Short-Term Interaction Effects of PM2.5 and O3 on Daily Mortality: A Time-Series Study of Multiple Cities in China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Collection
2.2. Statistical Methods
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Stafoggia, M.; Bellander, T. Short-term effects of air pollutants on daily mortality in the Stockholm county—A spatiotemporal analysis. Environ. Res. 2020, 188, 109854. [Google Scholar] [CrossRef] [PubMed]
- Lee, W.; Wu, X.; Heo, S.; Fong, K.C.; Son, J.-Y.; Sabath, M.B.; Braun, D.; Park, J.Y.; Kim, Y.C.; Lee, J.P.; et al. Associations between long term air pollution exposure and first hospital admission for kidney and total urinary system diseases in the US Medicare population: Nationwide longitudinal cohort study. BMJ Med. 2022, 1, e000009. [Google Scholar] [CrossRef] [PubMed]
- Chen, R.; Yin, P.; Meng, X.; Liu, C.; Wang, L.; Xu, X.; Ross, J.A.; Tse, L.A.; Zhao, Z.; Kan, H.; et al. Fine Particulate Air Pollution and Daily Mortality A Nationwide Analysis in 272 Chinese Cities. Am. J. Respir. Crit. Care Med. 2017, 196, 73–81. [Google Scholar] [CrossRef] [PubMed]
- Son, J.-Y.; Sabath, M.B.; Lane, K.J.; Miranda, M.L.; Dominici, F.; Di, Q.; Schwartz, J.; Bell, M.L. Long-term exposure to PM2.5 and mortality for the older population: Effect modification by residential greenness. Epidemiology 2021, 32, 477–486. [Google Scholar] [CrossRef] [PubMed]
- GBD 2019 Risk Factors Collaborators. Global burden of 87 risk factors in 204 countries and territories, 1990–2019: A systematic analysis for the Global Burden of Disease Study 2019. Lancet 2020, 396, 1223–1249. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Wang, S.; Zhang, X.; Ni, C.; Zhang, J.; Zheng, C. Temperature modulation of the adverse consequences on human mortality due to exposure to fine particulates: A study of multiple cities in China. Environ. Res. 2020, 185, 109353. [Google Scholar] [CrossRef] [PubMed]
- Costa, A.F.; Hoek, G.; Brunekreef, B.; de Leon, A.C.M.P. Air pollution and deaths among elderly residents of São Paulo, Brazil: An analysis of mortality displacement. Environ. Health Perspect. 2017, 125, 349–354. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Villamizar, L.A.; Rojas-Roa, N.Y.; Fernandez-Nino, J.A. Short-term joint effects of ambient air pollutants on emergency department visits for respiratory and circulatory diseases in Colombia, 2011–2014. Environ. Pollut. 2019, 248, 380–387. [Google Scholar] [CrossRef] [PubMed]
- Hong, C.; Zhang, Q.; Zhang, Y.; Davis, S.J.; Tong, D.; Zheng, Y.; Liu, Z.; Guan, D.; He, K.; Schellnhuber, H.J. Impacts of climate change on future air quality and human health in China. Proc. Natl. Acad. Sci. USA 2019, 116, 17193–17200. [Google Scholar] [CrossRef]
- Winquist, A.; Kirrane, E.; Klein, M.; Strickland, M.; Darrow, L.A.; Sarnat, S.E.; Gass, K.; Mulholland, J.; Russell, A.; Tolbert, P. Joint effects of ambient air pollutants on pediatric asthma emergency department visits in Atlanta, 1998–2004. Epidemiology 2014, 25, 666–673. [Google Scholar] [CrossRef]
- Li, J.; Liang, L.; Lyu, B.; Cai, Y.S.; Zuo, Y.; Su, J.; Tong, Z. Double trouble: The interaction of PM2.5 and O3 on respiratory hospital admissions. Environ. Pollut. 2023, 338, 122665. [Google Scholar] [CrossRef] [PubMed]
