Distribution, Ecological Risk, and Source Identification of Heavy Metal(loid)s in Sediments of a Headwater of Beijiang River Affected by Mining in Southern China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sediment Sampling and Analytical Procedures
2.2.1. Sample Collection and Preparation
2.2.2. Analytical Procedures
2.2.3. Quality Assurance and Quality Control
2.3. Data Analysis and Risk Assessment
2.3.1. Statical Analysis
2.3.2. Sediment Quality Guidelines
2.3.3. Geo-Accumulation Index
2.3.4. Enrichment Factor
2.3.5. The Risk Assessment Code
2.3.6. Bioavailable Metal Index
3. Results and Discussion
3.1. Sediment Properties and the Distribution of Heavy Metal(loid)s
3.1.1. Sediment Physical–Chemical Properties
3.1.2. Concentrations and Spatial Distributions of Heavy Metal(loid)s in Sediments
3.1.3. Chemical Fractions of Heavy Metal(loid)s
3.1.4. Factors Influencing the Fractions of Heavy Metal(loid)s
3.2. Pollution and Risk Assessment for Heavy Metal(loid)s
3.2.1. SQGs
3.2.2. Enrichment Factor
3.2.3. Assessment by Igeo Index
3.2.4. Assessment by RAC
3.2.5. Assessment by BMI
3.3. Sources Analysis of Heavy Metal(loid)s
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Xiao, H.; Shahab, A.; Xi, B.D.; Chang, Q.X.; You, S.H.; Li, J.Y.; Sun, X.J.; Huang, H.W.; Li, X.K. Heavy metal pollution, ecological risk, spatial distribution, and source identification in sediments of the Lijiang River, China. Environ. Pollut. 2021, 269, 116189. [Google Scholar] [CrossRef]
- Resongles, E.; Casiot, C.; Freydier, R.; Dezileau, L.; Viers, J.; Elbaz-Poulichet, F. Persisting impact of historical mining activity to metal (Pb, Zn, Cd, Tl, Hg) and metalloid (As, Sb) enrichment in sediments of the Gardon River, southern France. Sci. Total Environ. 2014, 481, 509–521. [Google Scholar] [CrossRef]
- Debnath, A.; Singh, P.K.; Sharma, J.C. Metallic contamination of global river sediments and latest developments for their remediation. J. Environ. Manag. 2021, 298, 113378. [Google Scholar] [CrossRef]
- Arisekar, U.; Shakila, R.J.; Shalini, R.; Jeyasekaran, G.; Sun, S.; Arumugam, N.; Almansour, A.; Perumal, K. Potentially toxic elements contamination and its removal by aquatic weeds in the riverine system: A comparative approach. Environ. Res. 2022, 206, 112613. [Google Scholar]
- Santos-Francés, F.; Martínez-Grāna, A.; Alonso, R.P.; García, S.A. Geochemical background and baseline values determination and spatial distribution of heavy metal pollution in soils of the Andes Mountain range (Cajamarca-Huancavelica, Peru). Int. J. Environ. Res. Public Health 2017, 14, 859. [Google Scholar] [CrossRef] [PubMed]
- Salah, E.A.M.; Zaidan, T.A.; Al-Rawi, A.S. Assessment of heavy metals pollution in the sediments of Euphrates River, Iraq. J. Water Resour. Prot. 2012, 4, 1009–1023. [Google Scholar] [CrossRef]
- Xu, F.; Liu, Z.; Cao, Y.; Qiu, L.; Feng, J.; Xu, F.; Tian, X. Assessment of heavy metal contamination in urban river sediments in the Jiaozhou Bay catchment, Qingdao, China. Catena 2017, 150, 9–16. [Google Scholar] [CrossRef]
