Transformation and Degradation of PAH Mixture in Contaminated Sites: Clarifying Their Interactions with Native Soil Organisms
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Soil Collection and Pretreatment
2.3. Pot Experiments
2.4. Analysis Method
2.5. Microbial Community Analysis
3. Results and Discussion
3.1. Effect of PAHs on Ryegrass
3.1.1. Variation in Growth Height of Ryegrass
3.1.2. Migration of PAHs into Ryegrass
3.2. Effects of PAHs on Soil Microbial Community Structure
3.2.1. The Alpha Diversity Index Analysis
3.2.2. Rank Abundance Curve Analysis
3.2.3. Comparison of the Species Composition in Soils
3.2.4. Comparative Cluster Analysis
3.3. Effect of PAHs on Ryegrass
3.3.1. Effect of Native Microorganisms on the Degradation of PAHs
3.3.2. Effect of Plants on the Degradation of PAHs
3.4. The Intermediate Products of PAHs
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ren, Y.; Zhou, B.; Tao, J.; Cao, J.; Zhang, Z.; Wu, C.; Wang, J.; Li, J.; Zhang, L.; Han, Y.; et al. Composition and size distribution of airborne particulate PAHs and oxygenated PAHs in two Chinese megacities. Atmos. Res. 2017, 183, 322–330. [Google Scholar] [CrossRef]
- Ma, B.; Chen, H.; He, Y.; Wang, H.; Xu, J. Evaluation of toxicity risk of polycyclic aromatic hydrocarbons (PAHs) in crops rhizosphere of contaminated field with sequential extraction. J. Soils Sediments 2010, 10, 955–963. [Google Scholar] [CrossRef]
- El-Alawi, Y.S.; McConkey, B.J.; George Dixon, D.; Greenberg, B.M. Measurement of Short- and Long-Term Toxicity of Polycyclic Aromatic Hydrocarbons Using Luminescent Bacteria. Ecotoxicol. Environ. Saf. 2002, 51, 12–21. [Google Scholar] [CrossRef]
- Wild, S.R.; Jones, K.C. Biological and abiotic losses of polynuclear aromatic hydrocarbons (PAHs) from soils freshly amended with sewage sludge. Environ. Toxicol. Chem. 1993, 12, 5–12. [Google Scholar] [CrossRef]
- Zhang, P.; Chen, Y. Polycyclic aromatic hydrocarbons contamination in surface soil of China: A review. Sci. Total Environ. 2017, 605, 1011–1020. [Google Scholar] [CrossRef] [PubMed]
- Duan, Y.; Shen, G.; Tao, S.; Hong, J.; Chen, Y.; Xue, M.; Li, T.; Su, S.; Shen, H.; Fu, X.; et al. Characteristics of polycyclic aromatic hydrocarbons in agricultural soils at a typical coke production base in Shanxi, China. Chemosphere 2015, 127, 64–69. [Google Scholar] [CrossRef]
- Li, H.B.; Qu, C.; Cui, X.; Song, Y.; Wang, C.; Gu, C. Control, Treatment and Restoration of Contaminated Soils. Bull. Environ. Contam. Toxicol. 2022, 109, 577. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Liu, J.; Ling, W.; Huang, Q.; Gao, Y. Composite of PAH-degrading endophytic bacteria reduces contamination and health risks caused by PAHs in vegetables. Sci. Total Environ. 2017, 598, 471–478. [Google Scholar] [CrossRef]
- Patel, K.; Patel, M. Improving bioremediation process of petroleum wastewater using biosurfactants producing Stenotrophomonas sp. S1VKR-26 and assessment of phytotoxicity. Bioresour. Technol. 2020, 315, 123861. [Google Scholar] [CrossRef]
- Juhasz, A.L.; Naidu, R. Bioremediation of high molecular weight polycyclic aromatic hydrocarbons: A review of the microbial degradation of benzo[a]pyrene. Int. Biodeter. Biodegr. 2000, 45, 57–88. [Google Scholar] [CrossRef]