- Revich, B.; Shaposhnikov, D. The effects of particulate and ozone pollution on mortality in Moscow, Russia. Air Qual. Atmos. Health 2010, 3, 117–123. [Google Scholar] [CrossRef] [PubMed]
- Lin, H.; Guo, Y.; Ruan, Z.; Yang, Y.; Chen, Y.; Zheng, Y.; Cummings-Vaughn, L.A.; Rigdon, S.E.; Vaughn, M.G.; Sun, S.; et al. Ambient PM2.5 and O3 and their combined effects on prevalence of presbyopia among the elderly: A cross-sectional study in six low- and middle-income countries. Sci. Total Environ. 2019, 655, 168–173. [Google Scholar] [CrossRef]
- Siddika, N.; Rantala, A.K.; Antikainen, H.; Balogun, H.; Amegah, A.K.; Ryti, N.R.; Kukkonen, J.; Sofiev, M.; Jaakkola, M.S.; Jaakkola, J.J. Synergistic effects of prenatal exposure to fine particulate matter (PM2.5) and ozone (O3) on the risk of preterm birth: A population-based cohort study. Environ. Res. 2019, 176, 108549. [Google Scholar] [CrossRef]
- Hong, Y.-C.; Lee, J.-T.; Kim, H.; Ha, E.-H.; Schwartz, J.; Christiani, D.C. Effects of air pollutants on acute stroke mortality. Environ. Health Perspect. 2002, 110, 187–191. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Chen, R.; Sera, F.; Vicedo-Cabrera, A.M.; Guo, Y.; Tong, S.; Lavigne, E.; Correa, P.M.; Ortega, N.V.; Achilleos, S.; et al. Interactive effects of ambient fine particulate matter and ozone on daily mortality in 372 cities: Two stage time series analysis. BMJ 2023, 383, e075203. [Google Scholar] [CrossRef] [PubMed]
- Kan, H.; Chen, R.; Tong, S. Ambient air pollution, climate change, and population health in China. Environ. Int. 2012, 42, 10–19. [Google Scholar] [CrossRef] [PubMed]
- Chen, K.; Wolf, K.; Hampel, R.; Stafoggia, M.; Breitner, S.; Cyrys, J.; Samoli, E.; Andersen, Z.; Bero-Bedada, G.; Bellander, T.; et al. Does temperature-confounding control influence the modifying effect of air temperature in ozone–mortality associations? Environ. Epidemiol. 2018, 2, 1. [Google Scholar]
- Zheng, B.; Tong, D.; Li, M.; Liu, F.; Hong, C.; Geng, G.; Li, H.; Li, X.; Peng, L.; Qi, J.; et al. Trends in China’s anthropogenic emissions since 2010 as the consequence of clean air actions. Atmos. Chem. Phys. 2018, 18, 14095–14111. [Google Scholar] [CrossRef]
- Wu, X.; Xin, J.; Zhang, W.; Gao, W.; Ma, Y.; Ma, Y.; Wen, T.; Liu, Z.; Hu, B.; Wang, Y.; et al. Variation characteristics of air combined pollution in Beijing City. Atmos. Res. 2022, 274, 106197. [Google Scholar] [CrossRef]
- Liu, C.; Yin, P.; Chen, R.; Meng, X.; Wang, L.; Niu, Y.; Lin, Z.; Liu, Y.; Liu, J.; Qi, J.; et al. Ambient carbon monoxide and cardio-vascular mortality: A nationwide time-series analysis in 272 cities in China. Lancet Planet. Health 2018, 2, e12–e18. [Google Scholar] [CrossRef] [PubMed]
- Andersson, T.; Alfredsson, L.; Källberg, H.; Zdravkovic, S.; Ahlbom, A. Calculating measures of biological interaction. Eur. J. Epidemiol. 2005, 20, 575–579. [Google Scholar] [CrossRef] [PubMed]
- Gass, K.; Klein, M.; Chang, H.H.; Flanders, W.D.; Strickland, M.J. Classification and regression trees for epidemiologic research: An air pollution example. Environ. Health 2014, 13, 17. [Google Scholar] [CrossRef]