- Javed, T.; Ahmad, N.; Mashiatullah, A. Heavy metals contamination and ecological risk assessment in surface sediments of namal lake, Pakistan. Pol. J. Environ. Stud. 2018, 27, 675–688. [Google Scholar] [CrossRef]
- Liu, X.Y.; Bai, Z.K.; Shi, H.D.; Zhou, W.; Liu, X.C. Heavy metal pollution of soils from coal mines in China. Nat. Hazards 2019, 99, 1163–1177. [Google Scholar] [CrossRef]
- Long, Z.; Zhang, W.; Shi, Z.L.; Yu, D.M.; Chen, Y.; Liu, C.; Wang, R. Effect of different industrial activities on soil heavy metal pollution, ecological risk, and health risk. Environ. Monit. Assess. 2021, 193, 20. [Google Scholar] [CrossRef]
- Han, Y.; Gu, X. Enrichment, contamination, ecological and health risks of toxic metals in agricultural soils of an industrial city, northwestern China. J. Trace Elem. Miner. 2023, 3, 100043. [Google Scholar] [CrossRef]
- Schäfer, J.; Counel, A.; Blanc, G. Impact of metallurgy tailings in a major European fluvial-estuarine system: Trajectories and resilience over seven decades. Sci. Total Environ. 2022, 805, 150195. [Google Scholar] [CrossRef] [PubMed]
- Howard, D.E.; Evans, R.D. Acid-volatile sulfide (AVS) in a seasonally anoxic mesotrophic lake: Seasonal and spatial changes in sediment AVS. Environ. Toxicol. Chem. 2010, 12, 1051–1057. [Google Scholar]
- Ganugapenta, S.; Nadimikeri, J.; Chinnapolla, S.R.R.B.; Ballari, L.; Madiga, R.; Nirmala, K.; Telia, L.P. Assessment of heavy metal pollution from the sediment of Tupilipalem coast, southeast coast of India. Int. J. Sediment Res. 2018, 3, 008. [Google Scholar] [CrossRef]
- Li, Y.; Lin, Y.; Wang, L. Distribution of heavy metal(loid)sin seafloor sediments on the East China Sea inner shelf: Seasonal variations and typhoon impact. Mar. Pollut. Bull. 2018, 129, 534–544. [Google Scholar] [CrossRef]
- Adimalla, N.; Chen, J.; Qian, H. Spatial characteristics of heavy metal contamination and potential human health risk assessment of urban soils: A case study from an urban region of South India. Ecotoxicol. Environ. Saf. 2020, 194, 110406. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Shan, B.Q.; Zhao, Y.; Song, Z.X.; Tang, W.Z. Spatial distribution, fraction, toxicity and risk assessment of surface sediments from the Baiyangdian Lake in northern China. Ecol. Indic. 2018, 90, 633–642. [Google Scholar] [CrossRef]
- Aminiyan, M.M.; Aminiyan, F.M.; Mousavi, R. Heavy metal pollution affected by human activities and different land-use in urban topsoil: A case study in Rafsanjan city, Kerman province, Iran. Eurasian J. Soil Sci. 2016, 5, 97–104. [Google Scholar] [CrossRef]
- Zhao, S.; Feng, C.H.; Yang, Y.R.; Niu, J.F.; Shen, Z.Y. Risk assessment of sedimentary metals in the Yangtze Estuary: New evidence of the relationships between two typical index methods. J. Hazard. Mater. 2012, 241–242, 164–172. [Google Scholar] [CrossRef]
- Niu, Y.; Jiang, X.; Wang, K.; Xia, J.; Jiao, W.; Niu, Y.; Yu, H. Meta analysis of heavy metal pollution and sources in surface sediments of Lake Taihu, China. Sci. Total Environ. 2020, 700, 134509. [Google Scholar] [CrossRef]
