The Role of Metal Tolerance Proteins (MTPs) Associated with the Homeostasis of Divalent Mineral Elements in Ga-Treated Rice Plants
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials and Treatments
2.2. Subcellular Distribution of Ga and Divalent Cations
2.3. Phylogenetic Analysis, Gene Structure, Transmembrane Structure, and Cis-Elements of MTPs
2.4. Molecular Docking of Metal Tolerance Proteins
2.5. Analysis of Gene Expression
2.6. Data Analysis
3. Results
3.1. Gene Structure and Conserved Domains of Rice MTPs
3.2. Amino Acid Composition of Rice MTPs
3.3. Motif Analysis and Transmembrane Structure of Rice MTPs
3.4. Promoter Analysis of MTP Genes in Rice
3.5. Molecular Interaction Between MTPs and Ga3+ Ions
3.6. Subcellular Distribution of Ga, Mg, Cu, Fe, Mn, and Zn in Rice Tissues
3.7. Gene Expression of MTPs to Ga Exposure in Rice Tissues
3.8. Integration of Gene Expression, Mineral Elements, and Ga Accumulation
3.9. Rice MTP Social Network
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ricachenevsky, F.K.; Menguer, P.K.; Sperotto, R.A.; Williams, L.E.; Fett, J.P. Roles of plant metal tolerance proteins (MTP) in metal storage and potential use in biofortification strategies. Front. Plant Sci. 2013, 4, 144. [Google Scholar] [CrossRef] [PubMed]
- Benatti, M.R.; Yookongkaew, N.; Meetam, M.; Guo, W.L.; Punyasuk, N.; AbuQamar, S.; Goldsbrough, P. Metallothionein deficiency impacts copper accumulation and redistribution in leaves and seeds of Arabidopsis. New Phytol. 2014, 202, 940–951. [Google Scholar] [CrossRef] [PubMed]
- Thomine, S.; Vert, G. Iron transport in plants: Better be safe than sorry. Curr. Opin. Plant Biol. 2013, 16, 322–327. [Google Scholar] [CrossRef] [PubMed]
- Ghori, N.H.; Ghori, T.; Hayat, M.Q.; Imadi, S.R.; Gul, A.; Altay, V.; Ozturk, M. Heavy metal stress and responses in plants. Int. J. Environ. Sci. Technol. 2019, 16, 1807–1828. [Google Scholar] [CrossRef]
- Ali, E.; Maodzeka, A.; Hussain, N.; Shamsi, I.H.; Jiang, L.X. The alleviation of cadmium toxicity in oilseed rape (Brassica napus) by the application of salicylic acid. Plant Growth Regul. 2015, 75, 641–655. [Google Scholar] [CrossRef]
- Das, U.; Haque, A.F.M.M.; Bari, M.A.; Mandal, A.; Kabir, A.H. Computational characterization and expression profile of MTP1 gene associated with zinc homeostasis across dicot plant species. Gene Rep. 2021, 23, 101073. [Google Scholar] [CrossRef]
- Fujiwara, T.; Kawachi, M.; Sato, Y.; Mori, H.; Kutsuna, N.; Hasezawa, S.; Maeshima, M. A high molecular mass zinc transporter MTP 12 forms a functional heteromeric complex with MTP 5 in the Golgi in Arabidopsis thaliana. FEBS J. 2015, 282, 1965–1979. [Google Scholar] [CrossRef]
- Takemoto, Y.; Tsunemitsu, Y.; Fujii-Kashino, M.; Mitani-Ueno, N.; Yamaji, N.; Ma, J.F.; Kato, S.; Iwasaki, K.; Ueno, D. The tonoplast-localized transporter MTP8.2 contributes to manganese detoxification in the shoots and roots of Oryza sativa L. Plant Cell Physiol. 2017, 58, 1573–1582. [Google Scholar] [CrossRef]
