Indoor Air Quality in an Orthopedic Hospital from Romania
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Research Design
2.2. Statistical Analysis
3. Results
3.1. Indoor Air Quality Variations in Orthopedic Areas
3.2. Seasonal Effects on Indoor Air Quality
3.3. Effects of Using Air Filters in Indoor Air Pollution Control
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cincinelli, A.; Martellini, T. Indoor Air Quality and Health. Int. J. Environ. Res. Public Health 2017, 14, 1286. [Google Scholar] [CrossRef] [PubMed]
- Palmisani, J.; Di Gilio, A.; Viana, M.; de Gennaro, G.; Ferro, A. Indoor air quality evaluation in oncology units at two European hospitals: Low-cost sensors for TVOCs, PM2.5 and CO2 real-time monitoring. Build. Environ. 2021, 205, 108237. [Google Scholar] [CrossRef]
- Ibrahim, F.; Samsudin, E.Z.; Ishak, A.R.; Sathasivam, J. Hospital indoor air quality and its relationships with building design, building operation, and occupant-related factors: A mini-review. Front. Public Health 2022, 10, 1067764. [Google Scholar] [CrossRef] [PubMed]
- Bousiotis, D.; Alconcel, L.-N.S.; Beddows, D.C.S.; Harrison, R.M.; Pope, F.D. Monitoring and apportioning sources of indoor air quality using low-cost particulate matter sensors. Environ. Int. 2023, 174, 107907. [Google Scholar] [CrossRef]
- Marques, G.; Ferreira, C.R.; Pitarma, R. Indoor Air Quality Assessment Using a CO2 Monitoring System Based on Internet of Things. J. Med. Syst. 2019, 43, 67. [Google Scholar] [CrossRef]
- Saini, J.; Dutta, M.; Marques, G. A comprehensive review on indoor air quality monitoring systems for enhanced public health. Sustain. Environ. Res. 2020, 30, 6. [Google Scholar] [CrossRef]
- Budnik, L.T.; Casteleyn, L.; Paschalidou, A.K.; Kassomenos, P. Pollution in living and working environments, climate variability, and their impact on non-communicable disease burden. Sci. Total Environ. 2019, 660, 593–594. [Google Scholar] [CrossRef]
- Kumar, P.; Singh, A.B.; Arora, T.; Singh, S.; Singh, R. Critical review on emerging health effects associated with the indoor air quality and its sustainable management. Sci. Total Environ. 2023, 872, 162163. [Google Scholar] [CrossRef]
- Ehelepola, N.D.B.; Thilakarathna, H.M.A. Respiratory infection transmission risk and indoor air quality at outpatient departments and emergency treatment units of Sri Lankan teaching hospitals. PLoS Glob. Public Health 2024, 4, e0002862. [Google Scholar] [CrossRef]
- Canha, N.; Almeida, S.M.; Freitas, M.C.; Täubel, M.; Hänninen, O. Winter ventilation rates at primary schools: Comparison between Portugal and Finland. J. Toxicol. Environ. Health A 2013, 76, 400–408. [Google Scholar] [CrossRef]
- ASHRAE Position Document on Indoor Carbon Dioxide. Available online: https://www.ashrae.org/file%20library/about/position%20documents/pd_indoorcarbondioxide_2022.pdf (accessed on 10 September 2024).