- Sims, R.C.; Overcash, M.R. Fate of Polynuclear Aromatic Compounds (PNAs) in Soil-Plant Systems; Gunther, F.A., Ed.; Springer: New York, NY, USA, 1983; pp. 1–68. [Google Scholar]
- Tong, R.; Yang, X.; Su, H.; Pan, Y.; Zhang, Q.; Wang, J.; Long, M. Levels, sources and probabilistic health risks of polycyclic aromatic hydrocarbons in the agricultural soils from sites neighboring suburban industries in Shanghai. Sci. Total Environ. 2018, 616–617, 1365–1373. [Google Scholar] [CrossRef] [PubMed]
- Rajpara, R.K.; Dudhagara, D.R.; Bhatt, J.K.; Gosai, H.B.; Dave, B.P. Polycyclic aromatic hydrocarbons (PAHs) at the Gulf of Kutch, Gujarat, India: Occurrence, source apportionment, and toxicity of PAHs as an emerging issue. Mar. Pollut. Bull. 2017, 119, 231–238. [Google Scholar] [CrossRef]
- Yu, H. Environmental carcinogenic polycyclic aromatic hydrocarbons: Photochemistry and phototoxicity. J. Environ. Sci. Health C 2002, 20, 149–183. [Google Scholar] [CrossRef]
- Bolden, A.L.; Rochester, J.R.; Schultz, K.; Kwiatkowski, C.F. Polycyclic aromatic hydrocarbons and female reproductive health: A scoping review. Reprod. Toxicol. 2017, 73, 61–74. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.-D.; Dixon, D.G.; Greenberg, B.M. Impacts of UV radiation and photomodification on the toxicity of pahs to the higher plant Lemna gibba (duckweed. Environ. Toxicol. Chem. 1993, 12, 1067–1077. [Google Scholar]
- Newsted, J.L.; Giesy, J.P. Predictive models for photoinduced acute toxicity of polycyclic aromatic hydrocarbons to Daphnia magna, strauss (cladocera, crustacea). Environ. Toxicol. Chem. 1987, 6, 445–461. [Google Scholar] [CrossRef]
- Huang, Z.; Liu, Y.; Dai, H.; Gui, D.; Hu, B.X.; Zhang, J. Spatial distribution and source apportionment of polycyclic aromatic hydrocarbons in typical oasis soil of north-western China and the bacterial community response. Environ. Res. 2022, 204, 112401. [Google Scholar] [CrossRef] [PubMed]
- Yan, Z.; Hao, Z.; Wu, H.; Jiang, H.; Yang, M.; Wang, C. Co-occurrence patterns of the microbial community in polycyclic aromatic hydrocarbon-contaminated riverine sediments. J. Hazard. Mater. 2019, 367, 99–108. [Google Scholar] [CrossRef] [PubMed]
- Mahamoud Ahmed, A.; Lyautey, E.; Bonnineau, C.; Dabrin, A.; Pesce, S. Environmental Concentrations of Copper, Alone or in Mixture with Arsenic, Can Impact River Sediment Microbial Community Structure and Functions. Front. Microbiol. 2018, 9, 1852. [Google Scholar] [CrossRef]
- Du, J.; Liu, J.; Jia, T.; Chai, B. The relationships between soil physicochemical properties, bacterial communities and polycyclic aromatic hydrocarbon concentrations in soils proximal to coking plants. Environ. Pollut. 2022, 298, 118823. [Google Scholar] [CrossRef]
- Wu, Y.; Ding, Q.; Zhu, Q.; Zeng, J.; Ji, R.; Dumont, M.G.; Lin, X. Contributions of ryegrass, lignin and rhamnolipid to polycyclic aromatic hydrocarbon dissipation in an arable soil. Soil Biol. Biochem. 2018, 118, 27–34. [Google Scholar] [CrossRef]