- Hall, J.L.; Williams, L.E. Transition metal transporters in plants. J. Exp. Bot. 2003, 54, 2601–2613. [Google Scholar] [CrossRef]
- Menguer, P.M.; Farthing, E.; Peaston, K.A.; Ricachenevsky, F.K.; Fett, J.P.; Williams, L.E. Functional analysis of the rice vacuolar zinc transporter OsMTP1. J. Exp. Bot. 2013, 64, 2871–2883. [Google Scholar] [CrossRef]
- Li, Z.; Wang, C.; Wang, K.; Zhao, J.; Shao, J.; Chen, H.; Zhou, M.; Zhu, X. Metal tolerance protein encoding gene family in Fagopyrum tartaricum: Genome-wide identification, characterization and expression under multiple metal stresses. Plants 2022, 11, 850. [Google Scholar] [CrossRef] [PubMed]
- Montanini, B.; Blaudez, D.; Jeandroz, S.; Sanders, D.; Chalot, M. Phylogenetic and functional analysis of the Cation Diffusion Facilitator (CDF) family: Improved signature and prediction of substrate specificity. BMC Genom. 2007, 8, 107. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Fujii, Y.; Yamaji, N.; Masuda, S.; Takemoto, Y.; Kamiya, T.; Yusuyin, Y.; Iwasaki, K.; Kato, S.; Maeshima, M.; et al. Mn tolerance in rice is mediated by MTP8.1, a member of the cation diffusion facilitator family. J. Exp. Bot. 2013, 64, 4375–4387. [Google Scholar] [CrossRef] [PubMed]
- Delhaize, E.; Gruber, B.; Pittman, J.; White, R.; Leung, H.; Miao, Y.; Liang, L.; Ryan, P.R.; Richardson, A.E. A role for the AtMTP11 gene of Arabidopsis in manganese transport and tolerance. Plant J. 2007, 51, 198–210. [Google Scholar] [CrossRef]
- Ge, H.; Wang, Y.; Chen, J.; Zhang, B.; Chen, R.; Lan, W.; Luan, S.; Yang, L. An Arabidopsis vasculature distributed metal tolerance protein facilitates xylem magnesium diffusion to shoots under high-magnesium environments. J. Integr. Plant Biol. 2022, 64, 166–182. [Google Scholar] [CrossRef]
- Peiter, E.; Montanini, B.; Gobert, A.; Pedas, P.; Husted, S.; Maathuis, F.J.M.; Blaudez, D.; Chalot, M.; Sanders, D. A secretary pathway-localized cation diffusion facilitator confers plant manganese tolerance. Proc. Natl. Acad. Sci. USA 2007, 104, 8532–8537. [Google Scholar] [CrossRef]
- Jobby, R.; Sarkar, M.; Bose, R.; Srivastava, S.; Suprasanna, P. Chromiomics: Chromium detoxification and approaches for engineering tolerance in plants. Environ. Pollut. 2024, 350, 123991. [Google Scholar] [CrossRef]
- Sinha, V.; Pakshirajan, K.; Chaturvedi, R. Chromium tolerance, bioaccumulation and localization in plants: An overview. J. Environ. Manag. 2018, 206, 715–730. [Google Scholar] [CrossRef]
- Erb, M.; Kliebenstein, D.J. Plant secondary metabolites as defenses, regulators, and primary metabolites: The blurred functional trichotomy. Plant Physiol. 2020, 184, 39–52. [Google Scholar] [CrossRef]
- Fan, W.J.; Feng, Y.X.; Li, Y.H.; Lin, Y.J.; Yu, X.Z. Unraveling genes promoting ROS metabolism in subcellular organelles of Oryza sativa in response to trivalent and hexavalent chromium. Sci. Total Environ. 2020, 744, 140951. [Google Scholar] [CrossRef]
