Efficient Degradation of Tetracycline by Peroxymonosulfate Activated with Ni-Co Bimetallic Oxide Derived from Bimetallic Oxalate
Abstract
:1. Introduction
2. Experimental Section
2.1. Chemicals
2.2. Preparation of NiCo2O4
2.3. Characterization of NiCo2O4
2.4. Catalytic Oxidation Experiments
2.5. Toxicity Prediction of TC Intermediate Products
3. Results and Discussion
3.1. Characterization
3.2. Catalytic Performance of NiCo2O4
3.3. Identification of ROS and PMS Activation Mechanism
3.4. Reusability, Stability, and Applicability of NiCo2O4
3.5. Effect of Experimental Factors
3.6. Effect of Co-Existing Anions
3.7. Possible Intermediates of TC and Its Toxicity Assessment
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ao, X.; Liu, W. Degradation of sulfamethoxazole by medium pressure UV and oxidants: Peroxymonosulfate, persulfate, and hydrogen peroxide. Chem. Eng. J. 2017, 313, 629–637. [Google Scholar] [CrossRef]
- Han, C.-H.; Park, H.-D.; Kim, S.-B.; Yargeau, V.; Choi, J.-W.; Lee, S.-H.; Park, J.-A. Oxidation of tetracycline and oxytetracycline for the photo-Fenton process: Their transformation products and toxicity assessment. Water Res. 2020, 172, 115514. [Google Scholar] [CrossRef] [PubMed]
- Xin, S.; Liu, G.; Ma, X.; Gong, J.; Ma, B.; Yan, Q.; Chen, Q.; Ma, D.; Zhang, G.; Gao, M.; et al. High efficiency heterogeneous Fenton-like catalyst biochar modified CuFeO2 for the degradation of tetracycline: Economical synthesis, catalytic performance and mechanism. Appl. Catal. B Environ. 2021, 280, 119386. [Google Scholar] [CrossRef]
- Yan, M.; Su, Z.; Ding, J.; Zhu, T.; Liu, Y. The enhancement of tetracycline degradation through zero-valent iron combined with microorganisms during wastewater treatment: Mechanism and contribution. Environ. Res. 2023, 226, 115666. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, J.; Wang, P.; Yin, L.; Tian, Y.; Li, J. Bifunctional copper modified graphitic carbon nitride catalysts for efficient tetracycline removal: Synergy of adsorption and photocatalytic degradation. Chin. Chem. Lett. 2020, 31, 2789–2794. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, Y.; Dong, Y.; Jiang, Z.; Zhang, L.; Liu, W.; Guan, J.; Lin, H. Highly efficient photo-degradation for tetracycline elimination in pharmaceutical wastewater by α-Fe2O3/V2O5/BC assisted peroxymonosulfate activation. Sep. Purif. Technol. 2024, 328, 125034. [Google Scholar] [CrossRef]
- Ni, Q.; Ke, X.; Qian, W.; Yan, Z.; Luan, J.; Liu, W. Insight into tetracycline photocatalytic degradation mechanism in a wide pH range on BiOI/BiOBr: Coupling DFT/QSAR simulations with experiments. Appl. Catal. B Environ. 2024, 340, 123226. [Google Scholar] [CrossRef]
- Meng, D.; Hou, J.; Wang, L.; Hu, X.; Gao, D.; Guo, Q. Rational construction of α-Fe2O3/g-C3N4 heterojunction for effective photo-Fenton-like degradation of tetracycline. Mater. Res. Bull. 2023, 168, 112454. [Google Scholar] [CrossRef]