- Luo, M.K.; Yu, H.; Liu, Q.; Lan, W.; Ye, Q.R.; Niu, Y.; Niu, Y. Effect of river-lake connectivity on heavy metal diffusion and source identification of heavy metals in the middle and lower reaches of the Yangtze River. J. Hazard. Mater. 2021, 416, 125818. [Google Scholar] [CrossRef] [PubMed]
- Vetrimurugan, E.; Jonathan, M.; Roy, P.D.; Shruti, V.; Ndwandwe, O. Bioavailable metals in tourist beaches of Richards Bay, Kwazulu-Natal, South Africa. Mar. Pollut. Bull. 2016, 105, 430–436. [Google Scholar] [CrossRef] [PubMed]
- Paul, V.; Sankar, M.S.; Vattikuti, S.; Dash, P.; Arslan, Z. Pollution assessment and land use land cover influence on trace metal distribution in sediments from five aquatic systems in southern USA. Chemosphere 2021, 263, 128243. [Google Scholar] [CrossRef]
- Gao, B.; Liang, X.; Zhou, H. Lead isotopes as a tracer of Pb origin in the sediments from Beijiang River, South China. Water Sci. Technol. 2012, 66, 2613–2619. [Google Scholar] [CrossRef]
- Li, R.; Tang, C.Y.; Li, X.; Jiang, T.; Shi, Y.; Cao, Y. Reconstructing the historical pollution levels and ecological risks over the past sixty years in sediments of the Beijiang River, South China. Sci. Total Environ. 2019, 649, 448–460. [Google Scholar] [CrossRef] [PubMed]
- Song, M.W.; Huang, P.; Li, F.; Zhang, H.; Xie, K.Z.; Wang, X.H.; He, G.X. Water quality of a tributary of the Pearl River, the Beijiang, Southern China: Implications from multivariate statistical analyses. Environ. Monit. Assess. 2011, 172, 589–603. [Google Scholar] [CrossRef] [PubMed]
- Liao, J.B.; Chen, J.; Ru, X.; Chen, J.D.; Wu, H.Z.; Wei, C.H. Heavy metals in river sediments affected with multiple pollution sources, South China: Distribution, enrichment and source apportionment. J. Geochem. Explor. 2017, 176, 9–19. [Google Scholar] [CrossRef]
- Luo, C.; Routh, J.; Dario, M.; Sarkar, S.; Wei, L.; Luo, D.G.; Liu, Y. Distribution and mobilization of heavy metals at an acid mine drainage affected region in South China, a post-remediation study. Sci. Total Environ. 2020, 724, 138122. [Google Scholar] [CrossRef]
- Zhang, J.; Han, L.; Ji, Y.; Wei, J.; Cai, G.; Gao, G.; Wu, J.; Yao, Z. Heavy metal investigation and risk assessment along the Le’An River from non-ferrous metal mining and smelting activities in Poyang, China. J. Environ. Biol. 2018, 39, 536–545. [Google Scholar] [CrossRef]
- Liu, B.X.; Luo, J.; Jiang, S.; Wang, Y.; Li, Y.C.; Zhang, X.S.; Zhou, S.Q. Geochemical fractionation, bioavailability, and potential risk of heavy metals in sediments of the largest influent river into Chaohu Lake, China. Environ. Pollut. 2021, 290, 118018. [Google Scholar] [CrossRef]
- Pueyo, M.; Mateu, J.; Rigol, A.; Vidal, M.; Lopez-Sanchez, J.F.; Rauret, G. Use of the modified BCR three-step sequential extraction procedure for the study of trace element dynamics in contaminated soils. Environ. Pollut. 2008, 152, 330–341. [Google Scholar] [CrossRef]