- Pan, X.; Ullah, A.; Feng, Y.X.; Tian, P.; Yu, X.Z. Proline-mediated activation of glyoxalase II improve methylglyoxal detoxification in Oryza sativa L. under chromium injury: Clarification via vector analysis of enzymatic activities and gene expression. Plant Physiol. Biochem. 2023, 201, 107867. [Google Scholar] [CrossRef] [PubMed]
- Lai, H.Y. Subcellular distribution and chemical forms of cadmium in Impatiens walleriana in relation to its phytoextraction potential. Chemosphere 2015, 138, 370–376. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Dubey, A.K.; Kumar, V.; Ansari, M.A.; Narayan, S.; Kumar, S.; Pandey, V.; Shirke, P.A.; Pande, V.; Sanyal, I. Over-expression of chickpea glutaredoxin (CaGrx) provides tolerance to heavy metals by reducing metal accumulation and improved physiological and antioxidant defense system. Ecotoxicol. Environ. Saf. 2020, 192, 110252. [Google Scholar] [CrossRef] [PubMed]
- Park, J.; Song, W.Y.; Ko, D.; Eom, Y.; Hansen, T.H.; Schiller, M.; Lee, Y. The phytochelatin transporters AtABCC1 and AtABCC2 mediate tolerance to cadmium and mercury. Plant J. 2012, 69, 278–288. [Google Scholar] [CrossRef] [PubMed]
- Yu, X.Z.; Lin, Y.J.; Zhang, Q. Metallothioneins enhance chromium detoxification through scavenging ROS and stimulating metal chelation in Oryza sativa. Chemosphere 2019, 220, 300–313. [Google Scholar] [CrossRef]
- Jain, R.; Fan, S.; Kaden, P.; Tsushima, S.; Foerstendorf, H.; Barthen, R.; Pollmann, K. Recovery of gallium from wafer fabrication industry wastewaters by Desferrioxamine B and E using reversed-phase chromatography approach. Water Res. 2019, 158, 203–212. [Google Scholar] [CrossRef]
- Yuan, Y.; Hao, W.; Mu, W.; Wang, Z.; Chen, X.; Liu, Q.; Hao, Y. Toward emerging gallium oxide semiconductors: A road map. Fundam. Res. 2021, 1, 697–716. [Google Scholar] [CrossRef]
- Ren, W.L.; Li, C.Z.; Ullah, A.; Yu, X.Z. Boron deficiency decreased the root activity of Ga-exposed rice seedlings by reducing iron accumulation and increasing Ga in iron plaque. Ecotoxicology 2024, 33, 142–150. [Google Scholar] [CrossRef]
- Su, J.Y.; Syu, C.H.; Lee, D.Y. Growth inhibition of rice (Oryza sativa L.) seedlings in Ga-and in-contaminated acidic soils is respectively caused by Al and Al+In toxicity. J. Hazard. Mater. 2018, 344, 274–282. [Google Scholar] [CrossRef]
- Chang, H.F.; Wang, S.L.; Yeh, K.C. Effect of gallium exposure in Arabidopsis thaliana is similar to aluminum stress. Environ. Sci. Technol. 2017, 51, 1241–1248. [Google Scholar] [CrossRef]
- Jensen, H.; Gaw, S.; Lehto, N.J.; Hassall, L.; Robinson, B.H. The mobility and plant uptake of gallium and indium, two emerging contaminants associated with electronic waste and other sources. Chemosphere 2018, 209, 675–684. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.C.; Ullah, A.; Tian, P.; Yu, X.Z. Response to gallium (Ga) exposure and its distribution in rice plants. Environ. Sci. Pollut. Res. 2023, 30, 121908–121914. [Google Scholar] [CrossRef] [PubMed]
- Sharma, S.S.; Dietz, K.J.; Mimura, T. Vacuolar compartmentalization as indispensable component of heavy metal detoxification in plants. Plant Cell Environ. 2016, 39, 1112–1126. [Google Scholar] [CrossRef]
