Rodlet Cell Morpho–Numerical Alterations as Key Biomarkers of Fish Responses to Toxicants and Environmental Stressors
Abstract
:1. Introduction
2. Key Milestones in the Timeline of RC Discovery and Understanding
- Discovery (late 1800s–mid-1900s): RCs were initially observed and characterised during this period. Early researchers identified their distinctive rod-shaped granules and proposed various hypotheses regarding their nature, speculating that they might be parasites [13,16,18], glandular cells (referred to as “Stäbchendrüsenzellen” by German fish pathologist Marianne Plehn) [17,19], altered, discharged granulocytes [20,23] or a stage of goblet cells [21,22].
- Further characterisation (mid-1900s–late 1900s): During this period, scientists conducted comprehensive investigations into RCs, employing advanced techniques such as transmission electron microscopy. The prevailing consensus leaned towards an endogenous origin, positing that these cells originated from the fish itself [23,24,26,40,41,42,43,44,45,46,47,48,49]. However, the possibility of a parasitic origin was not entirely discarded by some authors [50,51,52,53,54,55].
- Pathogen interaction and immune function (mid-1900s–present): During this period, extensive research was focused on elucidating the interactions between RCs and various pathogens, encompassing micro- and macroparasites [5,6,7,9,24,43,46,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74]. Additionally, investigations explored interactions with bacteria [75,76] and, in a single isolated reference, viruses [77]. These studies significantly advanced our understanding of immune responses in fish. The interaction between RCs and pathogens emerged as a crucial aspect within the realm of fish immune responses [5,6,7,9,73,78].
- Response to toxicants and environmental stressors (mid-1900s–present): RCs have demonstrated responsiveness to various toxicants, including heavy metals, organic pollutants, native and polluted PVC pellets (microplastics), and stressful environmental conditions (such as salinity stress, wounds, and overcrowding) [8,27,29,30,31,33,34,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98]. Their response involves changes in their number, distribution, morphology, and degranulation, rendering them valuable as generalist biomarkers indicative of environmental contamination and stressors [5,8,83,84,86,90,94,97,99,100,101].
- Biomolecular research (early 2000s–present): The current state of biomolecular tools, particularly those derived from omics disciplines, for investigating RCs remains relatively underdeveloped. Comprehensive molecular analyses specifically targeting RCs have not been fully realised. Instead, methods such as immunofluorescence and immunohistochemistry have predominantly been employed to delve into the intricate details of rodlet cell biology. These methodologies have been instrumental in examining various aspects of RCs’ structural and functional properties, including investigations into the cytoskeletal framework [11,102,103,104,105,106]; cytokine secretion patterns (e.g., TNF, IL-1β) [107,108,109]; key antigen expression (e.g., TLR, S100) [90,105,108,109,110,111]; secretion patterns of molecules like lysozyme, piscidine, melanocyte-stimulating hormone, and i-NOS [73,75,88,112,113]. Additionally, studies have explored the presence of stem cell markers (e.g., CD117, CD34), matrix metalloproteinase-9, and vascular endothelial growth factor (VEGF) [114], as well as calreticulin [115], alpha-7 nicotinic receptor, NF-κB, ionised calcium-binding adapter molecule 1 (IBA1), oligodendrocyte transcription factor 2 (OLIG2) [109,116], G-protein alpha subunit [117], CD68, nuclear factor erythroid 2-related factor 2 (NRF2), transcription factor SOX9, nicotinic acetylcholine R alpha 7 and myostatin [109]. The use of advanced molecular techniques is pivotal to uncovering the complete molecular landscape of RCs and gaining deeper insights into their functional roles within vertebrate biology. Consequently, ongoing advancements in molecular techniques are crucial for unlocking a more profound understanding of the intricate molecular mechanisms underlying RC biology [5,118].
3. Overview of Rodlet Cell Morphology
4. Possible Rodlet Cell Equivalent in Other Vertebrates
5. Rodlet Cells Response to Toxicants and Environmental Stressors
5.1. Bibliographic Overview
5.2. Direct Versus Indirect Effects on Rodlet Cells
5.3. Numerical Variation and Recruitment of Rodlet Cells
5.4. Ultrastructural Changes of Rodlet Cells
5.5. Hormone-Mediated Responsiveness of Rodlet Cells
5.6. Generalist (Non-Specific) Response of Rodlet Cells and Ecotoxicological Relevance
6. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Schartl, M. Beyond the zebrafish: Diverse fish species for modeling human disease. Dis. Model. Mech. 2014, 7, 181–192. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.Y.; Chiang, C.Y.; Tsai, H.J. Zebrafish and Medaka: New model organisms for modern biomedical research. J. Biomed. Sci. 2016, 23, 19. [Google Scholar] [CrossRef] [PubMed]
- D’Angelo, L.; Lossi, L.; Merighi, A.; de Girolamo, P. Anatomical features for the adequate choice of experimental animal models in biomedicine: I. Fishes. Ann. Anat. 2016, 205, 75–84. [Google Scholar] [CrossRef] [PubMed]
- Howe, K.; Clark, M.D.; Torroja, C.F.; Torrance, J.; Berthelot, C.; Muffato, M.; Collins, J.E.; Humphray, S.; McLaren, K.; Matthews, L.; et al. The zebrafish reference genome sequence and its relationship to the human genome. Nature 2013, 496, 498–503. [Google Scholar] [CrossRef]
- Manera, M.; Dezfuli, B.S. Rodlet cells in teleosts: A new insight into their nature and functions. J. Fish Biol. 2004, 65, 597–619. [Google Scholar] [CrossRef]
- Sayyaf Dezfuli, B.; Pironi, F.; Maynard, B.; Simoni, E.; Bosi, G. Rodlet cells, fish immune cells and a sentinel of parasitic harm in teleost organs. Fish Shellfish Immunol. 2022, 121, 516–534. [Google Scholar] [CrossRef]
- Dezfuli, B.S.; Bosi, G.; DePasquale, J.A.; Manera, M.; Giari, L. Fish innate immunity against intestinal helminths. Fish Shellfish Immunol. 2016, 50, 274–287. [Google Scholar] [CrossRef]
- Manera, M.; Castaldelli, G.; Giari, L. Perfluorooctanoic acid promotes recruitment and exocytosis of rodlet cells in the renal hematopoietic tissue of common carp. Toxics 2023, 11, 831. [Google Scholar] [CrossRef]
- Reite, O.B. The rodlet cells of teleostean fish: Their potential role in host defence in relation to the role of mast cells/eosinophilic granule cells. Fish Shellfish Immunol. 2005, 19, 253–267. [Google Scholar] [CrossRef]
- Prasad, A.; Alizadeh, E. Cell form and function: Interpreting and controlling the shape of adherent cells. Trends Biotechnol. 2019, 37, 347–357. [Google Scholar] [CrossRef]
- DePasquale, J.A. A comparison of teleost rodlet cells with apicomplexan cells. Acta Histochem. 2024, 126, 152167. [Google Scholar] [CrossRef] [PubMed]