- Shahsavari, E.; Aburto-Medina, A.; Taha, M.; Ball, A.S. Phytoremediation: Management of Environmental Contaminants. In Microbial Ecotoxicology; Ansari, A.A., Gill, S.S., Gill, R., Lanza, G.R., Newman, L., Eds.; Springer International Publishing: Cham, Switzerland, 2016; pp. 17–38. [Google Scholar]
- Loss, E.M.O.; Yu, J.H. Bioremediation and microbial metabolism of benzo(a)pyrene. Mol. Microbiol. 2018, 109, 433–444. [Google Scholar] [CrossRef] [PubMed]
- Babu, A.G.; Reddy, M.S. Diversity of Arbuscular Mycorrhizal Fungi Associated with Plants Growing in Fly Ash Pond and Their Potential Role in Ecological Restoration. Curr. Microbiol. 2011, 63, 273–280. [Google Scholar] [CrossRef]
- Ma, L.; Yao, L.; Li, Y. Bioremediation of a polycyclic aromatic hydrocarbon–contaminated urban soil: Degradation dynamics and phytotransformation pathways. J. Soils Sediments 2022, 22, 797–808. [Google Scholar] [CrossRef]
- GB36600-2018; Soil Environmental Quality—Risk Control Standard for Soil Contamination of Development Land. Standardization Administration of the People’s Republic of China: Beijing, China, 2018. Available online: https://www.mee.gov.cn/ywgz/fgbz/bz/bzwb/trhj/201807/W020190626596188930731.pdf (accessed on 2 May 2024).
- Gao, Y.; Ling, W.; Zhu, L.; Shen, Q. Ryegrass-Accelerating Degradation of Polycyclic Aromatic Hydrocarbons (PAHs) in Soils. J. Agro-Environ. Sci. 2005, 24, 498–502. (In Chinese) [Google Scholar]
- Gao, Z.; Yang, X.; Peng, Y. Analytical methods and pollution status of a new class of organic contaminants-chlorinated polycyclic aromatic hydrocarbons. Huanjing Huaxue Environ. Chem. 2016, 35, 287–296. (In Chinese) [Google Scholar]
- Horii, Y.; Ohura, T.; Yamashita, N.; Kannan, K. Chlorinated Polycyclic Aromatic Hydrocarbons in Sediments from Industrial Areas in Japan and the United States. Arch. Environ. Contam. Toxicol. 2009, 57, 651–660. [Google Scholar] [CrossRef]
- Pugazhendi, A.; Qari, H.; Basahi, J.M.A.-B.; Godon, J.J.; Dhavamani, J. Role of a halothermophilic bacterial consortium for the biodegradation of PAHs and the treatment of petroleum wastewater at extreme conditions. Int. Biodeterior. 2017, 121, 44–54. [Google Scholar] [CrossRef]
- Zhou, Q.; Li, D.; Wang, T.; Hu, X. Leaching of graphene oxide nanosheets in simulated soil and their influences on microbial communities. J. Hazard. Mater. 2021, 404, 124046. [Google Scholar] [CrossRef]
- Chao, A. Nonparametric estimation of the number of classes in a population. Scand. Stat. Theory Appl. 1984, 11, 265–270. [Google Scholar]
- Jacquiod, S.; Cyriaque, V.; Riber, L.; Al-Soud, W.A.; Gillan, D.C.; Wattiez, R.; Sørensen, S.J. Long-term industrial metal contamination unexpectedly shaped diversity and activity response of sediment microbiome. J. Hazard. Mater. 2018, 344, 299–307. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.M.; Michel, K.; An, S.S.; Zechmeister-Boltenstern, S. Changes in microbial-community structure with depth and time in a chronosequence of restored grassland soils on the Loess Plateau in northwest China. J. Soil Sci. Plant Nutr. 2011, 174, 765–774. [Google Scholar] [CrossRef]
- Shannon, C.E. A mathematical theory of communication. Bell Syst. Tech. J. 1984, 27, 379–423. [Google Scholar] [CrossRef]
- Simpson, E.H. Measurement of Diversity. Nature 1949, 163, 688. [Google Scholar] [CrossRef]