- MacDonald, D.D.; Ingersoll, C.G.; Berger, T.A. Development and evaluation of consensus-based sediment quality guidelines for freshwater ecosystems. Arch. Environ. Contam. Toxicol. 2000, 39, 20–31. [Google Scholar] [CrossRef]
- Smith, S.L.; Macdonald, D.D.; Keenleyside, K.A.; Ingeroll, C.G.; Field, L.J. A preliminary evaluation of sediment quality assessment values for freshwater ecosystems. J. Great Lakes Res. 1996, 22, 624–638. [Google Scholar] [CrossRef]
- Muller, G. Index of geo-accumulation in sediments of the Rhine River. Geo J. 1969, 2, 108–118. [Google Scholar]
- Varol, M. Assessment of heavy metal contamination in sediments of the Tigris River (Turkey) using pollution indices and multivariate statistical techniques. J. Hazard. Mater. 2011, 195, 355–364. [Google Scholar] [CrossRef] [PubMed]
- Perin, G.; Craboledda, L.; Lucchese, L.; Cirillo, R.; Orio, A.A. Heavy metal speciation in the sediments of northern Adriatic Sea. A new approach for environmental toxicity determination. Heavy Met. Environ. 1985, 2, 454–456. [Google Scholar]
- Sundaray, S.K.; Nayak, B.B.; Lin, S.; Bhatta, D. Geochemical speciation and risk assessment of heavy metals in the river estuarine sediments-A case study: Mahanadi basin, India. J. Hazard. Mater. 2011, 186, 1837–1846. [Google Scholar] [CrossRef] [PubMed]
- Ji, Z.H.; Zhang, Y.; Zhang, H.; Huang, C.X.; Pei, Y.S. Fraction spatial distributions and ecological risk assessment of heavy metals in the sediments of Baiyangdian Lake. Ecotoxicol. Environ. Saf. 2019, 174, 417–428. [Google Scholar] [CrossRef]
- Pavlovićs, P.; Markovićs, M.; Kostić, O.; Sakan, S.; Dordević, D.; Perović, V.; Pavlović, D.; Pavlović, M.; Cakmak, D.; Jarić, S.; et al. Evaluation of potentially toxic element contamination in the riparian zone of the River Sava. Catena 2019, 174, 399–412. [Google Scholar] [CrossRef]
- Wu, W.H.; Qu, S.Y.; Nel, W. The impact of natural weathering and mining on heavy metal accumulation in the karst areas of the Pearl River Basin, China. Sci. Total Environ. 2020, 734, 139840. [Google Scholar] [CrossRef] [PubMed]
- Huang, B.; Zhao, Y.F.; Shi, X.Z.; Yu, D.S.; Zhao, Y.C.; Sun, W.X.; Wang, H.J. Source identification and spatial variability of nitrogen, phosphorus, and selected heavy metals in surface water and sediment in the riverine systems of a peri-urban interface. J. Environ. Sci. Health Part A 2007, 42, 371–380. [Google Scholar] [CrossRef]
- Li, Z.; Jiang, W.G.; Wang, W.J.; Chen, Z.; Ling, Z.Y.; Lv, J.X. Ecological risk assessment of the wetlands in Beijing-Tianjin-Hebei urban agglomeration. Ecol. Indicat. 2020, 117, 106677. [Google Scholar] [CrossRef]
- Stevens, H.; Chase, Z.; Zawadzki, A.; Wong, H.; Proemse, B.C. Reconstructing the History of Nutrient Loads and Sources in the Derwent Estuary, Tasmania, Australia, using Isotopic Fingerprinting Techniques. Estuar. Coast. 2021, 44, 2236–2249. [Google Scholar] [CrossRef]
- Wang, H.; Wang, J.; Liu, R.; Yu, W.; Shen, Z. Spatial variation, environmental risk and biological hazard assessment of heavy metals in surface sediments of the Yangtze River Estuary. Mar. Pollut. Bull. 2015, 93, 250–258. [Google Scholar] [CrossRef] [PubMed]