- Schulte, P.M. What is environmental stress? Insights from fish living in a variable environment. J. Exp. Biol. 2014, 217, 23–34. [Google Scholar] [CrossRef] [PubMed]
- Thélohan, P. Sur des sporozoaires indéterminés parasites des poissons. J. d’Anat. Physiol. Paris 1892, 28, 163–171. [Google Scholar]
- Mack, A.; Rock, I. Inattentional Blindness; The MIT Press: Cambridge, MA, USA, 2000; ISBN 9780262632034. [Google Scholar]
- Reiehenbach-Klinke, H.; Elkan, E. The Principal Diseases of Lower Vertebrates; Academic Press: London, UK; New York, NY, USA, 1965. [Google Scholar]
- Laguesse, E. Sur le pancreas du Crenilabre et particulierement sur le pancreas intra-hepatique. Rev. Biol. du Nord la Fr. 1895, 7, 343–363. [Google Scholar]
- Plehn, M. Über eigentmütliche Drüsenzellen im Gefäßsystem und in anderen Organen bei Fischen. Anat. Anz. 1906, 28, 192–203. [Google Scholar]
- Laguesse, E. Les ‘“Stäbchendrüsenzellen”’ (M. Plehn) sont des sporozoares parasites. Anat. Anz. 1906, 28, 414–416. [Google Scholar]
- Plehn, M. Drüsenzellen oder Parasiten? Anat. Anz. 1906, 29, 152–157. [Google Scholar]
- Duthie, E.S. The origin, development and function of the blood cells in certain marine teleosts. Part I. Morphology. J. Anat. 1939, 73, 396–412. [Google Scholar]
- Al-Hussaini, A.H. On the functional morphology of the alimentary tract of some fish in relation to differences in their feeding habits; anatomy and histology. Q. J. Microsc. Sci. 1949, 90 Pt 2, 109–139. [Google Scholar] [CrossRef]
- Al-Hussaini, A.H. On the functional morphology of the alimentary tract of some fish in relation to differences in their feeding habits: Cytology and physiology. J. Cell Sci. 1949, 3, 323–354. [Google Scholar] [CrossRef]
- Catton, W.T. Blood cell formation in certain teleost fishes. Blood 1951, 6, 39–60. [Google Scholar] [CrossRef] [PubMed]
- Bullock, W.L. Intestinal histology of some salmonid fishes with particular reference to the histopathology of acanthocephalan infections. J. Morphol. 1963, 112, 23–44. [Google Scholar] [CrossRef] [PubMed]
- Iwai, T. Pear-shaped cell (rodlet cell). Bull. Jpn. Soc. Sci. Fish. 1968, 34, 133–137. [Google Scholar] [CrossRef]
- Bishop, C.; Odense, P.H. Morphology of the digestive tract of the cod, Gadus morhua. J. Fish. Res. Board Can. 1966, 23, 1607–1615. [Google Scholar] [CrossRef]
- Vickers, T. A study of the intestinal epithelium of the goldfish Carassius auratus: Its normal structure, the dynamics of cell replacement, and the changes induced by salts of cobalt and manganese. J. Cell Sci. 1962, 3, 93–110. [Google Scholar] [CrossRef]
- Wilson, J.A.F.; Westerman, R.A. The fine structure of the olfactory mucosa and nerve in the teleost Carassius carassius L. Z. Zellforsch. Mikrosk. Anat. 1967, 83, 196–206. [Google Scholar] [CrossRef]
- Fearnhead, E.A.; Fabian, B.C. The Ultrastructure of the Gill of Monodactylus Argenteus (a Euryhaline Teleost Fish) with Particular Reference to Morphological Changes Associated with Changes in Salinity; South African Association for Marine Biological Research: Durban, South Africa, 1971. [Google Scholar]
- Balabanova, L.V.; Matey, V.E. The ultrastructure of rodlet cells from different organs in the carp and brook trout. Tsitologiya 1987, 29, 766–770. [Google Scholar]
- Balabanova, L.V. Rodlet cells of fish in calcium deficiency in the external environment. Tsitologiya 2000, 42, 1048–1052. [Google Scholar]
- Matey, V.E. The ultrastructure of rodlet cells at different stages of differentiation examined from cell epithelium of teleost fishes. Tsitologiya 1986, 287, 670–676. [Google Scholar]
- Matey, V.E. Changes in the ultrastructure of the gill epithelium in the nine spined stickleback Pungitius pungitius L. under the action of ammonia in hypertonic medium. Tsitologiya 1984, 26, 371–374. [Google Scholar]
- Matey, V.E. Changes in the ultrastructure of gill epithelia of the perch Perca fluviatilis (L) under the action of distilled water. Tsitologiya 1987, 29, 410–415. [Google Scholar]
- Bakhtin, E.K.; Filiushina, E.E. A peculiar type of secretory cell of the olfactory lining of the pike perch Lucioperca lucioperca. Arkh. Anat. Gistol. Embriol. 1974, 67, 87–90. [Google Scholar] [PubMed]
- Bakhtin, E.K.; Filiushina, E.E. Ultrastructural features of secretion formation in the small secretory cells of the olfactory epithelium of the pike perch and the perch. Tsitologiya 1974, 16, 90–93. [Google Scholar]
- Matey, V.E. The ultrastructure of rodlet cells of the gill epithelium of teleost fishes in various stages of cell development. Tsitologiya 1986, 28, 670–676. [Google Scholar]
- AbuAli, A.M.; Mokhtar, D.M.; Ali, R.A.; Wassif, E.T.; Abdalla, K.E.H. Cellular elements in the developing caecum of Japanese quail (Coturnix coturnix japonica): Morphological, morphometrical, immunohistochemical and electron-microscopic studies. Sci. Rep. 2019, 9, 16241. [Google Scholar] [CrossRef]
- Abdalla, K.E.H.; Abdelhafeez, H.H.; Mahmoud, W.G.; Tamam, E.A. Identification of rodlet cells in aquatic bird as Egyptian goose (Alopochen egyptiacus): The enteric rodlet cells. Cytol. Histol. Int. J. 2019, 3, 000108. [Google Scholar]
- Ankley, G.T.; Kuehl, D.W.; Kahl, M.D.; Jensen, K.M.; Linnum, A.; Leino, R.L.; Villeneuvet, D.A. Reproductive and developmental toxicity and bioconcentration of perfluorooctanesulfonate in a partial life-cycle test with the fathead minnow (Pimephales promelas). Environ. Toxicol. Chem. 2005, 24, 2316–2324. [Google Scholar] [CrossRef]
- Della Salda, L.; Manera, M.; Biavati, S. Ultrastructural features of associated rodlet cells in the renal epithelium of Sparus aurata L. J. Submicrosc. Cytol. Pathol. 1998, 30, 189–192. [Google Scholar]
- Dezfuli, B.S.S.; Capuano, S.; Manera, M. A description of rodlet cells from the alimentary canal of Anguilla anguilla and their relationship with parasitic helminths. J. Fish Biol. 1998, 53, 1084–1095. [Google Scholar] [CrossRef]
- Barber, D.L.; Westermann, J.E.M.; Jensen, D.N. New observations on the rodlet cell (Rhabdospora thelohani) in the white sucker Catostomus commersoni (Lacépède): LM and EM studies. J. Fish Biol. 1979, 14, 277–284. [Google Scholar] [CrossRef]
- Westerman, R.A.; Wilson, J.A.F. The fine structure of the olfactory tract in the teleost Carassius carassius L. Z. Zellforsch. Mikrosk. Anat. 1968, 91, 186–199. [Google Scholar] [CrossRef] [PubMed]
- Flood, M.T.; Nigrelli, R.F.; Gennaro, J.F. Some aspects of the infrastructure of the ‘Stäbchendrüscnzellen’, a peculiar cell associated with the endothelium of the bulbus arteriosus and with other fish tissues. J. Fish Biol. 1975, 7, 129–138. [Google Scholar] [CrossRef]
- Reite, O.B. Mast cells/eosinophilic granule cells of salmonids: Staining properties and responses to noxious agents. Fish Shellfish Immunol. 1997, 7, 567–584. [Google Scholar] [CrossRef]
