Advanced Oxidation Processes of Organic Contaminants
Author Contributions
Conflicts of Interest
List of Contributions
- Shi, P.; Yue, X.; Teng, X.; Qu, R.; Rady, A.; Maodaa, S.; Allam, A.A.; Wang, Z.; Huo, Z. Degradation of Butylated Hydroxyanisole by the Combined Use of Peroxymonosulfate and Ferrate(VI): Reaction Kinetics, Mechanism and Toxicity Evaluation. Toxics 2024, 12, 54.
- Wang, X.; Li, Y.; Qin, J.; Pan, P.; Shao, T.; Long, X.; Jiang, D. Degradation of Ciprofloxacin in Water by Magnetic-Graphene-Oxide-Activated Peroxymonosulfate. Toxics 2023, 11, 1016.
- Lu, G.; Li, X.; Lu, P.; Guo, H.; Wang, Z.; Zhang, Q.; Li, Y.; Sun, W.; An, J.; Zhang, Z. Z-Type Heterojunction MnO2@g-C3N4 Photocatalyst-Activated Peroxymonosulfate for the Removal of Tetracycline Hydrochloride in Water. Toxics 2024, 12, 70.
- Kang, Y.; Lu, Y.; Wang, S. Study on the Direct and Indirect Photolysis of Antibacterial Florfenicol in Water Using DFT/TDDFT Method and Comparison of Its Reactivity with Hydroxyl Radical under the Effect of Metal Ions. Toxics 2024, 12, 127.
- Sun, J.; Chu, R.; Khan, Z.U.H. A Theoretical Study on the Degradation Mechanism, Kinetics, and Ecotoxicity of Metronidazole (MNZ) in •OH- and SO4•- -Assisted Advanced Oxidation Processes. Toxics 2023, 11, 796.
- Yao, X.; Fang, Y.; Cui, X.; Cheng, X.; Cheng, Z. Dielectric Barrier Discharge Plasma Coupled with Cobalt Oxyhydroxide for Methylene Blue Degradation. Toxics 2023, 11, 763.
- Li, A.; Wang, C.; Qian, C.; Wen, J.; Guo, H. Safe Disposal of Accident Wastewater in Chemical Industrial Parks Using Non-Thermal Plasma with ZnO-Fe3O4 Composites. Toxics 2024, 12, 40.
- Sun, S.; Wang, Z.; Pu, Q.; Li, X.; Cui, Y.; Yang, H.; Li, Y. Identification and Mechanistic Analysis of Toxic Degradation Products in the Advanced Oxidation Pathways of Fluoroquinolone Antibiotics. Toxics 2024, 12, 203.
- Li, X.; Zhang, S.; Guo, R.; Xiao, X.; Liu, B.; Mahmoud, R.K.; Abukhadra, M.R.; Qu, R.; Wang, Z. Transformation and Degradation of PAH Mixture in Contaminated Sites: Clarifying Their Interactions with Native Soil Organisms. Toxics 2024, 12, 361.
- Amacosta, J.; Poznyak, T.; Siles, S.; Chairez, I. Sequential Treatment by Ozonation and Biodegradation of Pulp and Paper Industry Wastewater to Eliminate Organic Contaminants. Toxics 2024, 12, 138.
