Study on the Environmental Impact and Benefits of Incorporating Humus Composites in Anaerobic Co-Digestion Treatment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Laboratory Research
2.2. Life Cycle Assessment
2.3. Economic Cost Assessment Method
2.4. Energy Conservation and Emission-Reduction Assessment Method
3. Results and Discussion
3.1. Environmental Impact Assessment of Anaerobic Co-Digestion of Kitchen Waste and Residual Sludge
3.2. Evaluation of the Economic Impact of Incorporating Humus Composites in Anaerobic Co-Digestion Treatment
3.3. Assessment of Energy Conservation and Emission-Reduction Effects in Anaerobic Co-Digestion Treatment with the Addition of Humus Composites
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, J.; Zhao, Z.; Zhang, Y. Enhancing anaerobic digestion of kitchen wastes with biochar: Link between different properties and critical mechanisms of promoting interspecies electron transfer. Renew. Energy 2021, 167, 791–799. [Google Scholar] [CrossRef]
- Liu, H.; Wang, X.; Fang, Y.; Lai, W.; Xu, S.; Lichtfouse, E. Enhancing thermophilic anaerobic co-digestion of sewage sludge and food waste with biogas residue biochar. Renew. Energy 2022, 188, 465–475. [Google Scholar] [CrossRef]
- Hamrouni, Y.M.B.; Cheikh, R.B. Enhancing the energetic potential of Mediterranean food waste by anaerobic co-digestion with sewage sludge. Environ. Prog. Sustain. 2021, 40, e13512. [Google Scholar] [CrossRef]
- Paranjpe, A.; Saxena, S.; Jain, P. A Review on Performance Improvement of Anaerobic Digestion Using Co-Digestion of Food Waste and Sewage Sludge. J. Environ. Manag. 2023, 338, 117733. [Google Scholar] [CrossRef]
- Pan, Y.; Zhi, Z.; Zhen, G.; Lu, X.; Bakonyi, P.; Li, Y.; Zhao, Y.; Rajesh Banu, J. Synergistic effect and biodegradation kinetics of sewage sludge and food waste mesophilic anaerobic co-digestion and the underlying stimulation mechanisms. Fuel 2019, 253, 40–49. [Google Scholar] [CrossRef]
- Varsha, S.S.V.; Soomro, A.F.; Baig, Z.T.; Vuppaladadiyam, A.K.; Murugavelh, S.; Antunes, E. Methane production from anaerobic mono- and co-digestion of kitchen waste and sewage sludge: Synergy study on cumulative methane production and biodegradability. Biomass Convers. Bior. 2022, 12, 3911–3919. [Google Scholar] [CrossRef]
- Antony, D.; Murugavelh, S. Anaerobic co-digestion of kitchen waste and wastewater sludge: Biogas-based power generation. Biofuels 2018, 9, 157–162. [Google Scholar] [CrossRef]
- Guo, Q.; Dai, X. Analysis on carbon dioxide emission reduction during the anaerobic synergetic digestion technology of sludge and kitchen waste: Taking kitchen waste synergetic digestion project in Zhenjiang as an example. Waste Manag. 2017, 69, 360–364. [Google Scholar] [CrossRef]
- Cecchi, F.; Cavinato, C. Smart Approaches to Food Waste Final Disposal. Int. J. Environ. Res. Public Health 2019, 16, 2860. [Google Scholar] [CrossRef] [PubMed]
- Liu, K.; Lv, L.; Li, W.; Ren, Z.; Wang, P.; Liu, X.; Gao, W.; Sun, L.; Zhang, G. A comprehensive review on food waste anaerobic co-digestion: Research progress and tendencies. Sci. Total Environ. 2023, 878, 163155. [Google Scholar] [CrossRef]
- Li, Y.; Tang, Y.; Xiong, P.; Zhang, M.; Deng, Q.; Liang, D.; Zhao, Z.; Feng, Y.; Zhang, Y. High-efficiency methanogenesis via kitchen wastes served as ethanol source to establish direct interspecies electron transfer during anaerobic Co-digestion with waste activated sludge. Water Res. 2020, 176, 115763. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Wei, Y.; Leng, X. Improving biogas production using additives in anaerobic digestion: A review. J. Clean. Prod. 2021, 297, 126666. [Google Scholar] [CrossRef]
- Ascher, S.; Li, W.; You, S. Life cycle assessment and net present worth analysis of a community-based food waste treatment system. Bioresour. Technol. 2020, 305, 123076. [Google Scholar] [CrossRef] [PubMed]