- Persily, A.; de Jonge, L. Carbon dioxide generation rates for building occupants. Indoor Air 2017, 27, 868–879. [Google Scholar] [CrossRef]
- Lee, K.; Choi, J.H.; Lee, S.; Park, H.J.; Oh, Y.J.; Kim, G.B.; Lee, W.S.; Son, B.S. Indoor levels of volatile organic compounds and formaldehyde from emission sources at elderly care centers in Korea. PLoS ONE 2018, 13, e0197495. [Google Scholar] [CrossRef] [PubMed]
- Ferro, A.R.; Kopperud, R.J.; Hildemann, L.M. Elevated personal exposure to particulate matter from human activities in a residence. J. Expo. Anal. Environ. Epidemiol. 2004, 14, S34–S40. [Google Scholar] [CrossRef] [PubMed]
- Taushiba, A.; Dwivedi, S.; Zehra, F.; Shukla, P.N.; Lawrence, A.J. Assessment of indoor air quality and their inter-association in hospitals of northern India-a cross-sectional study. Air Qual. Atmos. Health 2023, 16, 1023–1036. [Google Scholar] [CrossRef] [PubMed]
- Hwang, S.H.; Park, W.M. Indoor air concentrations of carbon dioxide (CO2), nitrogen dioxide (NO2), and ozone (O3) in multiple healthcare facilities. Environ. Geochem. Health 2020, 42, 1487–1496. [Google Scholar] [CrossRef]
- Undi, G.S.; Ramya, C.B.; Sola, S.; Kanniganti, R.; Shinde, K. Pulsed radio wave as a sustainable control technology to improve indoor air quality. Sci. Rep. 2024, 14, 10858, Erratum in Sci. Rep. 2024, 14, 17074. [Google Scholar] [CrossRef]
- Tran, V.V.; Park, D.; Lee, Y.C. Indoor Air Pollution, Related Human Diseases, and Recent Trends in the Control and Improvement of Indoor Air Quality. Int. J. Environ. Res. Public Health 2020, 17, 2927. [Google Scholar] [CrossRef]
- Lee, S.Y.; Chang, Y.S.; Cho, S.H. Allergic diseases and air pollution. Asia Pac. Allergy 2013, 3, 145–154. [Google Scholar] [CrossRef]
- Mu, L.; Liu, L.; Niu, R.; Zhao, B.; Shi, J.; Li, Y.; Swanson, M.; Scheider, W.; Su, J.; Chang, S.C.; et al. Indoor air pollution and risk of lung cancer among Chinese female non-smokers. Cancer Causes Control 2013, 24, 439–450. [Google Scholar] [CrossRef]
- Yoon, H.I.; Hong, Y.C.; Cho, S.H.; Kim, H.; Kim, Y.H.; Sohn, J.R.; Kwon, M.; Park, S.H.; Cho, M.H.; Cheong, H.K. Exposure to volatile organic compounds and loss of pulmonary function in the elderly. Eur. Respir. J. 2010, 36, 1270–1276. [Google Scholar] [CrossRef]
- Ho, A.F.W.; Hu, Z.; Woo, T.Z.C.; Tan, K.B.K.; Lim, J.H.; Woo, M.; Liu, N.; Morgan, G.G.; Ong, M.E.H.; Aik, J. Ambient Air Quality and Emergency Hospital Admissions in Singapore: A Time-Series Analysis. Int. J. Environ. Res. Public Health 2022, 19, 13336. [Google Scholar] [CrossRef] [PubMed]
- Clougherty, J.E.; Humphrey, J.L.; Kinnee, E.J.; Robinson, L.F.; McClure, L.A.; Kubzansky, L.D.; Reid, C.E. Social Susceptibility to Multiple Air Pollutants in Cardiovascular Disease. Res. Rep. Health Eff. Inst. 2021, 2021, 1–71. [Google Scholar]
- Abbaszadeh, S.; Tabary, M.; Aryannejad, A.; Abolhasani, R.; Araghi, F.; Khaheshi, I.; Azimi, A. Air pollution and multiple sclerosis: A comprehensive review. Neurol. Sci. 2021, 42, 4063–4072. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Xu, J.; Wang, W.; Liang, J.J.; Deng, Z.H.; Du, J.; Xie, M.Z.; Wang, X.R.; Liu, Y.; Cui, F.; et al. Air pollutants and outpatient visits for influenza-like illness in Beijing, China. PeerJ 2021, 9, e11397. [Google Scholar] [CrossRef]
- Lee, H.J.; Lee, K.H.; Kim, D.K. Evaluation and comparison of the indoor air quality in different areas of the hospital. Medicine 2020, 99, e23942. [Google Scholar] [CrossRef]
- Güvenir, M.; Kaya, U.; Özçelik, D.; Süer, K. What Is Going on in Indoor Air Quality of a University Hospital in Northern Cyprus? Ethiop. J. Health Sci. 2023, 33, 541–546. [Google Scholar]
- Chou, Y.A.; Wang, Z.Y.; Chang, H.C.; Liu, Y.C.; Su, P.F.; Huang, Y.T.; Yang, C.T.; Lai, C.H. Indoor CO2 monitoring in a surgical intensive care unit under visitation restrictions during the COVID-19 pandemic. Front. Med. 2023, 10, 1052452. [Google Scholar] [CrossRef]
- Moldovan, F. New Approaches and Trends in Health Care. Procedia Manuf. 2018, 22, 947–951. [Google Scholar] [CrossRef]
- World Health Organization (WHO) Air Quality Guidelines (AQGs) and Estimated Reference Levels. Available online: https://www.eea.europa.eu/publications/status-of-air-quality-in-Europe-2022/europes-air-quality-status-2022/world-health-organization-who-air (accessed on 10 September 2024).