- Drzewiecka, K.; Mleczek, M.; Gąsecka, M.; Magdziak, Z.; Budka, A.; Chadzinikolau, T.; Kaczmarek, Z.; Goliński, P. Copper and nickel co-treatment alters metal uptake and stress parameters of Salix purpurea × viminalis. J. Plant Physiol. 2017, 216, 125–134. [Google Scholar] [CrossRef] [PubMed]
- Shahzad, B.; Tanveer, M.; Rehman, A.; Cheema, S.A.; Fahad, S.; Rehman, S.; Sharma, A. Nickel: Whether toxic or essential for plants and environment-A review. Plant Physiol. Biochem. 2018, 132, 641–651. [Google Scholar] [CrossRef]
- Dube, B.; Tewari, K.; Chatterjee, J.; Chatterjee, C. Excess chromium alters uptake and translocation of certain nutrients in citrullus. Chemosphere 2003, 53, 1147–1153. [Google Scholar] [CrossRef]
- Liu, D.; Zou, J.; Wang, M.; Jiang, W. Hexavalent chromium uptake and its effects on mineral uptake, antioxidant defense system and photosynthesis in Amaranthus viridis L. Biores. Technol. 2008, 99, 2628–2636. [Google Scholar] [CrossRef]
- Yu, X.Z.; Fan, W.J.; Lin, Y.J. Analysis of gene expression profiles for metal tolerance protein in rice seedlings exposed to both the toxic hexavalent chromium and trivalent chromium. Int. Biodeterior. Biodegrad. 2018, 129, 102–108. [Google Scholar] [CrossRef]
- Chen, C.; Chen, H.; Zhang, Y.; Thomas, H.R.; Frank, M.H.; He, Y.; Xia, R. TBtools: An integrative toolkit developed for interactive analyses of big biological data. Mol. Plant 2020, 13, 1194–1202. [Google Scholar] [CrossRef]
- Singh, G.; Tripathi, S.; Shanker, K.; Sharma, A. Cadmium-induced conformational changes in type 2 metallothionein of medicinal plant Coptis japonica: Insights from molecular dynamics studies of apo, partially and fully metalated forms. J. Biomol. Struct. Dyn. 2019, 37, 1520–1533. [Google Scholar] [CrossRef]
- Schmittgen, T.D.; Livak, K.J. Analyzing real-time PCR data by the comparative CT method. Nat. Protoc. 2008, 3, 101–1108. [Google Scholar] [CrossRef] [PubMed]
- Yuan, L.; Yang, S.; Liu, B.; Zhang, M.; Wu, K. Molecular characterization of a rice metal tolerance protein, OsMTP1. Plant Cell Rep. 2012, 31, 67–79. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Xiong, J.; Chen, R.; Fu, G.; Chen, T.; Tao, L. Excessive nitrate enhances cadmium (Cd) uptake by up-regulating the expression of OsIRT1 in rice (Oryza sativa). Environ. Exp. Bot. 2016, 122, 141–149. [Google Scholar] [CrossRef]
- Kan, M.; Fujiwara, T.; Kamiya, T. Golgi-localized OsFPN1 is involved in Co and Ni transport and their detoxification in rice. Rice 2022, 15, 36. [Google Scholar] [CrossRef]
- Yang, Z.; Yang, F.; Liu, J.L.; Wu, H.T.; Yang, H.; Shi, Y.; Liu, J.; Zhang, Y.F.; Luo, Y.R.; Chen, K.M. Heavy metal transporters: Functional mechanisms, regulation, and application in phytoremediation. Sci. Total Environ. 2022, 809, 151099. [Google Scholar] [CrossRef]
- Colangelo, E.P.; Guerinot, M.L. Put the metal to the petal: Metal uptake and transport throughout plants. Curr. Opin. Plant Biol. 2006, 9, 322–330. [Google Scholar] [CrossRef]