- Oldfield, T.L.; White, E.; Holden, N.M. An environmental analysis of options for utilising wasted food and food residue. J. Environ. Manag. 2016, 183, 826–835. [Google Scholar] [CrossRef]
- Gao, M.; Wang, D.; Wang, H.; Wang, X.; Feng, Y. Biogas potential, utilization and countermeasures in agricultural provinces: A case study of biogas development in Henan Province, China. Renew. Sustain. Energy Rev. 2019, 99, 191–200. [Google Scholar] [CrossRef]
- Ren, Z. Research on Regional Differences of Carbon Emission and Emission Reduction Mechanism in China. Ph.D. Thesis, Capital University of Economics and Business, Beijing, China, 2014. [Google Scholar]
- Tian, H.; Ee, A.W.L.; Yan, M.; Tiong, Y.W.; Tan, W.; Tan, Q.; Lam, H.T.; Zhang, J.; Tong, Y.W. Life cycle assessment and cost-benefit analysis of small-scale anaerobic digestion system treating food waste onsite under different operational conditions. Bioresour. Technol. 2023, 390, 129902. [Google Scholar] [CrossRef] [PubMed]
- Sala, S.; Laurent, A.; Vieira, M.; Van Hoof, G. Implications of LCA and LCIA choices on interpretation of results and on decision support. Int. J. Life Cycle Assess. 2020, 25, 2311–2314. [Google Scholar] [CrossRef]
- Cheela, V.; John, M.; Biswas, W.; Dubey, B. Environmental Impact Evaluation of Current Municipal Solid Waste Treatments in India Using Life Cycle Assessment. Energies 2021, 14, 3133. [Google Scholar] [CrossRef]
- Wang, T. Comprehensive Evaluation of the Whole Process of Anaerobic Digestion Treatment of Kitchen Waste. Master’s Thesis, Zhejiang University, Hangzhou, China, 2021. [Google Scholar]
- Amon, B.; Kryvoruchko, V.; Amon, T.; Zechmeister-Boltenstern, S. Methane, nitrous oxide and ammonia emissions during storage and after application of dairy cattle slurry and influence of slurry treatment. Agric. Ecosyst. Environ. 2006, 112, 153–162. [Google Scholar] [CrossRef]
- Yilmaz, M.; Guven, H.; Ozgun, H.; Ersahin, M.E.; Koyuncu, I. The application of Life Cycle Assessment (LCA) to anaerobic technologies for the treatment of municipal wastewater: A review. Process Saf. Environ. 2024, 182, 357–370. [Google Scholar] [CrossRef]
- Paulu, A.; Bartáček, J.; Šerešová, M.; Kočí, V. Combining Process Modelling and LCA to Assess the Environmental Impacts of Wastewater Treatment Innovations. Water 2021, 13, 1246. [Google Scholar] [CrossRef]
- Inalegwu Okopi, S.; Zeng, J.; Fan, X.; Lu, J.; Cui, J.; Hu, Y.; Wang, J.; Chen, J.; Sangué Djandja, O.; Ma, Y.; et al. Environmental sustainability assessment of a new food waste anaerobic digestion and pyrolysis hybridization system. Waste Manag. 2024, 179, 130–143. [Google Scholar] [CrossRef] [PubMed]
- Balat, M.; Ayar, G.; Oguzhan, C.; Uluduz, H.; Faiz, U. Influence of Fossil Energy Applications on Environmental Pollution. Energy Sources Part B Econ. Plan. Policy 2007, 2, 213–226. [Google Scholar] [CrossRef]
- Bruno, M.; Marchi, M.; Ermini, N.; Niccolucci, V.; Pulselli, F.M. Life Cycle Assessment and Cost–Benefit Analysis as Combined Economic–Environmental Assessment Tools: Application to an Anaerobic Digestion Plant. Energies 2023, 16, 3686. [Google Scholar] [CrossRef]
- Slorach, P.C.; Jeswani, H.K.; Cuéllar-Franca, R.; Azapagic, A. Environmental and economic implications of recovering resources from food waste in a circular economy. Sci. Total Environ. 2019, 693, 133516. [Google Scholar] [CrossRef] [PubMed]
- Fei, X.; Jia, W.; Chen, T.; Ling, Y. Life-cycle assessment of two food waste disposal processes based on anaerobic digestion in China. J. Clean. Prod. 2021, 293, 126113. [Google Scholar] [CrossRef]
- Rostami, F.; Tafazzoli, S.M.; Aminian, S.T.; Avami, A. Comparative assessment of sewage sludge disposal alternatives in Mashhad: A life cycle perspective. Environ. Sci. Pollut. R. 2020, 27, 315–333. [Google Scholar] [CrossRef] [PubMed]
- Yang, N.; Li, F.; Liu, Y.; Dai, T.; Wang, Q.; Zhang, J.; Dai, Z.; Yu, B. Environmental and Economic Life-Cycle Assessments of Household Food Waste Management Systems: A Comparative Review of Methodology and Research Progress. Sustainability 2022, 14, 7533. [Google Scholar] [CrossRef]