- World Health Organization. WHO Global Air Quality Guidelines: Particulate Matter (PM2.5 and PM10), Ozone, Nitrogen Dioxide, Sulfur Dioxide and Carbon Monoxide. 2021. Available online: https://iris.who.int/handle/10665/345329 (accessed on 10 September 2024).
- PAHO. Guidance on Indoor Environmental Quality in Health Care Facilities. Available online: https://iris.paho.org/bitstream/handle/10665.2/57420/PAHODHECE220019_spa.pdf?sequence=1&isAllowed=y (accessed on 10 September 2024).
- Ciobanu, I.; Stanculescu Badea, D.I.; Iliescu, A.; Magdalena Popescu, A.; Seiciu, P.S.; Mikolajczyk, T.; Moldovan, F.; Berteanu, M. The Usability Pilot Study of a Mechatronic System for Gait Rehabilitation. Procedia Manuf. 2018, 22, 864–871. [Google Scholar] [CrossRef]
- Pollice, B.; Thiel, C.L.; Baratz, M.E. Life Cycle Assessment in Orthopedics. Oper. Tech. Orthop. 2022, 32, 100998. [Google Scholar] [CrossRef]
- Tzoutzas, I.; Maltezou, H.C.; Barmparesos, N.; Tasios, P.; Efthymiou, C.; Assimakopoulos, M.N.; Tseroni, M.; Vorou, R.; Tzermpos, F.; Antoniadou, M.; et al. Indoor Air Quality Evaluation Using Mechanical Ventilation and Portable Air Purifiers in an Academic Dentistry Clinic during the COVID-19 Pandemic in Greece. Int. J. Environ. Res. Public Health 2021, 18, 8886. [Google Scholar] [CrossRef] [PubMed]
- Hong, Y.J.; Huang, Y.C.; Lee, I.L.; Chiang, C.M.; Lin, C.; Jeng, H.A. Assessment of volatile organic compounds and particulate matter in a dental clinic and health risks to clinic personnel. J. Environ. Sci. Health Part A 2015, 50, 1205–1214. [Google Scholar] [CrossRef]
- Baudet, A.; Baurès, E.; Blanchard, O.; Le Cann, P.; Gangneux, J.-P.; Florentin, A. Indoor Carbon Dioxide, Fine Particulate Matter and Total Volatile Organic Compounds in Private Healthcare and Elderly Care Facilities. Toxics 2022, 10, 136. [Google Scholar] [CrossRef] [PubMed]
- Moldovan, F.; Gligor, A.; Moldovan, L.; Bataga, T. The Impact of the COVID-19 Pandemic on the Orthopedic Residents: A Pan-Romanian Survey. Int. J. Environ. Res. Public Health 2022, 19, 9176. [Google Scholar] [CrossRef]
- Cabo Verde, S.; Almeida, S.M.; Matos, J.; Guerreiro, D.; Meneses, M.; Faria, T.; Botelho, D.; Santos, M.; Viegas, C. Microbiological assessment of indoor air quality at different hospital sites. Res. Microbiol. 2015, 166, 557–563. [Google Scholar] [CrossRef]
- Boccuni, F.; Ferrante, R.; Tombolini, F.; Iavicoli, S.; Pelliccioni, A. Relationship between Indoor High Frequency Size Distribution of Ultrafine Particles and Their Metrics in a University Site. Sustainability 2021, 13, 5504. [Google Scholar] [CrossRef]
- Chlebnikovas, A.; Jasevičius, R. Air Pollution with Fine Particles in Closed Parking and Theoretical Studies of the Interaction of Inhaled Particles in Respiratory Tract. Buildings 2022, 12, 1696. [Google Scholar] [CrossRef]
- Manigrasso, M.; Natale, C.; Vitali, M.; Protano, C.; Avino, P. Pedestrians in Traffic Environments: Ultrafine Particle Respiratory Doses. Int. J. Environ. Res. Public Health 2017, 14, 288. [Google Scholar] [CrossRef]
- uRADMonitor Model A3. Available online: https://www.uradmonitor.com/uradmonitor-model-a3/ (accessed on 20 August 2024).