- Syu, C.H.; Chien, P.H.; Huang, C.C.; Jiang, P.Y.; Juang, K.W.; Lee, D.Y. The growth and uptake of Ga and In of rice (Oryza sativa L.) seedlings as affected by Ga and In concentrations in hydroponic cultures. Ecotoxicol. Environ. Saf. 2017, 135, 32–39. [Google Scholar] [CrossRef]
- Osterberg, J.T.; Palmgren, M. Heavy metal pumps in plants: Structure, function and origin. Adv. Bot. Res. 2018, 87, 57–89. [Google Scholar]
- Yuvaraj, A.; Govarthanan, M.; Karmegam, N.; Biruntha, M.; Kumar, D.S.; Arthanari, M.; Govindarajan, R.K.; Tripathi, S.; Ghosh, S.; Kumar, P.; et al. Metallothionein dependent-detoxification of heavy metals in the agricultural field soil of industrial area: Earthworm as field experimental model system. Chemosphere 2021, 267, 129240. [Google Scholar] [CrossRef]
- Williams, L.E.; Pittman, J.K.; Hall, J.L. Emerging mechanisms for heavy metal transport in plants. Biochim. Biophys. Acta 2000, 1465, 104–126. [Google Scholar] [CrossRef]
- Das, N.; Bhattacharya, S.; Maiti, M.K. Enhanced cadmium accumulation and tolerance in transgenic tobacco overexpressing rice metal tolerance protein gene OsMTP1 is promising for phytoremediation. Plant Physiol. Biochem. 2016, 105, 297–309. [Google Scholar] [CrossRef] [PubMed]
- Haney, C.J.; Grass, G.; Franke, S.; Rensing, C. New developments in the understanding of the cation diffusion facilitator family. J. Ind. Microbiol. Biotechnol. 2005, 32, 215–226. [Google Scholar] [CrossRef] [PubMed]
- Ueno, D.; Sasaki, A.; Yamaji, N.; Miyaji, T.; Fujii, Y.; Takemoto, Y.; Motiyama, S.; Che, J.; Moriyama, Y.; Iwasaki, K.; et al. A polarly localized transporter for efficient manganese uptake in rice. Nat. Plants 2015, 1, 15170. [Google Scholar] [CrossRef] [PubMed]
- Kobae, Y.; Uemura, T.; Sato, M.H.; Ohnishi, M.; Mimura, T.; Nakagawa, T.; Maeshima, M. Zinc transporter of Arabidopsis thaliana AtMTP1 is localized to vacuolar membranes and implicated in zinc homeostasis. Plant Cell Physiol. 2004, 45, 1749–1758. [Google Scholar] [CrossRef]
- Arrivault, S.; Senger, T.; Kramer, U. The Arabidopsis metal tolerance protein AtMTP3 maintains metal homeostasis by mediating Zn exclusion from the shoot under Fe deficiency and Zn oversupply. Plant J. 2006, 46, 861–879. [Google Scholar] [CrossRef]
- Zhang, M.; Liu, B. Identification of a rice metal tolerance protein OsMTP11 as a manganese transporter. PLoS ONE 2017, 12, e0174987. [Google Scholar] [CrossRef]
- Tsunemitsu, Y.; Yamaji, N.; Ma, J.F.; Kato, S.I.; Iwasaki, K.; Ueno, D. Rice reduces Mn uptake in response to Mn stress. Plant Signal. Behav. 2018, 13, e1422466. [Google Scholar] [CrossRef]
- Yuan, B.; Li, H.; Hong, H.; Wang, Q.; Tian, Q.; Lu, H.; Liu, J.; Lin, L.; Wu, G.; Yan, C. Immobilization of lead(II) and zinc(II) onto glomalin-related soil protein (GRSP): Adsorption properties and interaction mechanisms. Ecotox. Environ. Saf. 2022, 236, 113489. [Google Scholar] [CrossRef]
- Liao, S.M.; Shen, N.K.; Liang, G.; Lu, B.; Lu, Z.L.; Peng, L.X.; Zhou, F.; Du, L.Q.; Wei, Y.T.; Zhou, G.P.; et al. Inhibition of α-amylase activity by Zn2+: Insights from spectroscopy and molecular dynamics simulations. Med. Chem. 2019, 15, 510–520. [Google Scholar] [CrossRef]