- Feng, S.; Xie, T.; Wang, J.; Yang, J.; Kong, D.; Liu, C.; Chen, S.; Yang, F.; Pan, M.; Yang, J.; et al. Photocatalytic activation of PMS over magnetic heterojunction photocatalyst SrTiO3/BaFe12O19 for tetracycline ultrafast degradation. Chem. Eng. J. 2023, 470, 143900. [Google Scholar] [CrossRef]
- Cherifi, Y.; Addad, A.; Vezin, H.; Barras, A.; Ouddane, B.; Chaouchi, A.; Szunerits, S.; Boukherroub, R. PMS activation using reduced graphene oxide under sonication: Efficient metal-free catalytic system for the degradation of rhodamine B, bisphenol A, and tetracycline. Ultrason. Sonochem. 2019, 52, 164–175. [Google Scholar] [CrossRef]
- Li, Q.; Wei, G.; Duan, G.; Zhang, L.; Li, Z.; Yan, F. Valorization of ball-milled waste red mud into heterogeneous catalyst as effective peroxymonosulfate activator for tetracycline hydrochloride degradation. J. Environ. Manag. 2022, 324, 116301. [Google Scholar] [CrossRef] [PubMed]
- Xie, F.; Shi, Q.; Bai, H.; Liu, M.; Zhang, J.; Qi, M.; Zhang, J.; Li, Z.; Zhu, W. An anode fabricated by Co electrodeposition on ZIF-8/CNTs/CF for peroxymonosulfate (PMS) activation. Chemosphere 2023, 313, 137384. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Lu, J.; Yu, M.; Li, H.; Lin, X.; Nie, J.; Lan, N.; Wang, Z. Sulfur vacancy rich MoS2/FeMoO4 composites derived from MIL-53(Fe) as PMS activator for efficient elimination of dye: Nonradical 1O2 dominated mechanism. Environ. Pollut. 2023, 333, 121990. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Xiang, P.; Zhou, R.; Huang, M.; Lin, P. Performance and mechanism of antibiotic removal by MOF-on-MOF-derived cobalt and nitrogen-doped magnetic porous carbon activated PMS. J. Water Process Eng. 2023, 54, 104043. [Google Scholar] [CrossRef]
- Wang, Y.; Lin, N.; Xu, J.; Jiang, H.; Chen, R.; Zhang, X.; Liu, N. Construction of microwave/PMS combined dual responsive perovskite-MXene system for antibiotic degradation: Synergistic effects of thermal and non-thermal. Appl. Surf. Sci. 2023, 639, 158263. [Google Scholar] [CrossRef]
- Moradian, F.; Ramavandi, B.; Jaafarzadeh, N.; Kouhgardi, E. Effective treatment of high-salinity landfill leachate using ultraviolet/ultrasonication/ peroxymonosulfate system. Waste Manag. 2020, 118, 591–599. [Google Scholar] [CrossRef]
- Shen, L.; Wang, H.; Kang, J.; Shen, J.; Yan, P.; Gong, Y.; Zhang, J.; Fu, G.; Wang, S.; Cheng, Y.; et al. Simultaneous elimination of N,N-dimethylhydrazine compounds and its oxidation by-product N-nitrosodimethylamine by UV-activated peroxymonosulfate process: Multiple-path mechanism validation and toxicity alteration. Chem. Eng. J. 2023, 474, 145837. [Google Scholar] [CrossRef]
- Serna-Galvis, E.A.; Martínez-Mena, Y.L.; Arboleda-Echavarría, J.; Hoyos-Ayala, D.A.; Echavarría-Isaza, A.; Torres-Palma, R.A. Zeolite 4A activates peroxymonosulfate toward the production of singlet oxygen for the selective degradation of organic pollutants. Chem. Eng. Res. Des. 2023, 193, 121–131. [Google Scholar] [CrossRef]