- Bo-Ra, K.; Jiwon, S.; Robin, B.G.; Jun Hyung, L.; Doo Wan, K.; Kuk-Hwan, S.; Ju-Hoon, L.; Hyeun Bum, K. Deciphering Diversity Indices for a Better Understanding of Microbial Communities. J. Microbiol. Biotechnol. 2017, 27, 2089–2093. [Google Scholar]
- Good, I.J. The Population frequencies of species and the estimation of population parameters. Biometrika 1953, 40, 237–264. [Google Scholar] [CrossRef]
- Neuteboom, J.H.; Struik, P.C. Variation in rank abundance replicate samples and impact of clustering. NJAS Wagening. J. Life Sci. 2005, 53, 199–222. [Google Scholar] [CrossRef]
- Lee, S.-H.; Lee, W.-S.; Lee, C.-H.; Kim, J.-G. Degradation of phenanthrene and pyrene in rhizosphere of grasses and legumes. J. Hazard. Mater. 2008, 153, 892–898. [Google Scholar] [CrossRef] [PubMed]
- Rentz, J.A.; Alvarez, P.J.J.; Schnoor, J.L. Benzo[a]pyrene co-metabolism in the presence of plant root extracts and exudates: Implications for phytoremediation. Environ. Pollut. 2005, 136, 477–484. [Google Scholar] [CrossRef]
- Bray, J.R.; Curtis, J.T. An Ordination of the Upland Forest Communities of Southern Wisconsin. Ecol. Monogr. 1957, 27, 325–349. [Google Scholar] [CrossRef]
- Li, W.; Zhang, Y.; Wu, N.; Zhao, Z.; Xu Wa Ma, Y.; Niu, Z. Colonization Characteristics of Bacterial Communities on Plastic Debris Influenced by Environmental Factors and Polymer Types in the Haihe Estuary of Bohai Bay, China. Environ. Sci. Technol. 2019, 53, 10763–10773. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Teng, Y.; Xu, Y.; Chen, W.; Ren, W.; Li, Y.; Christie, P.; Luo, Y. Effect of mixed soil microbiomes on pyrene removal and the response of the soil microorganisms. Sci. Total Environ. 2018, 640–641, 9–17. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Zhang, J.; Lu, L. Effects of different concentrations of rhamnolipid on soil polycyclic aromatic hydrocarbons removal rate and microbial community structure. Environ. Pollut. Control 2019, 41, 901–905. (In Chinese) [Google Scholar]
- Zhao, L.; Yao, T.; Zhao, Y.; Sun, S.; Lyu, C.; Zhao, W. Reduction strategies of polycyclic aromatic hydrocarbons in farmland soils: Microbial degradation, plant transport inhibition, and their mechanistic analysis. J. Hazard. Mater. 2023, 465, 133397. [Google Scholar] [CrossRef] [PubMed]
- Babu, A.G.; Reja, S.I.; Akhtar, N.; Sultana, M.; Deore, P.S.; Ali, F.I. Bioremediation of Polycyclic Aromatic Hydrocarbons (PAHs): Current Practices and Outlook. In Microbial Metabolism of Xenobiotic Compounds; Arora, P.K., Ed.; Springer: Singapore, 2019; pp. 189–216. [Google Scholar]
- Lu, L.; Zhang, J.; Peng, C. Shift of Soil Polycyclic Aromatic Hydrocarbons (PAHs) Dissipation Pattern and Microbial Community Composition due to Rhamnolipid Supplementation. Water Air Soil Pollut. 2019, 230, 107. [Google Scholar] [CrossRef]
- Gupta, S.; Pathak, B. Abatement of Environmental Pollutants; Singh, P., Kumar, A., Borthakur, A., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 127–149. [Google Scholar]
- Bao, H.; Wang, J.; Zhang, H.; Li, J.; Li, H.; Wu, F. Effects of biochar and organic substrates on biodegradation of polycyclic aromatic hydrocarbons and microbial community structure in PAHs-contaminated soils. J. Hazard. Mater. 2020, 385, 121595. [Google Scholar] [CrossRef] [PubMed]
