelani, L.; Liampa, I.; Melagraki, G.; Kohonen, P.; Nymark, P.; Federico, A.; Kinaret, P.A.S.; Jagiello, K.; et al. Transcriptomics in Toxicogenomics, Part III: Data Modelling for Risk Assessment. Nanomaterials 2020, 10, 708. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.Q.; Cui, J.; Zhang, C.; Yuan, M.; Yu, H.M.; Zhou, X.L. Benchmark dose estimation of polycyclic aromatic hydrocarbons exposure base on Bayesian kernel machine regression. Zhonghua Lao Dong Wei Sheng Zhi Ye Bing Za Zhi 2023, 41, 814–820. [Google Scholar] [CrossRef]
- Baralić, K.; Javorac, D.; Marić, Đ.; Đukić-Ćosić, D.; Bulat, Z.; Antonijević Miljaković, E.; Anđelković, M.; Antonijević, B.; Aschner, M.; Buha Djordjevic, A. Benchmark dose approach in investigating the relationship between blood metal levels and reproductive hormones: Data set from human study. Environ. Int. 2022, 165, 107313. [Google Scholar] [CrossRef]
- Chauhan, V.; Kuo, B.; McNamee, J.P.; Wilkins, R.C.; Yauk, C.L. Transcriptional benchmark dose modeling: Exploring how advances in chemical risk assessment may be applied to the radiation field. Environ. Mol. Mutagen. 2016, 57, 589–604. [Google Scholar] [CrossRef]
- Lu, E.H.; Ford, L.C.; Rusyn, I.; Chiu, W.A. Reducing uncertainty in dose-response assessments by incorporating Bayesian benchmark dose modeling and in vitro data on population variability. Risk Anal. 2024, 1–16. [Google Scholar] [CrossRef]
- Nogawa, K.; Suwazono, Y.; Watanabe, Y.; Elinder, C.G. Estimation of Benchmark Dose of Cumulative Cadmium Exposure for Renal Tubular Effect. Int. J. Environ. Res. Public Health 2021, 18, 5177. [Google Scholar] [CrossRef]
- Poet, T.S.; Schlosser, P.M.; Rodriguez, C.E.; Parod, R.J.; Rodwell, D.E.; Kirman, C.R. Using physiologically based pharmacokinetic modeling and benchmark dose methods to derive an occupational exposure limit for N-methylpyrrolidone. Regul. Toxicol. Pharmacol. 2016, 76, 102–112. [Google Scholar] [CrossRef] [PubMed]
- Rager, J.E.; Auerbach, S.S.; Chappell, G.A.; Martin, E.; Thompson, C.M.; Fry, R.C. Benchmark Dose Modeling Estimates of the Concentrations of Inorganic Arsenic That Induce Changes to the Neonatal Transcriptome, Proteome, and Epigenome in a Pregnancy Cohort. Chem. Res. Toxicol. 2017, 30, 1911–1920. [Google Scholar] [CrossRef] [PubMed]
- Weldon, B.A.; Griffith, W.C.; Workman, T.; Scoville, D.K.; Kavanagh, T.J.; Faustman, E.M. In vitro to in vivo benchmark dose comparisons to inform risk assessment of quantum dot nanomaterials. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2018, 10, e1507. [Google Scholar] [CrossRef] [PubMed]
- Rugard, M.; Coumoul, X.; Carvaillo, J.-C.; Barouki, R.; Audouze, K. Deciphering adverse outcome pathway network linked to bisphenol F using text mining and systems toxicology approaches. Toxicol. Sci. 2020, 173, 32–40. [Google Scholar] [CrossRef]
- Jornod, F.; Rugard, M.; Tamisier, L.; Coumoul, X.; Andersen, H.R.; Barouki, R.; Audouze, K. AOP4EUpest: Mapping of pesticides in adverse outcome pathways using a text mining tool. Bioinformatics 2020, 36, 4379–4381. [Google Scholar] [CrossRef] [PubMed]
- Jaylet, T.; Quintens, R.; Benotmane, M.A.; Luukkonen, J.; Tanaka III, I.B.; Ibanez, C.; Durand, C.; Sachana, M.; Azimzadeh, O.; Adam-Guillermin, C. Development of an adverse outcome pathway for radiation-induced microcephaly via expert consultation and machine learning. Int. J. Radiat. Biol. 2022, 98, 1752–1762. [Google Scholar] [CrossRef]
- Carvaillo, J.-C.; Barouki, R.; Coumoul, X.; Audouze, K. Linking Bisphenol S to Adverse Outcome Pathways Using a Combined Text Mining and Systems Biology Approach. Environ. Health Perspect. 2019, 127, 047005. [Google Scholar] [CrossRef]
- EPA. Chemical Data Reporting: Access CDR Data. Available online: https://www.epa.gov/chemical-data-reporting/access-cdr-data#2020 (accessed on 3 October 2023).
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Desai, S.; Wilson, J.; Ji, C.; Sautner, J.; Prussia, A.J.; Demchuk, E.; Mumtaz, M.M.; Ruiz, P. The Role of Simulation Science in Public Health at the Agency for Toxic Substances and Disease Registry: An Overview and Analysis of the Last Decade. Toxics 2024, 12, 811. https://doi.org/10.3390/toxics12110811
Desai S, Wilson J, Ji C, Sautner J, Prussia AJ, Demchuk E, Mumtaz MM, Ruiz P. The Role of Simulation Science in Public Health at the Agency for Toxic Substances and Disease Registry: An Overview and Analysis of the Last Decade. Toxics. 2024; 12(11):811. https://doi.org/10.3390/toxics12110811
Chicago/Turabian StyleDesai, Siddhi, Jewell Wilson, Chao Ji, Jason Sautner, Andrew J. Prussia, Eugene Demchuk, M. Moiz Mumtaz, and Patricia Ruiz. 2024. "The Role of Simulation Science in Public Health at the Agency for Toxic Substances and Disease Registry: An Overview and Analysis of the Last Decade" Toxics 12, no. 11: 811. https://doi.org/10.3390/toxics12110811
APA StyleDesai, S., Wilson, J., Ji, C., Sautner, J., Prussia, A. J., Demchuk, E., Mumtaz, M. M., & Ruiz, P. (2024). The Role of Simulation Science in Public Health at the Agency for Toxic Substances and Disease Registry: An Overview and Analysis of the Last Decade. Toxics, 12(11), 811. https://doi.org/10.3390/toxics12110811