- Wei, B.; Hou, Q.Y.; Tang, Z.M. Estimation of Background Values and Contamination Characteristics of Heavy metals in Sediments of the Pearl River, China. Geoscience 2019, 33, 293–304. (In Chinese) [Google Scholar]
- Gusiatin, Z.M.; Kulikowska, D. The usability of the IR, RAC and MRI indices of heavy metal distribution to assess the environmental quality of sewage sludge composts. Waste Manag. 2014, 34, 1227–1236. [Google Scholar] [CrossRef] [PubMed]
- Feng, C.; Guo, X.; Yin, S.; Tian, C.C.; Li, Y.Y.; Shen, Z.Y. Heavy metal partitioning of suspended particulate matter-water and sediment-water in the Yangtze Estuary. Chemosphere 2017, 185, 717–725. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.L.; Bai, J.H.; Xiao, R.; Zhao, Q.Q.; Cui, B.S.; Liu, X.H. Heavy metal fractions and ecological risk assessment in sediments from urban, rural and reclamation-affected rivers of the Pearl River Estuary, China. Chemosphere 2017, 184, 278–288. [Google Scholar] [CrossRef]
- Pradit, S.; Shazili, N.A.M.; Pattaratumrong, M.S.; Chotikarn, P.; Towatana, P. Chemical fractionation of trace elements in mangrove sediments from the Songkhla Lake, Thailand using BCR technique. Sci. Asia. 2019, 45, 465. [Google Scholar] [CrossRef]
- Nemati, K.; Bakar, N.K.A.; Abas, M.R.; Sobhanzadeh, E. Speciation of heavy metals by modified BCR sequential extraction procedure in different depths of sediments from Sungai Buloh, Selangor, Malaysia. J. Hazard. Mater. 2011, 192, 402–410. [Google Scholar] [CrossRef]
- Parizanganeh, A. Grain size effect on trace metals in contaminated sediments along the Iranian coast of the Caspian Sea. In Proceedings of the Taal 2007 12th World Lake Conference, Jaipur, India, 28 October–2 November 2008; pp. 329–336. [Google Scholar]
- Mahdi, A.M.; Doumenq, P.; Awaleh, M.O.; Syakti, A.D.; Asia, L.; Chiron, S. Levels and sources of heavy metals and PAHs in sediment of Djibouti-city (Republic of Djibouti). Mar. Pollut. Bull. 2017, 120, 340–346. [Google Scholar] [CrossRef] [PubMed]
- Ren, Y.Y.; Cao, X.X.; Wu, P.; Li, L.W. Experimental insights into the formation of secondary minerals in acid mine drainage-polluted karst rivers and their effects on element migration. Sci. Total Environ. 2023, 5, 160076. [Google Scholar] [CrossRef]
- Fang, X.H.; Peng, B.; Wang, X.; Song, Z.L.; Zhou, D.X.; Wang, Q.; Qin, Z.L.; Tan, C.Y. Distribution, contamination and source identification of heavy metals in bed sediments from the lower reaches of the Xiangjiang River in Hunan province, China. Sci. Total Environ. 2019, 689, 557–570. [Google Scholar] [CrossRef] [PubMed]
- Liang, G.; Zhang, B.; Lin, M.; Wu, S.; Hou, H.; Zhang, J.; Qian, G.; Huang, X.; Zhou, J. Evaluation of heavy metal mobilization in creek sediment: Influence of RAC values and ambient environmental factors. Sci. Total Environ. 2017, 607–608, 1339–1347. [Google Scholar] [CrossRef] [PubMed]