- Leino, R.L. Rodlet cells in the gill and intestine of Catostomus commersoni and Perca flavescens: A comparison of their light and electron microscopic cytochemistry with that of mucous and granular cells. Can. J. Zool. 1982, 60, 2768–2782. [Google Scholar] [CrossRef]
- Leino, R.L. Ultrastructure of immature, developing, and secretory rodlet cells in fish. Cell Tissue Res. 1974, 155, 367–381. [Google Scholar] [CrossRef] [PubMed]
- Leino, R.L. Reaction of rodlet cells to a myxosporean infection in kidney of the bluegill, Lepomis macrochirus. Can. J. Zool. 1996, 74, 217–225. [Google Scholar] [CrossRef]
- Mayberry, L.F.; Bristol, J.R.; Sulimanović, D.; Fijian, N.; Petrinec, Z. Rhabdospora thelohani: Epidemiology of and migration into Cyprinus carpio bulbus arteriosus. Fish Pathol. 1986, 21, 145–150. [Google Scholar] [CrossRef]
- Bannister, L.H. Is Rhabdospora thelohani (Laguesse) a sporozoan parasite or a tissue cell of lower vertebrates? Parasitology 1966, 56, 633–638. [Google Scholar] [CrossRef]
- Bielek, E.; Viehberger, G. New aspects on the “rodlet cell” in teleosts. J. Submicrosc. Cytol. 1983, 15, 681–694. [Google Scholar]
- Viehberger, G.; Bielek, E. Rodlet-cells: Gland cell or protozoon? Experientia 1982, 38, 1216–1218. [Google Scholar] [CrossRef]
- Richards, D.T.; Hoole, D.; Arme, C.; Ewens, E.; Lewis, J.W. Phagocytosis of rodlet cells (Rhabdospora thelohani Laguesse, 1895) by carp (Cyprinus carpio L.) macrophages and neutrophils. Helminthologia 1994, 31, 29–33. [Google Scholar]
- Mayberry, L.F.; Marchiondo, A.A.; Ubelaker, J.E.; Kazić, D. Rhabdospora thelohani Laguessé, 1895 (Apicomplexa): New host and geographic records with taxonomic considerations*. J. Protozool. 1979, 26, 168–178. [Google Scholar] [CrossRef] [PubMed]
- Dezfuli, B.S.; Lui, A.; Pironi, F.; Manera, M.; Shinn, A.P.; Lorenzoni, M. Cell types and structures involved in tench, Tinca tinca (L.), defence mechanisms against a systemic digenean infection. J. Fish Dis. 2013, 36, 577–585. [Google Scholar] [CrossRef] [PubMed]
- Sayyaf Dezfuli, B.; Castaldelli, G.; Tomaini, R.; Manera, M.; DePasquale, J.; Bosi, G. Challenge for macrophages and mast cells of Chelon ramada to counter an intestinal microparasite, Myxobolus mugchelo (Myxozoa). Dis. Aquat. Organ. 2020, 138, 171–183. [Google Scholar] [CrossRef]
- Dezfuli, B.S.; Simoni, E.; Rossi, R.; Manera, M. Rodlet cells and other inflammatory cells of Phoxinus phoxinus infected with Raphidascaris acus (Nematoda). Dis. Aquat. Organ. 2000, 43, 61–69. [Google Scholar] [CrossRef]
- Dezfuli, B.S.; Fernandes, C.E.; Galindo, G.M.; Castaldelli, G.; Manera, M.; Depasquale, J.A.; Lorenzoni, M.; Bertin, S.; Giari, L. Nematode infection in liver of the fish Gymnotus inaequilabiatus (Gymnotiformes: Gymnotidae) from the Pantanal Region in Brazil: Pathobiology and inflammatory response. Parasit. Vectors 2016, 9, 473. [Google Scholar] [CrossRef]
- Dezfuli, B.S.; Manera, M.; DePasquale, J.A.; Pironi, F.; Giari, L. Liver of the fish Gymnotus inaequilabiatus and nematode larvae infection: Histochemical features and expression of proliferative cell nuclear antigen. J. Fish Dis. 2017, 40, 1765–1774. [Google Scholar] [CrossRef]
- Dezfuli, B.S.; Giari, L.; Konecny, R.; Jaeger, P.; Manera, M. Immunohistochemistry, ultrastructure and pathology of gills of Abramis brama from Lake Mondsee, Austria, infected with Ergasilus sieboldi (Copepoda). Dis. Aquat. Organ. 2003, 53, 257–262. [Google Scholar] [CrossRef]
- Dezfuli, B.S.; Pironi, F.; Shinn, A.P.; Manera, M.; Giari, L. Histopathology and ultrastructure of Platichthys flesus naturally infected with Anisakis simplex s.l. larvae (Nematoda: Anisakidae). J. Parasitol. 2007, 93, 1416–1423. [Google Scholar] [CrossRef]
- Dezfuli, B.S.; Giari, L.; Simoni, E.; Menegatti, R.; Shinn, A.P.; Manera, M. Gill histopathology of cultured European sea bass, Dicentrarchus labrax (L.), infected with Diplectanum aequans (Wagener 1857) Diesing 1958 (Diplectanidae: Monogenea). Parasitol. Res. 2007, 100, 707–713. [Google Scholar] [CrossRef]
- Dezfuli, B.S.; Giari, L.; Simoni, E.; Bosi, G.; Manera, M. Histopathology, immunohistochemistry and ultrastructure of the intestine of Leuciscus cephalus (L.) naturally infected with Pomphorhynchus laevis (Acanthocephala). J. Fish Dis. 2002, 25, 7–14. [Google Scholar] [CrossRef]
- Dezfuli, B.S.S.; Manera, M.; Giari, L. Immune response to nematode larvae in the liver and pancreas of minnow, Phoxinus phoxinus (L.). J. Fish Dis. 2009, 32, 383–390. [Google Scholar] [CrossRef] [PubMed]
- Dezfuli, B.S.; Giari, L.; Simoni, E.; Shinn, A.P.; Bosi, G. Immunohistochemistry, histopathology and ultrastructure of Gasterosteus aculeatus tissues infected with Glugea anomala. Dis. Aquat. Organ. 2004, 58, 193–202. [Google Scholar] [CrossRef] [PubMed]
- Dezfuli, B.S.; Giari, L.; Shinn, A.P. The role of rodlet cells in the inflammatory response in Phoxinus phoxinus brains infected with Diplostomum. Fish Shellfish Immunol. 2007, 23, 300–304. [Google Scholar] [CrossRef] [PubMed]
- Dezfuli, B.S.; Giovinazzo, G.; Lui, A.; Giari, L. Inflammatory response to Dentitruncus truttae (Acanthocephala) in the intestine of brown trout. Fish Shellfish Immunol. 2008, 24, 726–733. [Google Scholar] [CrossRef]
- Dezfuli, B.S.; Lui, A.; Giovinazzo, G.; Boldrini, P.; Giari, L. Intestinal inflammatory response of powan Coregonus lavaretus (Pisces) to the presence of acanthocephalan infections. Parasitology 2009, 136, 929–937. [Google Scholar] [CrossRef]
- Sitjà-Bobadilla, A.; Estensoro, I.; Pérez-Sánchez, J. Immunity to gastrointestinal microparasites of fish. Dev. Comp. Immunol. 2016, 64, 187–201. [Google Scholar] [CrossRef]
- Bermúdez, R.; Losada, A.P.; Vázquez, S.; Redondo, M.J.; Álvarez-Pellitero, P.; Quiroga, M.I. Light and electron microscopic studies on turbot Psetta maxima infected with Enteromyxum scophthalmi: Histopathology of turbot enteromyxosis. Dis. Aquat. Organ. 2010, 89, 209–221. [Google Scholar] [CrossRef]
- Reite, O.B.; Evensen, O.; Evensen, Ø. Inflammatory cells of teleostean fish: A review focusing on mast cells/eosinophilic granule cells and rodlet cells. Fish Shellfish Immunol. 2006, 20, 192–208. [Google Scholar] [CrossRef]
- Sayyaf Dezfuli, B.; Castaldelli, G.; Lorenzoni, M.; Carosi, A.; Ovcharenko, M.; Bosi, G. Rodlet cells provide first line of defense against swimbladder nematode and intestinal coccidian in Anguilla anguilla. Fishes 2023, 8, 66. [Google Scholar] [CrossRef]
- Dezfuli, B.S.; Manera, M.; Giari, L.; DePasquale, J.A.; Bosi, G. Occurrence of immune cells in the intestinal wall of Squalius cephalus infected with Pomphorhynchus laevis. Fish Shellfish Immunol. 2015, 47, 556–564. [Google Scholar] [CrossRef] [PubMed]
- Bosi, G.; DePasquale, J.A.; Manera, M.; Castaldelli, G.; Giari, L.; Sayyaf Dezfuli, B. Histochemical and immunohistochemical characterization of rodlet cells in the intestine of two teleosts, Anguilla anguilla and Cyprinus carpio. J. Fish Dis. 2018, 41, 475–485. [Google Scholar] [CrossRef] [PubMed]