- Stevanović, G.; Jović-Jovičić, N.; Krstić, J.; Milutinović-Nikolić, A.; Banković, P.; Popović, A.; Ajduković, M.; Co-catalysts, N. based on smectite and biowaste-derived carbon, as peroxymonosulfate activators in degradation of tartrazine. Appl. Clay Sci. 2022, 230, 106718. [Google Scholar] [CrossRef]
- Zhang, H.; Smith, R.L.; Guo, H.; Qi, X. Cobalt cross-linked ordered mesoporous carbon as peroxymonosulfate activator for sulfamethoxazole degradation. Chem. Eng. J. 2023, 472, 145060. [Google Scholar] [CrossRef]
- Yang, Y.; Chi, Y.; Yang, K.; Zhang, Z.; Gu, P.; Ren, X.; Wang, X.; Miao, H.; Xu, X. Iron/nitrogen co-doped biochar derived from salvaged cyanobacterial for efficient peroxymonosulfate activation and ofloxacin degradation: Synergistic effect of Fe/N in non-radical path. J. Colloid Interface Sci. 2023, 652, 350–361. [Google Scholar] [CrossRef] [PubMed]
- Khan, A.; Liao, Z.; Liu, Y.; Jawad, A.; Ifthikar, J.; Chen, Z. Synergistic degradation of phenols using peroxymonosulfate activated by CuO-Co3O4@MnO2 nanocatalyst. J. Hazard. Mater. 2017, 329, 262–271. [Google Scholar] [CrossRef] [PubMed]
- Khojastegi, A.; Mokhtare, A.; Mosleh, I.; Abbaspourrad, A. Catalytic activation of peroxymonosulfate using MnO2@quasi-MOF for singlet oxygen mediated degradation of organic pollutants in water. Appl. Catal. A Gen. 2022, 646, 118883. [Google Scholar] [CrossRef]
- Hou, J.; He, X.; Zhang, S.; Yu, J.; Feng, M.; Li, X. Recent advances in cobalt-activated sulfate radical-based advanced oxidation processes for water remediation: A review. Sci. Total Environ. 2021, 770, 145311. [Google Scholar] [CrossRef] [PubMed]
- Oh, W.-D.; Chang, V.W.C.; Hu, Z.-T.; Goei, R.; Lim, T.-T. Enhancing the catalytic activity of g-C3N4 through Me doping (Me = Cu, Co and Fe) for selective sulfathiazole degradation via redox-based advanced oxidation process. Chem. Eng. J. 2017, 323, 260–269. [Google Scholar] [CrossRef]
- Du, Y.; Ma, W.; Liu, P.; Zou, B.; Ma, J. Magnetic CoFe2O4 nanoparticles supported on titanate nanotubes (CoFe2O4/TNTs) as a novel heterogeneous catalyst for peroxymonosulfate activation and degradation of organic pollutants. J. Hazard. Mater. 2016, 308, 58–66. [Google Scholar] [CrossRef]
- Feng, Y.; Liu, J.; Wu, D.; Zhou, Z.; Deng, Y.; Zhang, T.; Shih, K. Efficient degradation of sulfamethazine with CuCo2O4 spinel nanocatalysts for peroxymonosulfate activation. Chem. Eng. J. 2015, 280, 514–524. [Google Scholar] [CrossRef]
- Tian, X.; Tian, C.; Nie, Y.; Dai, C.; Yang, C.; Tian, N.; Zhou, Z.; Li, Y.; Wang, Y. Controlled synthesis of dandelion-like NiCo2O4 microspheres and their catalytic performance for peroxymonosulfate activation in humic acid degradation. Chem. Eng. J. 2018, 331, 144–151. [Google Scholar] [CrossRef]
- Bendová, H.; Kamenická, B.; Weidlich, T.; Beneš, L.; Vlček, M.; Lacina, P.; Švec, P. Application of Raney Al-Ni Alloy for Simple Hydrodehalogenation of Diclofenac and Other Halogenated Biocidal Contaminants in Alkaline Aqueous Solution under Ambient Conditions. Materials 2022, 15, 3939. [Google Scholar] [CrossRef]