- Zhuang, Q.; Li, G.; Liu, Z. Distribution, source and pollution level of heavy metals in river sediments from South China. Catena 2018, 170, 386–396. [Google Scholar] [CrossRef]
- Wang, X.; He, M.; Xi, J.; Lu, X. Antimony distribution and mobility in rivers around the world’s largest antimony mine of Xikuangshan, Hunan Province, China. Microchem. J. 2011, 97, 4–11. [Google Scholar] [CrossRef]
River | Heavy Metal(loid) Concentration (mg/kg) | ||||||||
---|---|---|---|---|---|---|---|---|---|
Item | Cu | Pb | Zn | Cr | Cd | As | Sb | Tl | |
Zone 1 (n = 4) | Minimum | 36.00 | 136.00 | 299.00 | 61.70 | 3.70 | 345.00 | 18.40 | 0.78 |
Maximum | 112.00 | 916.00 | 1570.00 | 130.00 | 12.80 | 1270.00 | 55.80 | 4.70 | |
Average | 56.48 | 359.75 | 736.25 | 84.08 | 6.45 | 745.50 | 27.93 | 1.98 | |
CV (%) | 65.61 | 103.37 | 77.27 | 37.01 | 66.73 | 53.17 | 66.55 | 92.01 | |
Zone 2 (n = 15) | Minimum | 22.90 | 287.00 | 498.00 | 25.40 | 3.62 | 389.00 | 24.90 | 0.45 |
Maximum | 250.00 | 3810.00 | 3410.00 | 90.80 | 20.70 | 4400.00 | 254.00 | 5.54 | |
Average | 117.13 | 892.53 | 1158.73 | 67.01 | 8.65 | 1962.60 | 65.25 | 2.65 | |
CV (%) | 55.48 | 99.95 | 62.00 | 22.02 | 53.63 | 50.13 | 87.72 | 55.02 | |
Zone 3 (n = 6) | Minimum | 98.20 | 495.00 | 943.00 | 33.70 | 6.63 | 911.00 | 41.80 | 0.88 |
Maximum | 313.00 | 3580.00 | 4120.00 | 70.90 | 34.10 | 6150.00 | 296.00 | 4.59 | |
Average | 144.02 | 1618.33 | 2030.00 | 57.43 | 17.48 | 2538.50 | 91.35 | 1.99 | |
CV (%) | 59.73 | 80.28 | 65.27 | 26.84 | 73.88 | 74.70 | 110.00 | 68.84 | |
Zone 4 (n = 9) | Minimum | 9.50 | 21.40 | 42.70 | 36.60 | 0.31 | 32.10 | 1.36 | 0.38 |
Maximum | 65.70 | 220.00 | 345.00 | 142.00 | 4.37 | 413.00 | 15.80 | 2.30 | |
Average | 37.43 | 112.94 | 176.17 | 76.80 | 1.46 | 150.74 | 5.33 | 1.11 | |
CV (%) | 45.42 | 69.16 | 53.43 | 38.14 | 80.71 | 78.49 | 87.98 | 47.89 | |
Zone 5 (n = 3) | Minimum | 73.70 | 397.00 | 819.00 | 15.00 | 4.82 | 722.00 | 22.80 | 1.60 |
Maximum | 306.00 | 1180.00 | 1920.00 | 55.60 | 15.10 | 2880.00 | 80.90 | 6.43 | |
Average | 157.13 | 828.33 | 1463.00 | 37.57 | 10.11 | 1526.00 | 47.30 | 3.40 | |
CV (%) | 82.25 | 47.99 | 39.22 | 55.04 | 50.92 | 77.29 | 63.64 | 77.49 | |
Zone 6 (n = 2) | Minimum | 18.60 | 55.20 | 113.00 | 51.70 | 1.22 | 38.60 | 2.54 | 1.14 |
Maximum | 33.50 | 162.00 | 306.00 | 89.50 | 1.35 | 270.00 | 12.70 | 1.31 | |
Average | 26.05 | 108.60 | 209.50 | 70.60 | 1.29 | 154.30 | 7.62 | 1.23 | |
CV (%) | 40.44 | 69.54 | 65.14 | 37.86 | 7.15 | 106.04 | 94.28 | 9.81 | |
Zone 7 (n = 11) | Minimum | 24.70 | 61.40 | 139.00 | 39.30 | 0.74 | 96.40 | 5.16 | 0.48 |
Maximum | 117.00 | 370.00 | 600.00 | 118.00 | 5.31 | 603.00 | 25.00 | 1.72 | |
Average | 62.59 | 218.02 | 407.36 | 71.09 | 3.09 | 356.31 | 14.41 | 1.16 | |
CV (%) | 43.91 | 44.60 | 32.87 | 33.03 | 43.75 | 51.41 | 41.20 | 39.29 | |
Total (n = 50) | Minimum | 9.50 | 21.40 | 42.70 | 15.00 | 0.31 | 32.10 | 1.36 | 0.38 |
Maximum | 313.00 | 3810.00 | 4120.00 | 142.00 | 34.10 | 6150.00 | 296.00 | 6.43 | |
Average | 87.92 | 613.08 | 867.61 | 68.26 | 6.81 | 1156.29 | 40.04 | 1.90 | |