- Salinas, I.; Myklebust, R.; Esteban, M.A.; Olsen, R.E.; Meseguer, J.; Ringø, E. In vitro studies of Lactobacillus delbrueckii subsp. lactis in Atlantic salmon (Salmo salar L.) foregut: Tissue responses and evidence of protection against Aeromonas salmonicida subsp. salmonicida epithelial damage. Vet. Microbiol. 2008, 128, 167–177. [Google Scholar] [CrossRef] [PubMed]
- Sulimanović, D.; Ćurić, S.; Zeba, L.; Berc, A. The possible role of rodlet cells in the immune system of carp (Cyprinus carpio L.). Vet. Arh. 1996, 66, 103–109. [Google Scholar]
- Sayyaf Dezfuli, B.; Lorenzoni, M.; Carosi, A.; Giari, L.; Bosi, G. Teleost innate immunity, an intricate game between immune cells and parasites of fish organs: Who wins, who loses. Front. Immunol. 2023, 14, 1250835. [Google Scholar] [CrossRef]
- Procópio, M.S.; Ribeiro, H.J.; Pereira, L.A.; Oliveira Lopes, G.A.; Santana Castro, A.Ô.C.; Rizzo, E.; Sato, Y.; Castro Russo, R.; Corrêa, J.D. Sex-response differences of immunological and histopathological biomarkers in gill of Prochilodus argenteus from a polluted river in southeast Brazil. Fish Shellfish Immunol. 2014, 39, 108–117. [Google Scholar] [CrossRef]
- De Souza Araujo, N.; Shimada Borges, J.C. Rodlet cells changes in Oreochromis niloticus in response to organophosphate pesticide and their relevance as stress biomarker in teleost fishes. Int. J. Aquat. Biol. 2015, 3, 398–408. [Google Scholar]
- Manera, M.; Castaldelli, G.; Guerranti, C.; Giari, L. Effect of waterborne exposure to perfluorooctanoic acid on nephron and renal hemopoietic tissue of common carp Cyprinus carpio. Ecotoxicol. Environ. Saf. 2022, 234, 113407. [Google Scholar] [CrossRef]
- Giari, L.; Simoni, E.; Manera, M.; Dezfuli, B.S.S. Histo-cytological responses of Dicentrarchus labrax (L.) following mercury exposure. Ecotoxicol. Environ. Saf. 2008, 70, 400–410. [Google Scholar] [CrossRef]
- Giari, L.; Manera, M.; Simoni, E.; Dezfuli, B.S. Cellular alterations in different organs of European sea bass Dicentrarchus labrax (L.) exposed to cadmium. Chemosphere 2007, 67, 1171–1181. [Google Scholar] [CrossRef]
- Giari, L.; Manera, M.; Simoni, E.; Dezfuli, B.S.S. Changes to chloride and rodlet cells in gills, kidney and intestine of Dicentrarchus labrax (L.) exposed to reduced salinities. J. Fish Biol. 2006, 69, 590–600. [Google Scholar] [CrossRef]
- Dezfuli, B.S.; Simoni, E.; Giari, L.; Manera, M. Effects of experimental terbuthylazine exposure on the cells of Dicentrarchus labrax (L.). Chemosphere 2006, 64, 1684–1694. [Google Scholar] [CrossRef] [PubMed]
- Dezfuli, B.S.; Giari, L.; Simoni, E.; Palazzi, D.; Manera, M. Alteration of rodlet cells in chub caused by the herbicide Stam® M-4 (Propanil). J. Fish Biol. 2003, 63, 232–239. [Google Scholar] [CrossRef]
- Giari, L.; Dezfuli, B.S.; Lanzoni, M.; Castaldelli, G. The impact of an oil spill on organs of bream Abramis brama in the Po River. Ecotoxicol. Environ. Saf. 2012, 77, 18–27. [Google Scholar] [CrossRef]
- Mazon, A.F.; Huising, M.O.; Taverne-Thiele, A.J.; Bastiaans, J.; Verburg-van Kemenade, B.M.L. The first appearance of Rodlet cells in carp (Cyprinus carpio L.) ontogeny and their possible roles during stress and parasite infection. Fish Shellfish Immunol. 2007, 22, 27–37. [Google Scholar] [CrossRef]
- Poltronieri, C.; Laurà, R.; Bertotto, D.; Negrato, E.; Simontacchi, C.; Guerrera, M.C.; Radaelli, G. Effects of exposure to overcrowding on rodlet cells of the teleost fish Dicentrarchus labrax (L.). Vet. Res. Commun. 2009, 33, 619–629. [Google Scholar] [CrossRef]
- Alesci, A.; Cicero, N.; Fumia, A.; Petrarca, C.; Mangifesta, R.; Nava, V.; Lo Cascio, P.; Gangemi, S.; Di Gioacchino, M.; Lauriano, E.R. Histological and chemical analysis of heavy metals in kidney and gills of Boops boops: Melanomacrophages centers and rodlet cells as environmental biomarkers. Toxics 2022, 10, 218. [Google Scholar] [CrossRef]
- Shimada Borges, J.C.; Salimbeni Vivai, A.B.B.; Branco, P.C.; Silva Oliveira, M.; Machado Cunha da Silva, J.R. Effects of trophic levels (chlorophyll and phosphorous content) in three different water bodies (urban lake, reservoir and aquaculture facility) on gill morphology of Nile tilapia (Oreochromis niloticus). J. Appl. Ichthyol. 2013, 29, 573–578. [Google Scholar] [CrossRef]
- Courtney, L.A.; Couch, J.A. Rodlet cell response: Proliferation and development in carcinogen-exposed fish tissues. Aquat. Toxicol. 1988, 11, 429. [Google Scholar] [CrossRef]
- Al-Zahaby, S.A.; Farag, M.R.; Alagawany, M.; Taha, H.S.A.; Varoni, M.V.; Crescenzo, G.; Mawed, S.A. Zinc Oxide nanoparticles (ZnO-NPs) induce cytotoxicity in the zebrafish olfactory organs via activating oxidative stress and apoptosis at the ultrastructure and genetic levels. Animals 2023, 13, 2867. [Google Scholar] [CrossRef]
- Tkatcheva, V.; Hyvärinen, H.; Kukkonen, J.; Ryzhkov, L.P.; Holopainen, I.J. Toxic effects of mining effluents on fish gills in a subarctic lake system in NW Russia. Ecotoxicol. Environ. Saf. 2004, 57, 278–289. [Google Scholar] [CrossRef] [PubMed]
- Pedà, C.; Caccamo, L.; Fossi, M.C.; Gai, F.; Andaloro, F.; Genovese, L.; Perdichizzi, A.; Romeo, T.; Maricchiolo, G. Intestinal alterations in European sea bass Dicentrarchus labrax (Linnaeus, 1758) exposed to microplastics: Preliminary results. Environ. Pollut. 2016, 212, 251–256. [Google Scholar] [CrossRef] [PubMed]
- Hawkins, W.E. Ultrastructure of rodlet cells: Response to cadmium damage in the kidney of the spot Leiostomus xanthurus Lacépède. Gulf Res. Rep. 1984, 7, 365–372. [Google Scholar] [CrossRef]
- Iger, Y.; Abraham, M. Rodlet cells in the epidermis of fish exposed to stressors. Tissue Cell 1997, 29, 431–438. [Google Scholar] [CrossRef]
- Iger, Y.; Abraham, M. The process of skin healing in experimentally wounded carp. J. Fish Biol. 1990, 36, 421–437. [Google Scholar] [CrossRef]
- Manera, M. Texture analysis as a discriminating tool: Unmasking rodlet cell degranulation in response to a contaminant of emerging concern. Front. Biosci. 2024, 29, 79. [Google Scholar] [CrossRef]
- Manera, M. I Biomarcatori Nel Monitoraggio Ambientale—Pesci Ossei Ed Ecosistemi Acquatici; Aracne: Rome, Italy, 2013; ISBN 978-88-548-6221-0. [Google Scholar]
- Manera, M.; Simoni, E.; Dezfuli, B.S.S. The effect of dexamethasone on the occurrence and ultrastructure of rodlet cells in goldfish. J. Fish Biol. 2001, 59, 1239–1248. [Google Scholar] [CrossRef]
- Depasquale, J.A. Tropomyosin and alpha-actinin in teleost rodlet cells. Acta Zool. 2021, 102, 323–332. [Google Scholar] [CrossRef]
- DePasquale, J.A. Rodlet cells in epidermal explant cultures of Lepomis Macrochirus. Acta Zool. 2014, 95, 144–154. [Google Scholar] [CrossRef]
- DePasquale, J.A. Tyrosine phosphatase inhibitor triggers rodlet cell discharge in sunfish scale epidermis cultures. Acta Zool. 2014, 95, 209–219. [Google Scholar] [CrossRef]