- Kamenická, B.; Švec, P.; Weidlich, T. Separation of Anionic Chlorinated Dyes from Polluted Aqueous Streams Using Ionic Liquids and Their Subsequent Recycling. Int. J. Mol. Sci. 2023, 24, 12235. [Google Scholar] [CrossRef]
- Ding, P.; Niu, J.; Chang, F.; He, Z.; Wågberg, T.; Li, Z.; Hu, G. NiCo2O4 hollow microsphere–mediated ultrafast peroxymonosulfate activation for dye degradation. Chin. Chem. Lett. 2021, 32, 2495–2498. [Google Scholar] [CrossRef]
- Guo, X.; Lin, S.; Wang, Y.; Cai, W. Novel core–shell structure composite NiCo2O4–Vo@ZIF with amorphous ZIF shell and oxygen-vacancy-rich core for asymmetric supercapacitors. Electrochim. Acta 2024, 475, 143636. [Google Scholar] [CrossRef]
- Kishore babu, S.; Jayachandran, M.; Maiyalagan, T.; Vijayakumar, T.; Gunasekaran, B. Metal-organic framework (MOF-5) incorporated on NiCo2O4 as electrode material for supercapacitor application. Mater. Lett. 2021, 302, 130338. [Google Scholar] [CrossRef]
- Prakshale, R.; Bangale, S.; Kamble, M.; Sonawale, S. Combustion synthesis of spinel structured NiCo2O4 nanostructures: An efficient material for gas sensing and supercapacitor electrode applications. Micro Nanostruct. 2024, 189, 207820. [Google Scholar] [CrossRef]
- Chen, C.; Liu, L.; Li, Y.; Li, W.; Zhou, L.; Lan, Y.; Li, Y. Insight into heterogeneous catalytic degradation of sulfamethazine by peroxymonosulfate activated with CuCo2O4 derived from bimetallic oxalate. Chem. Eng. J. 2020, 384, 123257. [Google Scholar] [CrossRef]
- Tang, J.; Yao, S.; Yao, R.; Liu, H.; Chen, M.; Zhong, Y.; Yu, X.; Yin, A.; Sun, J. Insight into radical-nonradical coupling activation pathways of peroxymonosulfate by CuxO for antibiotics degradation. Chemosphere 2023, 318, 137970. [Google Scholar] [CrossRef]
- Nguyen, V.-T.; Nguyen, T.-B.; Chen, C.-W.; Hung, C.-M.; Vo, T.-D.-H.; Chang, J.-H.; Dong, C.-D. Influence of pyrolysis temperature on polycyclic aromatic hydrocarbons production and tetracycline adsorption behavior of biochar derived from spent coffee ground. Bioresour. Technol. 2019, 284, 197–203. [Google Scholar] [CrossRef]
- Han, D.; Shen, Y.; Pan, Y.; Cheng, Z.; Wei, Y.; Zeng, G.; Mao, L. Ultralayered core–shell metal oxide nanosheet arrays for supercapacitors with long-term electrochemical stability. Sustain. Energy. Fuels 2018, 2, 2115–2123. [Google Scholar] [CrossRef]
- Xu, Z.; Yang, L.; Jin, Q.; Hu, Z. Improved capacitance of NiCo2O4/carbon composite resulted from carbon matrix with multilayered graphene. Electrochim. Acta 2019, 295, 376–383. [Google Scholar] [CrossRef]
- Xu, M.; Zhou, H.; Wu, Z.; Li, N.; Xiong, Z.; Yao, G.; Lai, B. Efficient degradation of sulfamethoxazole by NiCo2O4 modified expanded graphite activated peroxymonosulfate: Characterization, mechanism and degradation intermediates. J. Hazard. Mater. 2020, 399, 123103. [Google Scholar] [CrossRef]
- Ren, Y.; Lin, L.; Ma, J.; Yang, J.; Feng, J.; Fan, Z. Sulfate radicals induced from peroxymonosulfate by magnetic ferrospinel MFe2O4 (M = Co, Cu, Mn, and Zn) as heterogeneous catalysts in the water. Appl. Catal. B Environ. 2015, 165, 572–578. [Google Scholar] [CrossRef]