CV (%) | 78.14 | 132.98 | 98.67 | 34.00 | 105.11 | 107.50 | 136.33 | 73.37 |
River | Heavy Metal(loid) Concentration (mg/kg) | References | |||||||
---|---|---|---|---|---|---|---|---|---|
Cu | Pb | Zn | Cr | Cd | As | Sb | Tl | ||
Wushui river | 87.92 | 613.08 | 867.61 | 68.26 | 6.81 | 1156.29 | 40.04 | 1.90 | This study |
Diaojiang River, tributary of Pearl River | 151.00 | 921.00 | 4314.00 | 64.2 | 4314.00 | 991.00 | - | - | [45] |
Mainstream of Pearl River | 39.10 | 28.40 | 177.00 | 121.00 | 0.87 | 16.30 | - | - | [45] |
Hengshi River, tributary of Beijiang River | 471.00 | 430.00 | 1601.00 | - | 6.96 | 104.00 | - | 0.26 | [28] |
Mainstream of Beijiang River | 89.00 | 225.00 | 383.00 | 75.20 | 6.30 | - | - | - | [25] |
Background value | 38.00 | 30.00 | 85.00 | 86.00 | 0.09 | 17.00 | 1.58 | 0.64 | [44] |
Fraction | Sand | Silt | Clay | S | TN | TOC | pH | F1 | F2 | F3 | F4 |
---|---|---|---|---|---|---|---|---|---|---|---|
CuF1 | −0.341 | 0.349 * | 0.359 ** | 0.358 * | −0.244 | −0.139 | −0.205 | 1 | |||
CuF2 | −0.400 ** | 0.327 ** | 0.379 * | 0.273 | −0.227 | 0.022 | 0.017 | 0.780 ** | 1 | ||
CuF3 | −0.162 | 0.188 | 0.064 | 0.407 ** | −0.290 * | −0.139 | −0.034 | 0.575 ** | 0.748 ** | 1 | |
CuF4 | −0.045 | 0.068 | −0.023 | 0.593 ** | −0.275 | −0.032 | −0.007 | 0.452 ** | 0.642 ** | 0.803 ** | 1 |
PbF1 | 0.043 | −0.090 | 0.084 | 0.109 | −0.280 * | −0.216 | −0.048 | 1 | |||
PbF2 | −0.042 | 0.058 | −0.007 | 0.712 ** | −0.307 * | −0.112 | −0.028 | 0.553 ** | 1 | ||
PbF3 | 0.141 | −0.154 | −0.081 | 0.352 * | −0.287 * | −0.150 | 0.101 | 0.511 ** | 0.631 ** | 1 | |
PbF4 | 0.111 | −0.087 | −0.15 | 0.467 ** | −0.246 | −0.105 | 0.005 | 00.211 | 0.586 ** | 0.373 ** | 1 |
ZnF1 | 0.103 | −0.107 | −0.071 | 0.298 * | −0.329 * | −0.215 | 0.013 | 1 | |||
ZnF2 | 0.047 | −0.044 | −0.048 | 0.317 * | −0.306 * | −0.180 | 0.101 | 0.907 ** | 1 | ||
ZnF3 | 0.118 | −0.112 | −0.109 | 0.287 * | −0.366 ** | −0.231 | 0.021 | 0.440 ** | 0.326 * | 1 | |
ZnF4 | 0.062 | −0.028 | −0.137 | 0.814 ** | −0.273 | −0.050 | −0.013 | 0.473 ** | 0.550 ** | 0.404 ** | 1 |
CdF1 | 0.014 | −0.031 | 0.033 | 0.469 ** | −0.377 ** | −0.241 | −0.109 | 1 | |||
CdF2 | 0.063 | −0.03 | −0.137 | 0.617 ** | −0.271 | −0.079 | 0.127 | 0.731 ** | 1 | ||
CdF3 | 0.127 | −0.119 | −0.124 | 0.218 | −0.292 * | −0.172 | 0.034 | 0.284 * | 0.208 | 1 | |
CdF4 | 0.064 | −0.022 | −0.157 | 0.811 ** | −0.25 | −0.047 | −0.007 | 0.609 ** | 0.685 ** | 0.343 * | 1 |
AsF1 | 0.005 | −0.054 | 0.121 | −0.035 | −0.074 | −0.118 | −0.150 | 1 | |||
AsF2 | −0.091 | 0.059 | 0.154 | −0.078 | −0.159 | −0.192 | −0.170 | 0.576 ** | 1 | ||
AsF3 | 0.117 | −0.117 | −0.096 | 0.079 | −0.233 | −0.200 | −0.139 | 0.637 ** | 0.702 ** | 1 | |
AsF4 | −0.031 | 0.058 | −0.045 | 0.628 ** | −0.319 * | −0.155 | −0.050 | 00.277 | 0.468 ** | 0.474 ** | 1 |
SbF1 | 0.127 | −0.169 | 0.003 | −0.167 | −0.231 | −0.279 * | −0.213 | 1 | |||
SbF2 | 0.010 | −0.005 | −0.022 | 0.283 * | −0.277 | −0.164 | −0.049 | 0.244 | 1 | ||