- Dey, G.; Palit, S.; Banerjee, R.; Maiti, B.R. Purification and characterization of maltooligosaccharide-forming amylase from Bacillus circulans GRS 313. J. Ind. Microbiol. Biotechnol. 2002, 28, 193–200. [Google Scholar] [CrossRef]
- Gerber, H.; Wu, F.; Dimitrov, M.; Osuna, G.M.G.; Fraering, P.C. Zinc and copper differentially modulate Amyloid precursor protein processing by Secretase and Amyloid-peptide production. J. Biol. Chem. 2017, 292, 3751–3767. [Google Scholar] [CrossRef] [PubMed]
- Kumar, N.; Saha, S.; Sastry, G.N. Towards developing a criterion to characterize non-covalent bonds: A quantum mechanical study. Phys. Chem. Chem. Phys. 2021, 23, 8478–8488. [Google Scholar] [CrossRef] [PubMed]
- Ram, H.; Kaur, A.; Gandass, N.; Singh, S.; Deshmukh, R.; Sonah, H.; Sharma, T.R. Molecular characterization and expression dynamics of MTP genes under various spatio-temporal stages and metal stress conditions in rice. PLoS ONE 2019, 14, e0217360. [Google Scholar] [CrossRef] [PubMed]
- Wong, A.; Gehring, C.; Irving, H.R. Conserved functional motifs and homology modeling to predict hidden moonlighting functional sites. Front. Bioeng. Biotech. 2015, 3, 82. [Google Scholar] [CrossRef] [PubMed]
- El-Sappah, A.H.; Elbaiomy, R.G.; Elrys, A.S.; Wang, Y.; Zhu, Y.; Huang, Q.; Yan, K.; Xianming, Z.; Abbas, M.; El-Tarabily, K.A.; et al. Genome-wide identification and expression analysis of metal tolerance protein gene family in Medicago truncatula under a broad range of heavy metal stress. Front. Genet. 2021, 12, 713224. [Google Scholar] [CrossRef]
- Deshmukh, R.K.; Sonah, H.; Singh, N.K. Intron gain, a dominant evolutionary process supporting high levels of gene expression in rice. J. Plant Biochem. Biotechnol. 2015, 25, 142–146. [Google Scholar] [CrossRef]
- Hussain, D.; Haydon, M.J.; Wang, Y.; Sherson, S.M.; Young, J.; Camakaris, J.; Harper, J.F.; Cobbett, C.S. P-type ATPase heavy metal transporters with roles in essential zinc homeostasis in Arabidopsis. Plant Cell 2004, 16, 1327–1339. [Google Scholar] [CrossRef]
- Zhang, Y.; Xu, Y.H.; Yi, H.Y.; Gong, J.M. Vacuolar membrane transporters OsVIT1 and OsVIT2 modulate iron translocation between flag leaves and seeds in rice. Plant J. 2012, 72, 400–410. [Google Scholar] [CrossRef]
- Takahashi, R.; Ishimaru, Y.; Senoura, T.; Shimo, H.; Ishikawa, S.; Arao, T.; Nakanishi, H.; Nishizawa, N.K. The OsNRAMP1 iron transporter is involved in Cd accumulation in rice. J. Exp. Bot. 2011, 62, 4843–4850. [Google Scholar] [CrossRef]
- Takahashi, R.; Ishimaru, Y.; Shimo, H.; Bashir, K.; Senoura, T.; Sugimoto, K.; Ono, K.; Suzui, N.; Kawachi, N.; Ishii, S.; et al. From laboratory to field: OsNRAMP5 knockdown rice is a promising candidate for Cd phytoremediation in paddy fields. PLoS ONE 2014, 9, e98816. [Google Scholar] [CrossRef]
- Lee, S.; An, G. Over-expression of OsIRT1 leads to increased iron and zinc accumulations in rice. Plant Cell Environ. 2009, 32, 408–416. [Google Scholar] [CrossRef] [PubMed]