- Lavigne, E.; Burnett, R.T.; Weichenthal, S. Association of short-term exposure to fine particulate air pollution and mortality: Effect modification by oxidant gases. Sci. Rep. 2018, 8, 16097. [Google Scholar] [CrossRef] [PubMed]
- Shao, M.; Wang, W.; Yuan, B.; Parrish, D.D.; Li, X.; Lu, K.; Wu, L.; Wang, X.; Mo, Z.; Yang, S.; et al. Quantifying the role of PM2.5 dropping in variations of ground-level ozone: Inter-comparison between Beijing and Los Angeles. Sci. Total Environ. 2021, 788, 147712. [Google Scholar] [CrossRef] [PubMed]
- Shao, P.; Xin, J.; Zhang, X.; Gong, C.; Ma, Y.; Wang, Y.; Wang, S.; Hu, B.; Ren, X.; Wang, B. Aerosol optical properties and their impacts on the co-occurrence of surface ozone and particulate matter in Kunming City, on the Yunnan–Guizhou Plateau of China. Atmos. Res. 2022, 266, 105963. [Google Scholar] [CrossRef]
- Adams, K.; Greenbaum, D.S.; Shaikh, R.; van Erp, A.M.; Russell, A.G. Particulate matter components, sources, and health: Systematic approaches to testing effects. J. Air Waste Manag. Assoc. 2015, 65, 544–558. [Google Scholar] [CrossRef]
- Zheng, S.; Schlink, U.; Ho, K.-F.; Singh, R.P.; Pozzer, A. Spatial Distribution of PM2.5-Related Premature Mortality in China. GeoHealth 2021, 5, e2021GH000532. [Google Scholar] [CrossRef]
- Goldsmith, C.-A.W.; Ning, Y.; Qin, G.; Imrich, A.; Lawrence, J.; Murthy, G.G.K.; Catalano, P.J.; Kobzik, L. Combined air pollution particle and ozone exposure increases airway responsiveness in mice. Inhal. Toxicol. 2002, 14, 325–347. [Google Scholar] [CrossRef]
- Crobeddu, B.; Aragao-Santiago, L.; Bui, L.-C.; Boland, S.; Squiban, A.B. Oxidative potential of particulate matter 2.5 as predictive indicator of cellular stress. Environ. Pollut. 2017, 230, 125–133. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, S.; Fan, X.; Ye, X. Temperature modulation of the health effects of particulate matter in Beijing, China. Environ. Sci. Pollut. Res. 2018, 25, 10857–10866. [Google Scholar] [CrossRef] [PubMed]
City | Median (Interquartile Range) | Population (Million) | ||||||
---|---|---|---|---|---|---|---|---|
Non. | Car. | Resp. | RH (%) | Temp (°C) | PM2.5 (μg/m3) | O3 (μg/m3) | ||
Harbin | 141 (84, 231) | 80 (39, 144) | 11 (1, 30) | 67 (15, 97) | 5.3 (−26.0, 29.0) | 38.9 (23.5, 78.6) | 71.2 (54.9, 95.9) | 9.62 |
Changchun | 108 (63, 197) | 62 (29, 122) | 8 (0, 20) | 62 (16, 100) | 9.4 (−23.9, 28.7) | 42.3 (27.5, 70.6) | 98.3 (70.8, 130.7) | 7.54 |
Urumqi | 23 (7, 81) | 9 (0, 36) | 4 (0, 20) | 59 (10, 98) | 10.7 (−21.4, 35.1) | 65.0 (36.8, 96.8) | 43.1 (29.0, 85.5) | 3.52 |
Shenyang | 168 (110, 268) | 89 (50, 161) | 14 (2, 31) | 63 (13, 98) | 11.2 (−20.5, 30.1) | 49.2 (33.5, 80.7) | 103.0 (63.1, 146.0) | 8.61 |
Beijing | 146 (95, 242) | 65 (33, 125) | 17 (4, 38) | 53 (8, 99) | 15.7 (−14.3, 32.6) | 59.4 (29.9, 104.1) | 100.0 (60.6, 170.2) | 21.79 |
Tianjin | 187 (127, 291) | 106 (60, 175) | 15 (3, 45) | 59 (12, 97) | 15.6 (−14.1, 32.5) | 61.1 (37.1, 94.3) | 85.4 (57.6, 140.2) | 14.43 |
Shijiazhuang | 94 (44, 153) | 60 (27, 105) | 7 (0, 18) | 56 (12, 96) | 14.8 (−5.4, 35.5) | 78.2 (42.9, 129.2) | 98.1 (59.2, 146.7) | 10.78 |
Lanzhou | 59 (29, 139) | 27 (10, 57) | 9 (1, 33) | 50 (0, 88) | 12.5 (−12.3, 29.9) | 44.4 (33.6, 62.2) | 104.2 (78.6, 132.1) | 4.06 |