- Alesci, A.; Pergolizzi, S.; Capillo, G.; Lo Cascio, P.; Lauriano, E.R. Rodlet cells in kidney of goldfish (Carassius auratus, Linnaeus 1758): A light and confocal microscopy study. Acta Histochem. 2022, 124, 151876. [Google Scholar] [CrossRef] [PubMed]
- Mokhtar, D.M. Characterization of the fish ovarian stroma during the spawning season: Cytochemical, immunohistochemical and ultrastructural studies. Fish Shellfish Immunol. 2019, 94, 566–579. [Google Scholar] [CrossRef] [PubMed]
- Ronza, P.; Losada, A.P.; Villamarín, A.; Bermúdez, R.; Quiroga, M.I. Immunolocalization of tumor necrosis factor alpha in turbot (Scophthalmus maximus, L.) tissues. Fish Shellfish Immunol. 2015, 45, 470–476. [Google Scholar] [CrossRef] [PubMed]
- Karim, A.J.; Hassan, A.H.; Kadhim, K.H.K.; Kadhim, K.H.K. The immunity function of rodlet cells in the intestine of Binni fish (Mesopotamichthys sharpeyi). J. Adv. Vet. Anim. Res. 2022, 9, 282–289. [Google Scholar] [CrossRef]
- Sayed, R.K.A.; Mokhtar, D.M.; Hashim, M.A.; Aly, A.S.; Zaccone, G.; Albano, M.; Alesci, A.; Abdellah, N. Immune cell profiling in the ovarian stroma of a viviparous fish during the breeding season: A histological and immunohistochemical investigation. Fishes 2024, 9, 10. [Google Scholar] [CrossRef]
- Blaufuss, P.C.; Gaylord, T.G.; Sealey, W.M.; Powell, M.S. Effects of high-soy diet on S100 gene expression in liver and intestine of rainbow trout (Oncorhynchus mykiss). Fish Shellfish Immunol. 2019, 86, 764–771. [Google Scholar] [CrossRef]
- Vigliano, F.A.; Bermúdez, R.; Nieto, J.M.; Quiroga, M.I. Development of rodlet cells in the gut of turbot (Psetta maxima L.): Relationship between their morphology and S100 protein immunoreactivity. Fish Shellfish Immunol. 2009, 26, 146–153. [Google Scholar] [CrossRef]
- Peter, M.C.S.; Gayathry, R. Nitric oxide synthase (NOS) inhibitor L-NAME activates inducible NOS/NO system and drives multidimensional regulation of Na+/K+-ATPase in ionocyte epithelia of immersion-stressed air-breathing fish (Anabas testudineus Bloch). J. Exp. Zool. Part A Ecol. Integr. Physiol. 2021, 335, 396–416. [Google Scholar] [CrossRef]
- Silphaduang, U.; Colorni, A.; Noga, E.J. Evidence for widespread distribution of piscidin antimicrobial peptides in teleost fish. Dis. Aquat. Organ. 2006, 72, 241–252. [Google Scholar] [CrossRef]
- Abd-Elhafeez, H.H.; Abou-Elhamd, A.S.; Abdo, W.; Soliman, S.A. Migratory activities and stemness properties of rodlet cells. Microsc. Microanal. 2020, 26, 1035–1052. [Google Scholar] [CrossRef]
- Bielek, E. Membrane transformations in degenerating rodlet cells in fishes of two teleostean families (Salmonidae, Cyprinidae). Anat. Rec. 2008, 291, 1693–1706. [Google Scholar] [CrossRef] [PubMed]
- Esteban, M.A.; Zaccone, G.; Mokhtar, D.M.; Alesci, A.; Capillo, G.; Albano, M.; Hussein, M.T.; Aragona, M.; Germanà, A.; Lauriano, E.R.; et al. From proliferation to protection: Immunohistochemical profiling of cardiomyocytes and immune cells in molly fish hearts. Fishes 2024, 9, 283. [Google Scholar] [CrossRef]
- Ferrando, S.; Amaroli, A.; Gallus, L.; Di Blasi, D.; Carlig, E.; Rottigni, M.; Vacchi, M.; Parker, S.J.; Ghigliotti, L. Olfaction in the Antarctic toothfish Dissostichus mawsoni: Clues from the morphology and histology of the olfactory rosette and bulb. Polar Biol. 2019, 42, 1081–1091. [Google Scholar] [CrossRef]
- Schmachtenberg, O. Epithelial sentinels or protozoan parasites? Studies on isolated rodlet cells on the 100th anniversary of an enigma. Rev. Chil. Hist. Nat. 2007, 80, 55–62. [Google Scholar]
- Manera, M.; Giari, L.; Dezfuli, B.S.S. Rodlet cell biometry: Interspecific and intraspecific variability. J. Fish Biol. 2009, 74, 474–481. [Google Scholar] [CrossRef]
- Hirji, K.N.; Courtney, W.A.M. ‘Pear-shaped’ cells in the digestive tract of the perch Perca fluviatilis (L.). J. Fish Biol. 1979, 15, 469–472. [Google Scholar] [CrossRef]
- Sarkar, S.K.; Jana, S.; De, S.K. Functional role of the rodlet cell and macrophage in neural protection of the olfactory neuroepithelium in a teleostean: Gobiid (Pseudapocryptes lanceolatus [Bloch and Schneider, 1801]): An ultrastructural study. J. Microsc. Ultrastruct. 2020, 8, 37–41. [Google Scholar] [CrossRef]
- Morrison, C.M.; Odense, P.H. Distribution and morphology of the rodlet cell in fish. J. Fish. Res. Board Can. 1978, 35, 101–116. [Google Scholar] [CrossRef]
- Abd-Elhafeez, H.H.; Soliman, S.A. Origin of rodlet cells and mapping their distribution in ruby-red-fin shark (rainbow shark) Epalzeorhynchos frenatum (Teleostei: Cyprinidae): Light, immunohistochemistry and ultrastructure study. J. Cytol. Histol. 2016, 7, 1000435. [Google Scholar] [CrossRef]
- Imagawa, T.; Hashimoto, Y.; Kon, Y.; Sugimura, M. Lectin histochemistry as special markers for rodlet cells in carp, Cyprinus carpio L. J. Fish Dis. 1990, 13, 537–540. [Google Scholar] [CrossRef]
- Laurà, R.; Germanà, G.P.; Levanti, M.B.; Guerrera, M.C.; Radaelli, G.; de Carlos, F.; Suárez, A.Á.; Ciriaco, E.; Germanà, A. Rodlet cells development in the intestine of sea bass (Dicentrarchus labrax). Microsc. Res. Tech. 2012, 75, 1321–1328. [Google Scholar] [CrossRef] [PubMed]
- Smith, S.A.; Caceci, T.; Marei, H.E.; El-Habback, H.A. Observations on rodlet cells found in the vascular system and extravascular space of angelfish (Pterophyllum scalare scalare). J. Fish Biol. 1995, 46, 241–254. [Google Scholar] [CrossRef]
- Yang, J.; Antin, P.; Berx, G.; Blanpain, C.; Brabletz, T.; Bronner, M.; Campbell, K.; Cano, A.; Casanova, J.; Christofori, G.; et al. Guidelines and definitions for research on epithelial–mesenchymal transition. Nat. Rev. Mol. Cell Biol. 2020, 21, 341–352. [Google Scholar] [CrossRef] [PubMed]
- Brooks, J.W.; Parton, R.G.; Yap, A.S.; Duszyc, K. Epithelial Mechanosensing at Cell-Cell Contacts and Tight Junctions. In Tight Junctions; Springer International Publishing: Cham, Switzerland, 2022; pp. 27–50. ISBN 9783030972042. [Google Scholar]
- Li, R.; Liang, J.; Ni, S.; Zhou, T.; Qing, X.; Li, H.; He, W.; Chen, J.; Li, F.; Zhuang, Q.; et al. A mesenchymal-to-epithelial transition initiates and is required for the nuclear reprogramming of mouse fibroblasts. Cell Stem Cell 2010, 7, 51–63. [Google Scholar] [CrossRef]
- Sha, Y.; Haensel, D.; Gutierrez, G.; Du, H.; Dai, X.; Nie, Q. Intermediate cell states in epithelial-to-mesenchymal transition. Phys. Biol. 2019, 16, 021001. [Google Scholar] [CrossRef]
- Noga, E.J.; Dykstra, M.J.; Wright, J.F. Chronic inflammatory cells with epithelial cell characteristics in teleost fishes. Vet. Pathol. Online 1989, 26, 429–437. [Google Scholar] [CrossRef]
- Manera, M.; Sayyaf Dezfuli, B.; Depasquale, J.A.; Giari, L. Pigmented macrophages and related aggregates in the spleen of european sea bass dosed with heavy metals: Ultrastructure and explorative morphometric analysis. Microsc. Res. Tech. 2018, 81, 351–364. [Google Scholar] [CrossRef]
- Kramer, C.R.; Potter, H. Ultrastructural observations on rodlet-cell development in the head kidney of the southern platyfish, Xiphophorus maculatus (Teleostei: Poeciliidae). Can. J. Zool. 2002, 80, 1422–1436. [Google Scholar] [CrossRef]