- Ishimaru, Y.; Masuda, H.; Suzuki, M.; Bashir, K.; Takahashi, M.; Nakanishi, H.; Mori, S.; Nishizawa, N.K. Overexpression of the OsZIP4 zinc transporter confers disarrangement of zinc distribution in rice plants. J. Exp. Bot. 2007, 58, 2909–2915. [Google Scholar] [CrossRef] [PubMed]
- Kavitha, P.; Kuruvilla, S.; Mathew, M. Functional characterization of a transition metal ion transporter, OsZIP6 from rice (Oryza sativa L.). Plant Physiol. Biochem. 2015, 97, 165–174. [Google Scholar]
Cis-Element Name | Gene Number | Signal Sequence | Location | Function |
---|---|---|---|---|
Light responsive | ||||
G-box | 8 | CACGAC | 1844 | Light responsiveness |
Box 4 | 7 | ATTAAT | 1131 | Light responsiveness |
GT1-motif | 6 | GGTTAA | 646 | Light-responsive element |
Sp1 | 6 | GGGCGG | 1882 | Light-responsive element |
TCT-motif | 6 | TCTTAC | 619 | Light-responsive element |
TCCC-motif | 5 | TCTCCCT | 245 | Part of a light-responsive element |
MRE | 3 | AACCTAA | 639 | Light responsiveness |
GATA-motif | 3 | AAGGATAAGG | 581 | Part of a light-responsive element |
I-box | 3 | AAGATAAGGCT | 705 | Part of a light-responsive element |
ATCT-motif | 2 | AATCTAATCC | 773 | Light responsiveness |
chs-CMA1a | 2 | TTACTTAA | 1139 | Light-responsive element |
GA-motif | 2 | ATAGATAA | 858 | Light-responsive element |
AE-box | 2 | AGAAACAA | 189 | Part of a module for light response |
Phytohormone responsive | ||||
CGTCA-motif | 9 | CGTCA | 262 | MeJA responsiveness |
TGACG-motif | 9 | TGACG | 406 | MeJA responsiveness |
ABRE | 8 | ACGTG | 1535 | Abscisic acid responsiveness |
TCA-element | 4 | CCATCTTTTT | 805 | Salicylic acid responsiveness |
TGA-element | 4 | AACGAC | 480 | Auxin-responsive element |
P-box | 3 | CCTTTTG | 863 | Gibberellin-responsive element |
TATC-box | 2 | TATCCCA | 610 | Gibberellin responsiveness |
Environmental stress responsive | ||||
ARE | 9 | AAACCA | 1457 | Anaerobic induction |
GC-motif | 7 | CCCCCG | 1879 | Anoxic-specific inducibility |
TC-rich repeats | 5 | GTTTTCTTAC | 835 | Defense and stress responsiveness |
circadian | 4 | CAAAGATATC | 1258 | Circadian control |
LTR | 4 | CCGAAA | 1954 | Low-temperature responsiveness |
MBS | 4 | CAACTG | 320 | Drought inducibility |
General regulatory elements | ||||
CAAT-box | 10 | CCAAT | 957 | Core enhancer element |
TATA-box | 10 | TATA | 1371 | Core promoter element |
A-box | 8 | CCGTCC | 751 | Cis-acting regulatory element |
Regulation of plant development | ||||
O2-site | 5 | GATGATGTGG | 1634 | Zein metabolism regulation |
CAT-box | 3 | GCCACT | 1697 | Meristem expression |
Binding responsive | ||||
AT-rich element | 4 | ATAGAAATCAA | 1815 | AT-rich DNA binding protein |
CCAAT-box | 2 | CAACGG | 1854 | MYBHv1 binding site |
Gene | Cis-Element Name | Signal Sequence | Location | Function |
---|---|---|---|---|
Light responsive | ||||
OsMTP1 | 3-AF1 binding site | TAAGAGAGGAA | 384 | Light-responsive element |
OsMTP7 | LAMP-element | CTTTATCA | 143 | Part of a light-responsive element |