- Huang, Q.; Chen, C.; Zhao, X.; Bu, X.; Liao, X.; Fan, H.; Gao, W.; Hu, H.; Zhang, Y.; Huang, Z. Malachite green degradation by persulfate activation with CuFe2O4@biochar composite: Efficiency, stability and mechanism. J. Environ. Chem. Eng. 2021, 9, 105800. [Google Scholar] [CrossRef]
- Liu, X.; Zhou, J.; Liu, D.; Li, L.; Liu, W.; Liu, S.; Feng, C. Construction of Z-scheme CuFe2O4/MnO2 photocatalyst and activating peroxymonosulfate for phenol degradation: Synergistic effect, degradation pathways, and mechanism. Environ. Res. 2021, 200, 111736. [Google Scholar] [CrossRef] [PubMed]
- Lyu, J.; Ge, M.; Hu, Z.; Guo, C. One-pot synthesis of magnetic CuO/Fe2O3/CuFe2O4 nanocomposite to activate persulfate for levofloxacin removal: Investigation of efficiency, mechanism and degradation route. Chem. Eng. J. 2020, 389, 124456. [Google Scholar] [CrossRef]
- Song, Q.; Feng, Y.; Wang, Z.; Liu, G.; Lv, W. Degradation of triphenyl phosphate (TPhP) by CoFe2O4-activated peroxymonosulfate oxidation process: Kinetics, pathways, and mechanisms. Sci. Total Environ. 2019, 681, 331–338. [Google Scholar] [CrossRef]
- Ding, D.; Liu, C.; Ji, Y.; Yang, Q.; Chen, L.; Jiang, C.; Cai, T. Mechanism insight of degradation of norfloxacin by magnetite nanoparticles activated persulfate: Identification of radicals and degradation pathway. Chem. Eng. J. 2017, 308, 330–339. [Google Scholar] [CrossRef]
- Zhang, T.; Zhu, H.; Croué, J.-P. Production of Sulfate Radical from Peroxymonosulfate Induced by a Magnetically Separable CuFe2O4 Spinel in Water: Efficiency, Stability, and Mechanism. Environ. Sci. Technol. 2013, 47, 2784–2791. [Google Scholar] [CrossRef]
- Wang, Y.; Yan, P.; Dou, X.; Liu, C.; Zhang, Y.; Song, Z.; Chen, Z.; Xu, B.; Qi, F. Degradation of benzophenone-4 by peroxymonosulfate activated with microwave synthesized well-distributed CuBi2O4 microspheres: Theoretical calculation of degradation mechanism. Appl. Catal. B Environ. 2021, 290, 120048. [Google Scholar] [CrossRef]
- Chen, H.; Zhang, X.; Jiang, L.; Yuan, X.; Liang, J.; Zhang, J.; Yu, H.; Chu, W.; Wu, Z.; Li, H.; et al. Strategic combination of nitrogen-doped carbon quantum dots and g-C3N4: Efficient photocatalytic peroxydisulfate for the degradation of tetracycline hydrochloride and mechanism insight. Sep. Purif. Technol. 2021, 272, 118947. [Google Scholar] [CrossRef]
- Ding, Y.; Pan, C.; Peng, X.; Mao, Q.; Xiao, Y.; Fu, L.; Huang, J. Deep mineralization of bisphenol A by catalytic peroxymonosulfate activation with nano CuO/Fe3O4 with strong Cu-Fe interaction. Chem. Eng. J. 2020, 384, 123378. [Google Scholar] [CrossRef]
- Chen, X.; Zhou, J.; Chen, Y.; Zhou, Y.; Ding, L.; Liang, H.; Li, X. Degradation of tetracycline hydrochloride by coupling of photocatalysis and peroxymonosulfate oxidation processes using CuO-BiVO4 heterogeneous catalyst. Process Saf. Environ. Prot. 2021, 145, 364–377. [Google Scholar] [CrossRef]