- Moldovan, F.; Moldovan, L.; Bataga, T. Assessment of Labor Practices in Healthcare Using an Innovatory Framework for Sustainability. Medicina 2023, 59, 796. [Google Scholar] [CrossRef]
- WHO Guideliness for Air Quality. Available online: https://iris.who.int/bitstream/handle/10665/66537/WHO_SDE_OEH_00.02-eng.pdf?sequence=18 (accessed on 10 September 2024).
- WHO Guideliness for Indoor Air Quality. Selected Polluants. Available online: https://iris.who.int/bitstream/handle/10665/260127/9789289002134-eng.pdf (accessed on 10 September 2024).
- Nassikas, N.J.; McCormack, M.C.; Ewart, G.; Balmes, J.R.; Bond, T.C.; Brigham, E.; Cromar, K.; Goldstein, A.H.; Hicks, A.; Hopke, P.K.; et al. Indoor Air Sources of Outdoor Air Pollution: Health Consequences, Policy, and Recommendations: An Official American Thoracic Society Workshop Report. Ann. Am. Thorac. Soc. 2024, 21, 365–376. [Google Scholar] [CrossRef]
- Bang, C.S.; Lee, K.; Yang, Y.J.; Baik, G.H. Ambient air pollution in gastrointestinal endoscopy unit. Surg. Endosc. 2020, 34, 3795–3804. [Google Scholar] [CrossRef] [PubMed]
- Moldovan, L.; Gligor, A.; Grif, H.-S.; Moldovan, F. Dynamic Numerical Simulation of the 6-PGK Parallel Robot Manipulator. Proc. Rom. Acad. Ser. A 2019, 20, 67–75. [Google Scholar]
- Baurès, E.; Blanchard, O.; Mercier, F.; Surget, E.; le Cann, P.; Rivier, A.; Gangneux, J.-P.; Florentin, A. Indoor air quality in two French hospitals: Measurement of chemical and microbiological contaminants. Sci. Total Environ. 2018, 642, 168–179. [Google Scholar] [CrossRef] [PubMed]
- Persily, A. Development and application of an indoor carbon dioxide metric. Indoor Air 2022, 32, e13059. [Google Scholar] [CrossRef]
- Mendell, M.J.; Chen, W.; Ranasinghe, D.R.; Castorina, R.; Kumagai, K. Carbon dioxide guidelines for indoor air quality: A review. J. Expo. Sci. Environ. Epidemiol. 2024, 34, 555–569. [Google Scholar] [CrossRef]
- Azuma, K.; Kagi, N.; Yanagi, U.; Osawa, H. Effects of low-level inhalation exposure to carbon dioxide in indoor environments: A short review on human health and psychomotor performance. Environ. Int. 2018, 121 Pt 1, 51–56. [Google Scholar] [CrossRef]
- Montero-Montoya, R.; López-Vargas, R.; Arellano-Aguilar, O. Volatile Organic Compounds in Air: Sources, Distribution, Exposure and Associated Illnesses in Children. Ann. Glob. Health. 2018, 84, 225–238. [Google Scholar] [CrossRef]
- Huang, Y.; Ho, S.S.; Ho, K.F.; Lee, S.C.; Yu, J.Z.; Louie, P.K. Characteristics and health impacts of VOCs and carbonyls associated with residential cooking activities in Hong Kong. J. Hazard. Mater. 2011, 186, 344–351. [Google Scholar] [CrossRef]
- Zhang, G.; Sun, F.; Li, H.; Lin, Y.; Zhao, K.; Fang, L. The Content and Emission form of Volatile Organic Compounds from Cooking Oils: A Gas Chromatography-Mass Spectrometry (GC-MS) Analysis. Int. J. Environ. Res. Public Health 2023, 20, 1796. [Google Scholar] [CrossRef]