References
- Wols, B.A.; Hofman-Caris, C.H.M. Review of photochemical reaction constants of organic micropollutants required for UV advanced oxidation processes in water. Water Res. 2012, 46, 2815–2827. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.H.; Liu, S.Y.; Gao, X.F.; Gu, Y.L.; Yu, Y.; Li, M.; Chen, X.W.; Fan, M.Q.; Jia, Y.J.; Tian, L.P.; et al. Typical emerging contaminants in sewage treatment plant effluent, and related watersheds in the Pearl River Basin: Ecological risks and source identification. J. Hazard. Mater. 2024, 476, 135046. [Google Scholar] [CrossRef]
- Harriage, S.; Harasheh, A.; Schultz, N.; Long, B.J.M. Bioconcentration of pharmaceuticals by aquatic flora in an Australian river system. Sci. Total Environ. 2024, 946, 174361. [Google Scholar] [CrossRef] [PubMed]
- Focazio, M.J.; kolpin, D.W.; Barnes, K.K.; Furlong, E.T.; Meyer, M.T.; Zaugg, S.D.; Barber, L.B.; Thurman, M.E. A national reconnaissance for pharmaceuticals and other organic wastewater contaminants in the United States—II) Untreated drinking water sources. Sci. Total Environ. 2008, 402, 201–216. [Google Scholar] [CrossRef] [PubMed]
- Schriks, M.; Heringa, M.B.; van der Kooi, M.M.E.; De Voogt, P.; Van Wezel, A.P. Toxicological relevance of emerging contaminants for drinking water quality. Water Res. 2010, 44, 461–476. [Google Scholar] [CrossRef] [PubMed]
- Manamsa, K.; Crane, E.; Stuart, M.; Talbot, J.; Lapworth, D.; Hart, A. A national-scale assessment of micro-organic contaminants in groundwater of England and Wales. Sci. Total Environ. 2016, 568, 712–726. [Google Scholar] [CrossRef] [PubMed]
- Pal, A.; Gin, K.Y.; Lin, A.Y.; Reinhard, M. Impacts of emerging organic contaminants on freshwater resources: Review of recent occurrences, sources, fate and effects. Sci. Total Environ. 2010, 408, 6062–6069. [Google Scholar] [CrossRef] [PubMed]
- Anh, H.Q.; Le, T.P.Q.; Da Le, N.; Lu, X.X.; Duong, T.T.; Garnier, J.; Rochelle-Newall, E.; Zhang, S.; Oh, N.-H.; Oeurng, C.; et al. Antibiotics in surface water of East and Southeast Asian countries: A focused review on contamination status, pollution sources, potential risks, and future perspectives. Sci. Total Environ. 2021, 764, 142865. [Google Scholar] [CrossRef] [PubMed]
- Min, X.; Li, W.; Wei, Z.; Spinney, R.; Dionysiou, D.D.; Seo, Y.; Tang, C.; Li, Q.; Xiao, R. Sorption and biodegradation of pharmaceuticals in aerobic activated sludge system: A combined experimental and theoretical mechanistic study. Chem. Eng. J. 2018, 342, 211–219. [Google Scholar] [CrossRef]
- Ghattas, A.K.; Fischer, F.; Wick, A.; Ternes, T.A. Anaerobic biodegradation of (emerging) organic contaminants in the aquatic environment. Water Res. 2017, 116, 268–295. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.H.; Dong, H.; Zhao, L.; Wang, D.X.; Meng, D. A review on Fenton process for organic wastewater treatment based on optimization perspective. Sci. Total Environ. 2017, 670, 110–121. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Segura, S.; Ocon, J.D.; Chong, M.N. Electrochemical oxidation remediation of real wastewater effluents—A review. Process Saf. Environ. Protect. 2018, 113, 48–67. [Google Scholar] [CrossRef]
- Peng, J.; Zhou, P.; Zhou, H.; Liu, W.; Zhang, H.; Zhou, C.; Lai, L.; Ao, Z.; Su, S.; Lai, B. Insights into the Electron-Transfer Mechanism of Permanganate Activation by Graphite for Enhanced Oxidation of Sulfamethoxazole. Environ. Sci. Technol. 2021, 55, 9189–9198. [Google Scholar] [CrossRef] [PubMed]
- Gholami, P.; Dinpazhoh, L.; Khataee, A.; Hassani, A.; Bhatnagar, A. Facile hydrothermal synthesis of novel Fe-Cu layered double hydroxide/biochar nanocomposite with enhanced sonocatalytic activity for degradation of cefazolin sodium. J. Hazard. Mater. 2020, 381, 120742. [Google Scholar] [CrossRef] [PubMed]
- Ghavi, A.; Bagherian, G.; Rezaei-Vahidian, H. Evaluation of a hybrid advanced oxidation process for removal of pirimicarb insecticide in aqueous media: Statistical optimization and estimation of electrical energy consumption. Environ. Prog. Sustain. Energy 2024, 43, e14412. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, M.; Zhang, S.; Wang, Z. Advanced Oxidation Processes of Organic Contaminants. Toxics 2024, 12, 579. https://doi.org/10.3390/toxics12080579
Liu M, Zhang S, Wang Z. Advanced Oxidation Processes of Organic Contaminants. Toxics. 2024; 12(8):579. https://doi.org/10.3390/toxics12080579
Chicago/Turabian StyleLiu, Mingzhu, Shengnan Zhang, and Zunyao Wang. 2024. "Advanced Oxidation Processes of Organic Contaminants" Toxics 12, no. 8: 579. https://doi.org/10.3390/toxics12080579
APA StyleLiu, M., Zhang, S., & Wang, Z. (2024). Advanced Oxidation Processes of Organic Contaminants. Toxics, 12(8), 579. https://doi.org/10.3390/toxics12080579