- Imagawa, T.; Kitagawa, H.; Uehara, M. An association between rodlet cells and the vascular endothelial cells in the head kidney of carp, Cyprinus carpio L.: Ultrastructural observations. J. Fish Dis. 1998, 21, 153–157. [Google Scholar] [CrossRef]
- Grünberg, W.; Hager, G. Ultrastructural and histochemical aspects of the rodlet cells from the bulbus arteriosus of Cyprinus carpio L. (Pisces: Cyprinidae)(author’s transl). Anat. Anz. 1978, 143, 277–290. [Google Scholar]
- Fishelson, L.; Becker, K. Rodlet cells in the head and trunk kidney of the domestic carp (Cyprinus carpio): Enigmatic gland cells or coccidian parasites. Naturwissenschaften 1999, 86, 400–403. [Google Scholar] [CrossRef] [PubMed]
- Montoro, D.T.; Haber, A.L.; Rood, J.E.; Regev, A.; Rajagopal, J. A synthesis concerning conservation and divergence of cell types across epithelia. Cold Spring Harb. Perspect. Biol. 2020, 12, a035733. [Google Scholar] [CrossRef] [PubMed]
- Willms, R.J.; Foley, E. Mechanisms of epithelial growth and development in the zebrafish intestine. Biochem. Soc. Trans. 2023, 51, 1213–1224. [Google Scholar] [CrossRef]
- Grover, A.; Sinha, R.; Jyoti, D.; Faggio, C. Imperative role of electron microscopy in toxicity assessment: A review. Microsc. Res. Tech. 2022, 85, 1976–1989. [Google Scholar] [CrossRef] [PubMed]
- Manera, M.; Castaldelli, G.; Giari, L. Perfluorooctanoic acid affects thyroid follicles in common carp (Cyprinus carpio). Int. J. Environ. Res. Public Health 2022, 19, 9049. [Google Scholar] [CrossRef] [PubMed]
- Manera, M.; Casciano, F.; Giari, L. Ultrastructural alterations of the glomerular filtration barrier in fish experimentally exposed to perfluorooctanoic acid. Int. J. Environ. Res. Public Health 2023, 20, 5253. [Google Scholar] [CrossRef]
- Couch, J.A.; Courtney, L.A. N-Nitrosodiethylamine-induced hepatocarcinogenesis in estuarine sheepshead minnow (Cyprinodon variegatus): Neoplasms and related lesions compared with mammalian lesions. J. Natl. Cancer Inst. 1987, 79, 297–321. [Google Scholar] [CrossRef]
- Sheu, K.M.; Luecke, S.; Hoffmann, A. Stimulus-specificity in the responses of immune sentinel cells. Curr. Opin. Syst. Biol. 2019, 18, 53–61. [Google Scholar] [CrossRef]
- Esteban, A.; Mokhtar, D.M.; Abd-Elhafez, E.A.; Albano, M.; Zaccone, G.; Hussein, M.T. Exploring cellular dynamics in the goldfish bulbus arteriosus: A multifaceted perspective. Fishes 2024, 9, 203. [Google Scholar] [CrossRef]
- Manera, M.; Borreca, C. Il biomonitoraggio degli ecosistemi acquatici. Prog. Vet. 2004, 2, 64–67. [Google Scholar]
- Ghadially, F.N. Ultrastructural Pathology of the Cell and Matrix; Butterworths-Heinemann: Boston, MA, USA, 1997. [Google Scholar]
- Cheville, N. Ultrastructural Pathology: The Comparative Cellular Basis of Disease, 2nd ed.; Wiley-Blackwell: Ames, IA, USA, 2009; ISBN 9780813803302. [Google Scholar]
- Desser, S.S.; Lester, R. An ultrastructural study of the enigmatic “rodlet cells” in the white sucker, Catostomus commersoni (Lacépède) (Pisces: Catostomidae). Can. J. Zool. 1975, 53, 1483–1494. [Google Scholar] [CrossRef] [PubMed]
- Demas, G.E.; Adamo, S.A.; French, S.S. Neuroendocrine-immune crosstalk in vertebrates and invertebrates: Implications for host defence. Funct. Ecol. 2011, 25, 29–39. [Google Scholar] [CrossRef]
- Adelman, J.S.; Martin, L.B. Vertebrate sickness behaviors: Adaptive and integrated neuroendocrine immune responses. Integr. Comp. Biol. 2009, 49, 202–214. [Google Scholar] [CrossRef] [PubMed]
- Lebov, J.; Grieger, K.; Womack, D.; Zaccaro, D.; Whitehead, N.; Kowalcyk, B.; MacDonald, P.D.M. A framework for One Health research. One Health 2017, 3, 44–50. [Google Scholar] [CrossRef] [PubMed]
- Friese, C.; Nuyts, N. Posthumanist critique and human health: How nonhumans (could) figure in public health research. Crit. Public Health 2017, 27, 303–313. [Google Scholar] [CrossRef]
- Kramer, C.R.; Hongach, S.W.; Antonov, K.; Qama, E.; Potter, H. Are rodlet cells reliable biomarkers in Fundulus heteroclitus (L.)? J. Morphol. Sci. 2016, 33, 205–214. [Google Scholar] [CrossRef]
- Rideout, R.M.; Smith, S.A.; Morgan, M.J. High-density aggregations of rodlet cells in the gonads of Greenland halibut Reinhardtius hippoglossoides, a deep-water marine flatfish. J. Fish Biol. 2015, 86, 1630–1637. [Google Scholar] [CrossRef]
- Nikolić, D.; Kostić, J.; Đorđević Aleksić, J.; Sunjog, K.; Rašković, B.; Poleksić, V.; Pavlović, S.; Borković-Mitić, S.; Dimitrijević, M.; Stanković, M.; et al. Effects of mining activities and municipal wastewaters on element accumulation and integrated biomarker responses of the European chub (Squalius cephalus). Chemosphere 2024, 365, 143385. [Google Scholar] [CrossRef]
- Muns-Pujadas, L.; Dallarés, S.; Constenla, M.; Padrós, F.; Carreras-Colom, E.; Grelaud, M.; Carrassón, M.; Soler-Membrives, A. Revealing the capability of the European hake to cope with micro-litter environmental exposure and its inferred potential health impact in the NW Mediterranean Sea. Mar. Environ. Res. 2023, 186, 105921. [Google Scholar] [CrossRef]
Etiological Category | Type of Toxicants/Environmental Stressors, Levels, and Duration of Exposure | Fish Species | Main Outcomes | Proposed Mechanisms Associated with Reported Effects | Adopted Methodology | Statistical Analysis | Reference |
---|---|---|---|---|---|---|---|
Inorganic chemicals | Co(NO3)2, CoSO4. After 8 days onwards of experimental exposure at 1.66 × 10−3 mol L−1 Co2+ and 3.33 × 10−3 mol L−1 Co2+. MnSO4. After 30 days of experimental exposure at an undefined concentration. | Carassius auratus | Unquantified increase in the number of RCs in the intestine and bile ducts. | Not provided. | Light microscopy on sections from paraffin-embedded samples. | Not provided. | [27] |
CdCl2 (from 10 to 100 mg L−1) for 48 h of experimental exposure. | Leiostomus xanthurus | Effect on RCs’ ultrastructure (qualitatively assessed) in the kidney. | Not provided. | Transmission electron microscopy on ultrathin sections from epoxy resin-embedded samples. | Not provided. | [96] | |
NH4+ (0.5 and 2 mM) after 2 days of preconditioning in brackish water (26 ‰) for 5 days of experimental exposure. | Pungitius pungitius | Increase in the number and secretion activity of RCs in gills. | Not provided. | Light microscopy and transmission electron microscopy, respectively, on semithin and ultrathin sections from epoxy resin-embedded samples. | Not provided. | [33] | |
Cd = 0.68 mg kg−1 in 200 g of pooled gill tissue from multiple fish naturally exposed to environmental pollutants. Cr = 3.7 mg kg−1 in 200 g of pooled gill tissue from multiple fish naturally exposed to environmental pollutants. | Boops boops | Increase in the number of RCs in gills. | Not provided. | Light microscopy on sections from paraffin-embedded samples. | Anova test on RCs’ number. | [90] | |