- Hussain, M.S.; Gupta, G.; Mishra, R.; Patel, N.; Gupta, S.; Alzarea, S.I.; Kazmi, I.; Kumbhar, P.; Disouza, J.; Dureja, H.; et al. Unlocking the secrets: Volatile Organic Compounds (VOCs) and their devastating effects on lung cancer. Pathol. Res. Pract. 2024, 255, 155157. [Google Scholar] [CrossRef]
- Lei, X.; Chen, R.; Wang, C.; Shi, J.; Zhao, Z.; Li, W.; Yan, B.; Chillrud, S.; Cai, J.; Kan, H. Personal Fine Particulate Matter Constituents, Increased Systemic Inflammation, and the Role of DNA Hypomethylation. Environ. Sci. Technol. 2019, 53, 9837–9844. [Google Scholar] [CrossRef] [PubMed]
- Amnuaylojaroen, T.; Parasin, N. Pathogenesis of PM2.5-Related Disorders in Different Age Groups: Children, Adults, and the Elderly. Epigenomes 2024, 8, 13. [Google Scholar] [CrossRef] [PubMed]
- Chen, R.; Zhang, X.; Wang, P.; Xie, K.; Jian, J.; Zhang, Y.; Zhang, J.; Yuan, Y.; Na, P.; Yi, M.; et al. Transparent thermoplastic polyurethane air filters for efficient electrostatic capture of particulate matter pollutants. Nanotechnology 2019, 30, 015703. [Google Scholar] [CrossRef]
- Brunekreef, B.; Strak, M.; Chen, J.; Andersen, Z.J.; Atkinson, R.; Bauwelinck, M.; Bellander, T.; Boutron, M.C.; Brandt, J.; Carey, I.; et al. Mortality and Morbidity Effects of Long-Term Exposure to Low-Level PM2.5, BC, NO2, and O3: An Analysis of European Cohorts in the ELAPSE Project. Res. Rep. Health Eff. Inst. 2021, 2021, 1–127. [Google Scholar] [PubMed]
- Chauhan, A.J.; Inskip, H.M.; Linaker, C.H.; Smith, S.; Schreiber, J.; Johnston, S.L.; Holgate, S.T. Personal exposure to nitrogen dioxide (NO2) and the severity of virus-induced asthma in children. Lancet 2003, 361, 1939–1944. [Google Scholar] [CrossRef] [PubMed]
- Jo, S.; Kim, Y.J.; Park, K.W.; Hwang, Y.S.; Lee, S.H.; Kim, B.J.; Chung, S.J. Association of NO2 and Other Air Pollution Exposures with the Risk of Parkinson Disease. JAMA Neurol. 2021, 78, 800–808. [Google Scholar] [CrossRef]
Indoor air Quality Indices Reference Range | CO2—Carbon Dioxide [ppm] | VOCs—Volatile Organic Compounds [ppb] | PM2.5—Particles with a Diameter Smaller Than 2.5 μm [μg/m3] | NO2—Nitrogen Dioxide [ppb] |
---|---|---|---|---|
Poor quality value range | >1500 | >800 | >100 | >250 |
Tolerable value range | 800–1500 | 400–800 | 50–100 | 100–250 |
Acceptable value range | 400–800 | 0–400 | <50 | <100 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moldovan, F.; Moldovan, L. Indoor Air Quality in an Orthopedic Hospital from Romania. Toxics 2024, 12, 815. https://doi.org/10.3390/toxics12110815
Moldovan F, Moldovan L. Indoor Air Quality in an Orthopedic Hospital from Romania. Toxics. 2024; 12(11):815. https://doi.org/10.3390/toxics12110815
Chicago/Turabian StyleMoldovan, Flaviu, and Liviu Moldovan. 2024. "Indoor Air Quality in an Orthopedic Hospital from Romania" Toxics 12, no. 11: 815. https://doi.org/10.3390/toxics12110815
APA StyleMoldovan, F., & Moldovan, L. (2024). Indoor Air Quality in an Orthopedic Hospital from Romania. Toxics, 12(11), 815. https://doi.org/10.3390/toxics12110815