SbF3 | 0.065 | −0.083 | −0.007 | 0.136 | −0.309 * | −0.289 | 0.051 | 0.367 ** | 0.798 ** | 1 | |
SbF4 | 0.106 | −0.084 | −0.144 | 0.475 ** | −0.259 | −0.129 | −0.003 | 0.158 | 0.881 ** | 0.679 ** | 1 |
Pb | Zn | Cr | Cu | Cd | As | Sb | Tl | ||
---|---|---|---|---|---|---|---|---|---|
SQGs | TEC | 35.8 | 121.0 | 43.4 | 31.6 | 0.99 | 9.79 | NG | NG |
PEC | 128.0 | 459.0 | 111.0 | 149.0 | 4.98 | 33.0 | NG | NG | |
% of samples < TEC | 2.0 | 6.0 | 14.0 | 16.0 | 6.0 | 0.0 | - | - | |
% of samples between TEC–PEC | 16.0 | 32.0 | 80.0 | 70.0 | 46.0 | 2.0 | - | - | |
% of samples > PEC | 82.0 | 62.0 | 6.0 | 14.0 | 48.0 | 98.0 | - | - |
Enrichment factor (EF) | ||||||||
level | Cu | Zn | Pb | Cd | Cr | Sb | Tl | As |
<1 (%) | 14.0 | 0.0 | 6.0 | 76.0 | 0.0 | 0.0 | 0.0 | 2.0 |
1~2 (%) | 30.0 | 12.0 | 10.0 | 24.0 | 0.0 | 0.0 | 14.0 | 40.0 |
2~5 (%) | 40.0 | 12.0 | 22.0 | 0.0 | 4.0 | 10.0 | 6.0 | 46.0 |
>5 (%) | 14.0 | 76.0 | 63.0 | 0.0 | 96.0 | 90.0 | 80.0 | 12.0 |
Geo-accumulation index (Igeo) | ||||||||
level | Cu | Pb | Zn | Cr | Cd | As | Sb | Tl |
<0 (%) | 30.0 | 2.0 | 10.0 | 96.0 | 0.0 | 0.0 | 2.0 | 22.0 |
0~1 (%) | 22.0 | 14.0 | 10.0 | 4.0 | 2.0 | 4.0 | 12.0 | 50.0 |
1~2 (%) | 38.0 | 6.0 | 30.0 | 0.0 | 2.0 | 0.0 | 6.0 | 18.0 |
2~3 (%) | 10.0 | 28.0 | 26.0 | 0.0 | 12.0 | 18.0 | 24.0 | 10.0 |
3~4 (%) | 0.0 | 16.0 | 18.0 | 0.0 | 14.0 | 6.0 | 18.0 | 0.0 |
4~5 (%) | 0.0 | 26.0 | 6.0 | 0.0 | 24.0 | 22.0 | 26.0 | 0.0 |
>5 (%) | 0.0 | 8.0 | 0.0 | 0.0 | 26.0 | 50.0 | 12.0 | 0.0 |
Risk assessment code (RAC) | ||||||||
level | Cu | Zn | Pb | Cd | Cr | Sb | Tl | As |
<1 (%) | 6.0 | 0.0 | 6.0 | 0.0 | 2.0 | 12.0 | 18.0 | 46.0 |
1~10 (%) | 78.0 | 14.0 | 78.0 | 0.0 | 98.0 | 86.0 | 82.0 | 48.0 |
11~30 (%) | 12.0 | 60.0 | 16.0 | 14.0 | 0.0 | 2.0 | 0.0 | 6.0 |
31~50 (%) | 2.0 | 22.0 | 0.0 | 48.0 | 0.0 | 0.0 | 0.0 | 0.0 |
>50 (%) | 0.0 | 4.0 | 0.0 | 38.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luo, F.; Zhang, F.; Zhang, W.; Huang, Q.; Tang, X. Distribution, Ecological Risk, and Source Identification of Heavy Metal(loid)s in Sediments of a Headwater of Beijiang River Affected by Mining in Southern China. Toxics 2024, 12, 117. https://doi.org/10.3390/toxics12020117
Luo F, Zhang F, Zhang W, Huang Q, Tang X. Distribution, Ecological Risk, and Source Identification of Heavy Metal(loid)s in Sediments of a Headwater of Beijiang River Affected by Mining in Southern China. Toxics. 2024; 12(2):117. https://doi.org/10.3390/toxics12020117
Chicago/Turabian StyleLuo, Fei, Fawang Zhang, Wenting Zhang, Qibo Huang, and Xing Tang. 2024. "Distribution, Ecological Risk, and Source Identification of Heavy Metal(loid)s in Sediments of a Headwater of Beijiang River Affected by Mining in Southern China" Toxics 12, no. 2: 117. https://doi.org/10.3390/toxics12020117
APA StyleLuo, F., Zhang, F., Zhang, W., Huang, Q., & Tang, X. (2024). Distribution, Ecological Risk, and Source Identification of Heavy Metal(loid)s in Sediments of a Headwater of Beijiang River Affected by Mining in Southern China. Toxics, 12(2), 117. https://doi.org/10.3390/toxics12020117