- Song, L.; Niu, X.; Tian, Y.; Xiao, Y. Assessment of PAH degradation potential of native species from a coking plant through identifying of the beneficial bacterial community within the rhizosphere soil. Chemosphere 2021, 264, 128513. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Wang, H.; Zhang, R.; Yu, X.-Z.; Qian, P.-Y.; Wong, M.H. Bacterial communities in PAH contaminated soils at an electronic-waste processing center in China. Ecotoxicology 2010, 19, 96–104. [Google Scholar] [CrossRef]
- Gupta, G.; Kumar, V.; Pal, A.K. Microbial Degradation of High Molecular Weight Polycyclic Aromatic Hydrocarbons with Emphasis on Pyrene. Polycycl. Aromat. Compd. 2019, 39, 124–138. [Google Scholar] [CrossRef]
- Gupta, G.; Kumar, V.; Pal, A.K. Biodegradation of Polycyclic Aromatic Hydrocarbons by Microbial Consortium: A Distinctive Approach for Decontamination of Soil. Soil Sediment Contam. 2016, 25, 597–623. [Google Scholar] [CrossRef]
- Kamiya, Y.; Iijima, A.; Ikemori, F.; Okuda, T.; Ohura, T. Source apportionment of chlorinated polycyclic aromatic hydrocarbons associated with ambient particles in a Japanese megacity. Sci. Rep. 2016, 6, 38358. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.; Chen, W.; Cheng, Y.; Li, J.; Chen, Z. Burkholderia cepacia immobilized onto rGO as a biomaterial for the removal of naphthalene from wastewater. Environ. Res. 2023, 235, 116663. [Google Scholar] [CrossRef]
- Tu, Z.; Qi, Y.; Tang, X.; Wang, Z.; Qu, R. Photochemical transformation of anthracene (ANT) in surface soil: Chlorination and hydroxylation. J. Hazard. Mater. 2023, 452, 131252. [Google Scholar] [CrossRef] [PubMed]
- Aydin, S.; Karaçay, H.A.; Shahi, A.; Gökçe, S.; Ince, B.; Ince, O. Aerobic and anaerobic fungal metabolism and Omics insights for increasing polycyclic aromatic hydrocarbons biodegradation. Fungal Biol. Rev. 2017, 31, 61–72. [Google Scholar] [CrossRef]
- Golan-Rozen, N.; Chefetz, B.; Ben-Ari, J.; Geva, J.; Hadar, Y. Transformation of the Recalcitrant Pharmaceutical Compound Carbamazepine by Pleurotus ostreatus: Role of Cytochrome P450 Monooxygenase and Manganese Peroxidase. Environ. Sci. Technol. 2011, 45, 6800–6805. [Google Scholar] [CrossRef]
- Loss, E.M.O.; Lee, M.K.; Wu, M.Y.; Martien, J.; Chen, W.P.; Amador-Noguez, D.; Jefcoate, C.; Remucal, C.; Jung, S.; Kim, S.C.; et al. Cytochrome P450 Monooxygenase-Mediated Metabolic Utilization of Benzo[a]Pyrene by Aspergillus Species. MBio 2019, 10, e00558-19. [Google Scholar]
- Akhtar, M.N.; Boyd, D.R.; Thompson, N.J.; Koreeda, M.; Gibson, D.T.; Mahadevan, V.; Jerina, D.M. Absolute sterochemistry of the dihydroanthracene-cis- and -trans-1,2-diols produced from anthracene by mammals and bacteria. J. Am. Chem. Soc. 1975, 23, 2506–2511. [Google Scholar]
- Mahaffey, W.; Gibson, D.; Cerniglia, C. Bacterial oxidation of chemical carcinogens: Formation of: Polycyclic aromatic acids from benz[a]anthracene. Appl. Environ. Microbiol. 1988, 54, 2415–2423. [Google Scholar] [CrossRef]