- Yu, H.; Wang, D.; Zhao, B.; Lu, Y.; Wang, X.; Zhu, S.; Qin, W.; Huo, M. Enhanced photocatalytic degradation of tetracycline under visible light by using a ternary photocatalyst of Ag3PO4/AgBr/g-C3N4 with dual Z-scheme heterojunction. Sep. Purif. Technol. 2020, 237, 116365. [Google Scholar] [CrossRef]
- Sun, Y.; Zheng, W.; Fu, S.; Singh, R.P. Immobilization of iron phthalocyanine on 4-aminopyridine grafted polystyrene resin as a catalyst for peroxymonosulfate activation in eliminating tetracycline hydrochloride. Chem. Eng. J. 2020, 391, 123611. [Google Scholar] [CrossRef]
- Xu, W.; Lai, S.; Pillai, S.C.; Chu, W.; Hu, Y.; Jiang, X.; Fu, M.; Wu, X.; Li, F.; Wang, H. Visible light photocatalytic degradation of tetracycline with porous Ag/graphite carbon nitride plasmonic composite: Degradation pathways and mechanism. J. Colloid Interface Sci. 2020, 574, 110–121. [Google Scholar] [CrossRef]
- Yang, L.-X.; Yang, J.-C.E.; Fu, M.-L. Magnetic CoFe2O4 nanocrystals derived from MIL-101 (Fe/Co) for peroxymonosulfate activation toward degradation of chloramphenicol. Chemosphere 2021, 272, 129567. [Google Scholar] [CrossRef]
- Liu, B.; Song, W.; Wu, H.; Xu, Y.; Sun, Y.; Yu, Y.; Zheng, H.; Wan, S. Enhanced oxidative degradation of norfloxacin using peroxymonosulfate activated by oily sludge carbonbased nanoparticles CoFe2O4/OSC. Chem. Eng. J. 2020, 400, 125947. [Google Scholar] [CrossRef]
- Wang, X.; Jiang, J.; Ma, Y.; Song, Y.; Li, T.; Dong, S. Tetracycline hydrochloride degradation over manganese cobaltate (MnCo2O4) modified ultrathin graphitic carbon nitride (g-C3N4) nanosheet through the highly efficient activation of peroxymonosulfate under visible light irradiation. J. Colloid. Interface Sci. 2021, 600, 449–462. [Google Scholar] [CrossRef]
- Jiang, J.; Wang, X.; Yue, C.; Liu, S.; Lin, Y.; Xie, T.; Dong, S. Efficient photoactivation of peroxymonosulfate by Z-scheme nitrogen-defect-rich NiCo2O4/g-C3N4 for rapid emerging pollutants degradation. J. Hazard. Mater. 2021, 414, 125528. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Q.; Yu, M.; Liu, H.; Tang, J.; Yu, X.; Wu, H.; Jin, L.; Sun, J. Efficient Degradation of Tetracycline by Peroxymonosulfate Activated with Ni-Co Bimetallic Oxide Derived from Bimetallic Oxalate. Toxics 2024, 12, 816. https://doi.org/10.3390/toxics12110816
Zhang Q, Yu M, Liu H, Tang J, Yu X, Wu H, Jin L, Sun J. Efficient Degradation of Tetracycline by Peroxymonosulfate Activated with Ni-Co Bimetallic Oxide Derived from Bimetallic Oxalate. Toxics. 2024; 12(11):816. https://doi.org/10.3390/toxics12110816
Chicago/Turabian StyleZhang, Qi, Mingling Yu, Hang Liu, Jin Tang, Xiaolong Yu, Haochuan Wu, Ling Jin, and Jianteng Sun. 2024. "Efficient Degradation of Tetracycline by Peroxymonosulfate Activated with Ni-Co Bimetallic Oxide Derived from Bimetallic Oxalate" Toxics 12, no. 11: 816. https://doi.org/10.3390/toxics12110816
APA StyleZhang, Q., Yu, M., Liu, H., Tang, J., Yu, X., Wu, H., Jin, L., & Sun, J. (2024). Efficient Degradation of Tetracycline by Peroxymonosulfate Activated with Ni-Co Bimetallic Oxide Derived from Bimetallic Oxalate. Toxics, 12(11), 816. https://doi.org/10.3390/toxics12110816