OsMTP8 | ATC-motif | AGTAATCT | 1046 | Light responsiveness |
OsMTP9 | chs-Unit 1 m1 | ACCTAACCCGC | 1764 | Part of a light-responsive element |
Phytohormone responsive | ||||
OsMTP7 | AuxRR-core | GGTCCAT | 1965 | Auxin responsiveness |
OsMTP11 | GARE-motif | TCTGTTG | 681 | Gibberellin-responsive element |
MTP Protein | Residues of AAs | Distance (Å) | Binding Functional Group | Possible Bonds | Binding Energy (kcal/mol) |
---|---|---|---|---|---|
OsMTP1 | Pro (343) | 3.1 | –C=O | Metal acceptor | −42.33 |
Glu (345) | 2.3 | –COO– –C –CB | Metal acceptor Unfavorable bump Unfavorable bump | ||
Ile (346) | 2.3 | –CO–NH | Unfavorable metal donor | ||
OsMTP5 | Leu (76) | 3.4 | –CA | Unfavorable bump | −31.17 |
Ser (79) | 2.6 | –OH | Unfavorable metal donor | ||
Thr (191) | 2.6 | –OH | Unfavorable metal donor | ||
OsMTP6 | Glu (235) | 2.4 | –C –CB | Unfavorable bump Unfavorable bump | −41.03 |
OsMTP7 | Lys (198) | 2.0 | –CO–NH | Unfavorable metal donor | −43.33 |
Glu (375) | 2.3 | –COO- | Metal acceptor | ||
Val (376) | 2.8 | –C=O | Metal acceptor | ||
OsMTP8 | Ser (246) | 3.4 | –C=O | Unfavorable metal donor | −46.09 |
Asn (248) * | 2.2 | –C | Covalent bond | ||
OsMTP8.1 | Ser (233) * | 2.1 | –OH | Covalent bond | −37.54 |
Asn (235) | 2.6 | –C=O | Unfavorable bump | ||
Val (238) * | 2.1 | –C=O | Covalent bond | ||
OsMTP9 | Glu (237) * | 1.8 | –CA –CO–NH | Covalent bond Covalent bond | −41.94 |
Arg (240) | 2.5 | –CD | Unfavorable bump | ||
OsMTP11 | Glu (259) * | 2.0 | –CA –CO–NH | Covalent bond Covalent bond | −48.60 |
Lys (262) | 2.4 | –CD | Unfavorable bump | ||
OsMTP11.1 | Phe (314) | 2.4 | –CO–NH | Unfavorable metal donor | −45.20 |
Glu (315) | 2.4 | –C=O | Metal acceptor | ||
His (317) | 2.4 | –C=O –CO–NH | Metal acceptor Unfavorable metal donor | ||
OsMTP12 | Leu (225) * | 2.0 | –C=O | Covalent bond | −43.82 |
Leu (226) * | 2.3 | –C | Covalent bond | ||
Asn (228) * | 1.6 | –CO–NH | Covalent bond | ||
Ser (229) | 1.8 | –CO–NH | Unfavorable bump |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhan, H.; Li, C.-Z.; Kang, Y.; Yu, X.-Z. The Role of Metal Tolerance Proteins (MTPs) Associated with the Homeostasis of Divalent Mineral Elements in Ga-Treated Rice Plants. Toxics 2024, 12, 831. https://doi.org/10.3390/toxics12110831
Zhan H, Li C-Z, Kang Y, Yu X-Z. The Role of Metal Tolerance Proteins (MTPs) Associated with the Homeostasis of Divalent Mineral Elements in Ga-Treated Rice Plants. Toxics. 2024; 12(11):831. https://doi.org/10.3390/toxics12110831
Chicago/Turabian StyleZhan, Hao, Cheng-Zhi Li, Yi Kang, and Xiao-Zhang Yu. 2024. "The Role of Metal Tolerance Proteins (MTPs) Associated with the Homeostasis of Divalent Mineral Elements in Ga-Treated Rice Plants" Toxics 12, no. 11: 831. https://doi.org/10.3390/toxics12110831
APA StyleZhan, H., Li, C. -Z., Kang, Y., & Yu, X. -Z. (2024). The Role of Metal Tolerance Proteins (MTPs) Associated with the Homeostasis of Divalent Mineral Elements in Ga-Treated Rice Plants. Toxics, 12(11), 831. https://doi.org/10.3390/toxics12110831