Cd(NO3)2 (22, 500 µg L−1 Cd), Pb(CH3CO2)2 (0.5, 1 mg L−1 Pb), CuCl2 (100 µg L−1 Cu), up to 30 days of experimental exposure. | Cyprinus carpio Oncorhynchus mykiss | Appearance of RCs in the skin (semi-quantitatively assessed), particularly in fish exposed to Cd and Pb, with RCs being absent in control fish. | Mediation by stressor-related factors different from cortisol. | Transmission electron microscopy, immunogold labelling and cytochemistry on ultrathin sections from either LX-112 or Spurr’s resin-embedded samples. | Not provided. | [97] | |
Cd (4.47 mg L−1, 5.63 mg L−1, 7.08 mg L−1, 8.91 mg L−1) for 24 and 48 h of experimental exposure. | Dicentrarchus labrax | Increase in the number of RCs (quantitatively assessed) and effect on RCs’ ultrastructure (qualitatively assessed) in both the intestine and the renal tubules. | Not provided. | Light microscopy on sections from paraffin-embedded samples and transmission electron microscopy on ultrathin sections from epoxy resin-embedded samples. | Anova and Ancova test on RCs’ number. | [83] | |
Hg (251 µg L−1, 355 µg L−1, 501 µg L−1) for 24 and 48 h of experimental exposure. | Dicentrarchus labrax | Increase in the number of RCs (quantitatively assessed) and effect on RCs’ ultrastructure (qualitatively assessed) in both the intestine and the renal tubules. | Not provided. | Light microscopy on sections from paraffin-embedded samples and transmission electron microscopy on ultrathin sections from epoxy resin-embedded samples. | Anova test, Kruskal–Wallis and Jonckheere–Terpstra tests with Monte Carlo exact test extension on RCs’ number. | [82] | |
ZnO nanoparticles (20% of the estimated LC50, 0.69 mg L−1) for 60 days of experimental exposure. | Danio rerio | Effect on RCs’ ultrastructure (qualitatively assessed) in olfactory rosettes. | Not provided. | Transmission electron microscopy on ultrathin sections from epoxy resin-embedded samples. | Not provided. | [93] | |
Organic chemicals | N-nitrosodiethylamine (57 mg L−1) for 5–6 weeks of experimental exposure. | Cyprinodon variegatus | Increase in the number of RCs and effect on RCs’ ultrastructure (both qualitatively assessed), from 21 to 140 weeks from the experimental start, associated with the hepatic proliferative (reactive, pre-neoplastic and neoplastic) response. | Not provided. | Light microscopy on sections from paraffin-embedded samples and transmission electron microscopy on ultrathin sections from epoxy resin-embedded samples. | Not provided. | [92,142] |
Stam® M-4 (Propanil) (3.16, 6.31 and 12.6 mg L−1) for 24, 48 h of experimental exposure. | Squalius cephalus | Decrease and increase in the number of RCs (quantitatively assessed) respectively in the heart bulbus arteriosus and in the gills and effect on RCs’ ultrastructure (qualitatively assessed) in the heart, the gills, the intestine, the liver and the kidney. | Physicochemical alteration of cytomembrane and selective inhibition of lysosomal enzymes, resulting in the impaired digestion of phagocytised cytomembranes and myelinsomes formation (with regard to qualitative RCs alterations). | Light microscopy on sections from paraffin-embedded samples and transmission electron microscopy on ultrathin sections from epoxy resin-embedded samples. | Anova test, linear regression and curve-fitting on RCs’ number. | [86] | |
Terbuthylazine (3.55 mg L−1, 5.01 mg L−1, 7.08 mg L−1) for 24, 48 h of experimental exposure. | Dicentrarchus labrax | Increase in the number of RCs (quantitatively assessed) and effect on RCs’ ultrastructure (qualitatively assessed) in the gills, the intestine and the renal tubules. | Not provided. | Light microscopy on sections from paraffin-embedded samples and transmission electron microscopy on ultrathin sections from epoxy resin-embedded samples. | Anova and Ancova test on RCs’ number. | [85] | |
Methyl parathion (4 mg L−1 and 8 mg L−1) for 10 days of experimental exposure. | Oreochromis niloticus | Increase in the number of RCs in the gills (only in fish exposed to 4 mg L−1). | Not provided. | Light microscopy on thin sections from glycol methacrylate-embedded samples. | Kruskal–Wallis test with Mann–Whitney (Bonferroni correction) post-hoc test. | [80] | |
Perfluorooc- tanoic acid (PFOA) (200 ng L−1 and 2 mg L−1 PFOA) for 56 days of experimental exposure. PFOA concentration in the kidney of fish exposed to 2 mg L−1 PFOA for 56 days = 1.08 ± 0.54 ng g−1 wet weight (mean ± standard deviation). | Cyprinus carpio | Effect on RCs’ number (numerically quantified) and RCs’ ultrastructure (qualitatively assessed) in the kidney. | RCs acting as alternative sentinel cells responding directly (via TLR) or indirectly (via tissue damage and/or stress-induced response) to PFOA. | Light microscopy on semithin sections and transmission electron microscopy on ultrathin sections from epoxy resin-embedded samples. | Discrete distribution models on RCs’ distribution and Kruskal–Wallis test on the total number of RCs. | [81] | |
Perfluorooc- tanoic acid (PFOA) (200 ng L−1 and 2 mg L−1 PFOA) for 56 days of experimental exposure. PFOA concentration in the kidney of fish exposed to 2 mg L−1 PFOA for 56 days = 1.08 ± 0.54 ng g−1 wet weight (mean ± standard deviation). | Cyprinus carpio | Effect on RCs’ distribution pattern (numerically quantified) and increased RCs’ exocytosis activity (semi-quantitatively assessed) in the renal hematopoietic tissue. | RCs acting as alternative sentinel cells responding directly (via TLR) or indirectly (via tissue damage) to PFOA. | Light microscopy on semithin sections and transmission electron microscopy on ultrathin sections from epoxy resin-embedded samples. | Discrete distribution models on RCs’ distribution and repeated measure Friedman test on RCs’ frequency distribution. | [8] | |
Perfluorooc- tanoic acid (PFOA) (200 ng L−1 and 2 mg L−1 PFOA) for 56 days of experimental exposure. | Cyprinus carpio | Increased RCs’ degranulation (numerically quantified) in the hematopoietic tissue. | Not provided. | Light microscopy and image (texture) analysis on ultrathin sections from epoxy resin-embedded samples. | Linear discriminant analysis on RCs’ texture features. | [99] | |
Miscellaneous chemicals/pollutants | 0.3–0.7% chicken manure, polluted water from the river Rhine, up to 30 days of experimental exposure. | Cyprinus carpio Oncorhynchus mykiss | Appearance of RCs in the skin, with RCs being absent in control fish. | Mediation by stressor-related factors different from cortisol. | Transmission electron microscopy, immunogold labelling and cytochemistry on ultrathin sections from either LX-112 or Spurr’s resin-embedded samples. | Not provided. | [97] |