- O’Connor, S.; Ehimen, E.; Pillai, S.C.; Lyons, G.; Bartlett, J. Economic and Environmental Analysis of Small-Scale Anaerobic Digestion Plants on Irish Dairy Farms. Energies 2020, 13, 637. [Google Scholar] [CrossRef]
- Hu, Y.; Liu, S.; Wang, X.; Zhang, S.; Hu, T.; Wang, X.; Wang, C.; Wu, J.; Xu, L.; Xu, G.; et al. Enhanced anaerobic digestion of kitchen waste at different solids content by alkali pretreatment and bentonite addition: Methane production enhancement and microbial mechanism. Bioresour. Technol. 2023, 369, 128369. [Google Scholar] [CrossRef]
- Lizama, A.C.; Figueiras, C.C.; Pedreguera, A.Z.; Ruiz Espinoza, J.E. Enhancing the performance and stability of the anaerobic digestion of sewage sludge by zero valent iron nanoparticles dosage. Bioresour. Technol. 2019, 275, 352–359. [Google Scholar] [CrossRef] [PubMed]
- Gao, M. Study on the Effects of Different Amounts of Conductive Additives on Anaerobic Fermentation Characteristics and the Mechanism of Microbial Action. Ph.D. Thesis, Northwest Agriculture & Forestry University, Xianyang, China, 2022. [Google Scholar]
- Tian, H.; Wang, X.; Lim, E.Y.; Lee, J.T.E.; Ee, A.W.L.; Zhang, J.; Tong, Y.W. Life cycle assessment of food waste to energy and resources: Centralized and decentralized anaerobic digestion with different downstream biogas utilization. Renew. Sustain. Energy Rev. 2021, 150, 111489. [Google Scholar] [CrossRef]
- Poeschl, M.; Ward, S.; Owende, P. Prospects for expanded utilization of biogas in Germany. Renew. Sustain. Energy Rev. 2010, 14, 1782–1797. [Google Scholar] [CrossRef]
Collection and Transportation | Pretreatment and Co-Digestion | ||
---|---|---|---|
Diesel oil (kg) | 3.3600 | Pretreatment unit (kWh) | 14.9733 |
CO2 (kg) | 10.4022 | Co-digestion unit (kWh) | 7.9360 |
NOX (kg) | 0.0068 | NH3 (kg) | 0.1045 |
SO2 (kg) | 0.0003 | H2S (kg) | 0.0045 |
CO (kg) | 0.0040 | Biogas power generation | |
Solid–liquid separation | Power export | −87.8526 | |
Separation unit (kWh) | 7.4667 | CO2 (kg) | −101.5802 |
NH3 (kg) | 0.0232 | NOX (kg) | 0.1921 |
H2S (kg) | 0.0010 | CO (kg) | 0.2490 |
Treatments | Adding Amount (kg) | Unit Price of Additive (RMB/kg) | Additive Cost (RMB) | Biogas Earnings (RMB) | Net Income (RMB) |
---|---|---|---|---|---|
Blank | 0.00 | 0.00 | 0.00 | 186.51 | 186.51 |
Humus composites 5 g/L | 5.00 | 197.00 | 985.00 | 280.92 | −704.08 |
Humus composites 10 g/L | 10.00 | 197.00 | 1970.00 | 129.10 | −1840.90 |
Treatments | 1 L Biogas Production (mL/g VS) | 1 t Biogas Production (m3) | Biogas CO2 Emissions (t) | Standard Coal (kg) | Coal CO2 Emissions (t) | Emission Reductions (kg) |
---|---|---|---|---|---|---|
Blank | 77.60 | 46.98 | 54.65 | 33.54 | 63.78 | 9.12 |
Humus composites 5 g/L | 116.88 | 70.76 | 82.32 | 50.52 | 96.06 | 13.74 |
Humus composites 10 g/L | 53.72 | 32.52 | 37.83 | 23.22 | 44.15 | 6.32 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, K.; Wei, Q.; Bai, M.; Shen, M. Study on the Environmental Impact and Benefits of Incorporating Humus Composites in Anaerobic Co-Digestion Treatment. Toxics 2024, 12, 360. https://doi.org/10.3390/toxics12050360
Zhao K, Wei Q, Bai M, Shen M. Study on the Environmental Impact and Benefits of Incorporating Humus Composites in Anaerobic Co-Digestion Treatment. Toxics. 2024; 12(5):360. https://doi.org/10.3390/toxics12050360
Chicago/Turabian StyleZhao, Ke, Qiang Wei, Mingxuan Bai, and Mengnan Shen. 2024. "Study on the Environmental Impact and Benefits of Incorporating Humus Composites in Anaerobic Co-Digestion Treatment" Toxics 12, no. 5: 360. https://doi.org/10.3390/toxics12050360
APA StyleZhao, K., Wei, Q., Bai, M., & Shen, M. (2024). Study on the Environmental Impact and Benefits of Incorporating Humus Composites in Anaerobic Co-Digestion Treatment. Toxics, 12(5), 360. https://doi.org/10.3390/toxics12050360