- Schneider, J.; Grosser, R.; Jayasimhulu, K.; Xue, W.; Warshawsky, D. Degradation of pyrene, benz[a]anthracene, and benzo[a]pyrene by Mycobacterium sp. strain RJGII-135, isolated from a former coal gasification site. Appl. Environ. Microbiol. 1996, 62, 13–19. [Google Scholar] [CrossRef]
- Chen, M.; Xu, P.; Zeng, G.; Yang, C.; Huang, D.; Zhang, J. Bioremediation of soils contaminated with polycyclic aromatic hydrocarbons, petroleum, pesticides, chlorophenols and heavy metals by composting: Applications, microbes and future research needs. Biotechnol. Adv. 2015, 33, 745–755. [Google Scholar] [CrossRef]
- Bolyen, E.; Rideout, J.R.; Dillon, M.R.; Bokulich, N.A.; Abnet, C.C.; Al-Ghalith, G.A.; Alexander, H.; Alm, E.J.; Arumugam, M.; Asnicar, F.; et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 2019, 37, 852–857. [Google Scholar] [CrossRef] [PubMed]
- Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet. J. 2011, 17, 10–12. [Google Scholar] [CrossRef]
- Callahan, B.J.; Mcmurdie, P.J.; Rosen, M.J.; Han, A.W.; Johnson, A.J.; Holmes, S.P. Dada2: High-resolution sample inference from illumina amplicon data. Nat. Methods 2016, 13, 581–583. [Google Scholar] [CrossRef] [PubMed]
- Katoh, K.; Misawa, K.; Kuma, K.I.; Miyata, T. Mafft: A novel method for rapid multiple sequence alignment based on fast fourier transform. Nucleic Acids Res. 2002, 30, 3059–3066. [Google Scholar] [CrossRef]
- Price, M.N.; Dehal, P.S.; Arkin, A.P. FastTree: Computing large minimum evolution trees with profiles instead of a distance matrix. Mol. Biol. Evol. 2009, 26, 1641–1650. [Google Scholar] [CrossRef]
Group Name | Vegetation | Sterilization | Darkness | PAH Load |
---|---|---|---|---|
SH * _BK | √ | × | × | × |
SH_P1 (P2,P3) | √ | × | × | √ |
SH_B1 (B2,B3) | × | × | √ | √ |
SH_C1 (C2,C3) | × | √ | × | √ |
Data utilization in different sections | ||||
Group Name | Plant Height Analysis | Microbial Diversity | Degradation Results | |
SH * _BK | √ | √ | × | |
SH_P1 (P2,P3) | √ | √ | √ | |
SH_B1 (B2,B3) | × | × | √ | |
SH_C1 (C2,C3) | × | × | √ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, X.; Zhang, S.; Guo, R.; Xiao, X.; Liu, B.; Mahmoud, R.K.; Abukhadra, M.R.; Qu, R.; Wang, Z. Transformation and Degradation of PAH Mixture in Contaminated Sites: Clarifying Their Interactions with Native Soil Organisms. Toxics 2024, 12, 361. https://doi.org/10.3390/toxics12050361
Li X, Zhang S, Guo R, Xiao X, Liu B, Mahmoud RK, Abukhadra MR, Qu R, Wang Z. Transformation and Degradation of PAH Mixture in Contaminated Sites: Clarifying Their Interactions with Native Soil Organisms. Toxics. 2024; 12(5):361. https://doi.org/10.3390/toxics12050361
Chicago/Turabian StyleLi, Xiaoyu, Shengnan Zhang, Ruixue Guo, Xuejing Xiao, Boying Liu, Rehab Khaled Mahmoud, Mostafa R. Abukhadra, Ruijuan Qu, and Zunyao Wang. 2024. "Transformation and Degradation of PAH Mixture in Contaminated Sites: Clarifying Their Interactions with Native Soil Organisms" Toxics 12, no. 5: 361. https://doi.org/10.3390/toxics12050361
APA StyleLi, X., Zhang, S., Guo, R., Xiao, X., Liu, B., Mahmoud, R. K., Abukhadra, M. R., Qu, R., & Wang, Z. (2024). Transformation and Degradation of PAH Mixture in Contaminated Sites: Clarifying Their Interactions with Native Soil Organisms. Toxics, 12(5), 361. https://doi.org/10.3390/toxics12050361