Dexamethasone-21-isonicotinate (approximately 2 mg kg−1 body mass) sampled 6, 24, 48, 72, and 96 h after the intraperitoneal injection. | Carassius auratus | Depletion of RCs in the heart bulbar lumen anchored to lining endothelial cells and occurrence of “bleb” discharge modality. | Modified expression of superficial adhesive molecules in RCs and endothelial cells. | Light microscopy on sections from paraffin-embedded samples and on semithin sections from epoxy resin-embedded samples. Transmission electron microscopy on ultrathin sections from epoxy resin-embedded samples. | Anova test on RCs’ number and chi-square test on RCs position with respect to the endothelium and discharge modality. | [101] | |
Natural exposure to lake-polluted water/sediments (mining effluents). | Perca fluviatilis | Increase in the number of RCs in the gills. | Not provided. | Light microscopy on thin sections from epoxy resin-embedded samples. | Anova test on RCs’ number. | [94] | |
Natural exposure to eutrophic, supereutrophic and hypereutrophic water bodies. | Oreochromis niloticus | Increase in the number of RCs in the gills of fish from hypereutrophic waters and positive correlation of RCs’ percentage with Trophic State Index. | Not provided. | Light microscopy on thin sections from glycol methacrylate-embedded samples. | Anova test on RCs’ number and Pearson correlation test between RCs’ percentage and Trophic State Index. | [91] | |
Natural exposure to an oil spill event (1800 Mg of diesel fuel and 800 Mg of fuel oil). | Abramis brama | Increase in the number of RCs (quantitatively assessed) and effect on RCs’ ultrastructure (qualitatively assessed) in the renal collecting ducts. | Not provided. | Light microscopy on sections from paraffin-embedded samples and transmission electron microscopy on ultrathin sections from epoxy resin-embedded samples. | Anova test on RCs’ number. | [87] | |
Natural exposure to river-polluted water/sediments (metals). | Prochilodus argenteus | Increased occurrence of RCs in the brachial interlamellar spaces of fish from the impacted site, particularly in male fish, compared to the reference site. | Not provided. | Light microscopy on sections from paraffin-embedded samples. | Chi-square test for the comparison of RCs occurrence in the interlamellar spaces according to sampling site and Fisher test for the comparison of RCs occurrence according to gender. | [79] | |
Native and polluted (through 3-month deployment in the Milazzo harbour) 0.5 mm diameter PVC pellets, incorporated in feed (0.1% w/w), up to 90 days of feeding. | Dicentrarchus labrax | Increased occurrence of RCs in the intestine of fish fed with native and polluted PVC pellets. | Not provided. | Light microscopy. | Not provided. | [95] | |
Environmental stressors | Gradual changes in salinity from seawater (34.7‰) either to freshwater (0‰), over 96 h, or to hypertonic seawater (48.4‰) over 7 days of experimental exposure. | Monodactylus argenteus | Slight decrease in RCs number and effect on RCs’ ultrastructure in the gills of fish adapted to hypertonic seawater and near absence of RCs in fish adapted to freshwater. | Not provided. | Light microscopy and transmission electron microscopy, respectively, on semithin and ultrathin sections from epoxy resin-embedded samples. | Not provided. | [29] |
Distilled water for 0.5, 1, 2, 4, 7 and 14 days of experimental exposure. | Perca fluviatilis | Occurrence of RCs in the interlamellar space of the primary gill filaments after 7 days ongoing. | Not provided. | Light microscopy and transmission electron microscopy, respectively, on semithin and ultrathin sections from epoxy resin-embedded samples. | Not provided. | [34] | |
Distilled water, brackish water (5 g sea salt L−1), H2SO4 acidified water (pH 5–6), up to 30 days of experimental exposure, elevated temperature by 7 °C, within 60 min. | Cyprinus carpio Oncorhynchus mykiss | Appearance of RCs in the skin, particularly in fish exposed to distilled water, with RCs being absent in control fish. | Mediation by stressor-related factors different from cortisol. | Transmission electron microscopy, immunogold labelling and cytochemistry on ultrathin sections from either LX-112 or Spurr’s resin-embedded samples. | Not provided. | [97] | |
Calcium-deficient artificial freshwater and NH4+ (2.5 mM) (in Cyprinus carpio) and Cd2+ (5 mg L−1) (in Orochromis mossambicus) as calcium absorption inhibitors for 15, 30, 45, 75 and 90 days of experimental exposure. | Cyprinus carpio Orochromis mossambicus | Increased occurrence of RCs in the head kidney. | Not provided. | Transmission electron microscopy. | Not provided. | [31] | |
Freshwater for 24, 48, and 96 h of experimental exposure. | Dicentrarchus labrax | Increase in the number of RCs (quantitatively assessed) and effect on RCs’ ultrastructure (qualitatively assessed) in the gills, the intestine and the renal tubules. | Not provided. | Light microscopy on sections from paraffin-embedded samples and transmission electron microscopy on ultrathin sections from epoxy resin-embedded samples. | Anova test on RCs’ number. | [84] | |
After 1 h onwards of experimental wounding. | Cyprinus carpio Oncorhynchus mykiss | Appearance of RCs in the skin, with RCs being absent in control fish. | Mediation by stressor-related factors different from cortisol. | Transmission electron microscopy, immunogold labelling and cytochemistry on ultrathin sections from either LX-112 or Spurr’s resin-embedded samples. | Not provided. | [97,98] | |
Restraint stress (by netting) for 24 h. | Cyprinus carpio | Increase in the number of RCs in the kidney. | Alpha-MSH immunoreactivity suggestive of an interaction between RCs’ immune and endocrine regulation. | Light microscopy on sections from paraffin-embedded samples. | Student’s t-test on RCs’ number. | [88] | |
Overcrowding, with fish housed at two stocking densities (20 kg m−3 and 80 kg m−3), sampled after 2 and 24 h. | Dicentrarchus labrax | Increase in the number of RCs in gills. | Possible mediation of the increased plasma cortisol. | Light microscopy on sections from paraffin-embedded samples, as well as on semithin sections from epoxy resin-embedded samples. Transmission electron microscopy on ultrathin sections from epoxy resin-embedded samples. | Anova test on RCs’ number. | [89] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Manera, M. Rodlet Cell Morpho–Numerical Alterations as Key Biomarkers of Fish Responses to Toxicants and Environmental Stressors. Toxics 2024, 12, 832. https://doi.org/10.3390/toxics12110832
Manera M. Rodlet Cell Morpho–Numerical Alterations as Key Biomarkers of Fish Responses to Toxicants and Environmental Stressors. Toxics. 2024; 12(11):832. https://doi.org/10.3390/toxics12110832
Chicago/Turabian StyleManera, Maurizio. 2024. "Rodlet Cell Morpho–Numerical Alterations as Key Biomarkers of Fish Responses to Toxicants and Environmental Stressors" Toxics 12, no. 11: 832. https://doi.org/10.3390/toxics12110832
APA StyleManera, M. (2024). Rodlet Cell Morpho–Numerical Alterations as Key Biomarkers of Fish Responses to Toxicants and Environmental Stressors. Toxics, 12(11), 832. https://doi.org/10.3390/toxics12110832