Xining | 26 (10, 85) | 11 (1, 37) | 4 (0, 21) | 24 (2, 84) | 7.8 (−16.2, 24.2) | 70.0 (50.0, 94.2) | 99.5 (74.1, 132.5) | 2.37 |
Nanjing | 149 (81, 258) | 60 (26, 149) | 17 (4, 46) | 74 (31, 97) | 17.0 (−6.7, 34.2) | 50.3 (32.3, 76.2) | 113.8 (76.9, 160.7) | 9.14 |
Shanghai | 233 (98, 365) | 94 (42, 171) | 23 (8, 60) | 75 (35, 98) | 18.4 (−6.1, 34.7) | 41.1 (26.9, 65.2) | 117.6 (88.1, 149.1) | 24.67 |
Chengdu | 222 (144, 430) | 70 (35, 136) | 54 (23, 121) | 83 (42, 99) | 17.7 (−1.9, 29.8) | 52.2 (35.2, 82.0) | 109.2 (72.9, 161.0) | 18.58 |
Hefei | 106 (49, 227) | 47 (15, 119) | 12 (1, 39) | 76 (33, 99) | 18.0 (−5.9, 33.7) | 58.0 (41.0, 84.0) | 61.0 (43.0, 91.0) | 7.87 |
Kunming | 52 (26, 125) | 20 (6, 65) | 13 (1, 43) | 73 (27, 97) | 16.2 (−3.3, 25.6) | 52.3 (39.7, 70.0) | 77.0 (60.0, 98.0) | 7.60 |
Endpoints by Pollutant and Co-Pollutant Strata | Percentage Change (95% CI) | p Value * |
---|---|---|
Nonaccidental mortality | ||
PM2.5 | ||
≤25th O3 | 0.07 (−0.03, 0.17) | <0.001 |
25-75th O3 | 0.33 (0.13, 0.53) | |
>75th O3 | 0.68 (0.30, 1.06) | |
O3 | ||
≤25th PM2.5 | 0.15 (−0.06, 0.36) | <0.001 |
25–75th PM2.5 | 0.53 (0.19, 0.87) | |
>75th PM2.5 | 0.75 (0.14, 1.36) | |
Cardiovascular mortality | ||
PM2.5 | ||
≤25th O3 | 0.08 (−0.04, 0.20) | <0.001 |
25-75th O3 | 0.45 (0.22, 0.68) | |
>75th O3 | 0.76 (0.32, 1.20) | |
O3 | ||
≤25th PM2.5 | 0.19 (−0.01, 0.40) | <0.001 |
25–75th PM2.5 | 0.63 (0.27, 0.98) | |
>75th PM2.5 | 0.78 (0.11, 1.45) | |
Respiratory mortality | ||
PM2.5 | ||
≤25th O3 | 0.23 (−0.07, 0.53) | 0.04 |
25–75th O3 | 0.46 (0.11, 0.81) | |
>75th O3 | 1.00 (0.51, 1.49) | |
O3 | ||
≤25th PM2.5 | 0.35 (−0.02, 0.73) | 0.25 |
25–75th PM2.5 | 0.80 (−0.22, 1.82) | |
>75th PM2.5 | 1.02 (0.03, 2.01) |
Category | RR (95% CI) |
---|---|
Nonaccidental mortality | |
LPM2.5-LO3 | Reference |
LPM2.5-HO3 | 1.003 (0.997, 1.009) |
HPM2.5-LO3 | 1.011 (1.004, 1.018) |
HPM2.5-HO3 | 1.021 (1.010, 1.032) |
SI | 1.48 |
Cardiovascular mortality | |
LPM2.5-LO3 | Reference |
LPM2.5-HO3 | 1.004 (0.998, 1.010) |
HPM2.5-LO3 | 1.012 (1.005, 1.019) |
HPM2.5-HO3 | 1.024 (1.012, 1.036) |
SI | 1.51 |
Respiratory mortality | |
LPM2.5-LO3 | Reference |
LPM2.5-HO3 | 1.004 (0.996, 1.012) |
HPM2.5-LO3 | 1.017 (1.009, 1.025) |
HPM2.5-HO3 | 1.028 (1.017, 1.039) |
SI | 1.33 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Fan, L.; Wang, S.; Luo, H. Short-Term Interaction Effects of PM2.5 and O3 on Daily Mortality: A Time-Series Study of Multiple Cities in China. Toxics 2024, 12, 578. https://doi.org/10.3390/toxics12080578
Zhang Y, Fan L, Wang S, Luo H. Short-Term Interaction Effects of PM2.5 and O3 on Daily Mortality: A Time-Series Study of Multiple Cities in China. Toxics. 2024; 12(8):578. https://doi.org/10.3390/toxics12080578
Chicago/Turabian StyleZhang, Ying, Lingling Fan, Shigong Wang, and Huan Luo. 2024. "Short-Term Interaction Effects of PM2.5 and O3 on Daily Mortality: A Time-Series Study of Multiple Cities in China" Toxics 12, no. 8: 578. https://doi.org/10.3390/toxics12080578
APA StyleZhang, Y., Fan, L., Wang, S., & Luo, H. (2024). Short-Term Interaction Effects of PM2.5 and O3 on Daily Mortality: A Time-Series Study of Multiple Cities in China. Toxics, 12(8), 578. https://doi.org/10.3390/toxics12080578