Degradation of Bisphenol A by Nitrogen-Rich ZIF-8-Derived Carbon Materials-Activated Peroxymonosulfate
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis of N-C
2.2. Synthesis of Cu-ZIF-8
2.3. Synthesis of Cu-N-C
3. Results and Discussion
3.1. Material Characterization
3.2. Oxyanions Activation Performance
3.3. Catalytic Performance of Catalysts Prepared with Different Metal Precursors
3.4. Metal Doping Concentration-Dependent Catalytic Activity of Cu-N-C
3.5. Effect of Catalyst and PMS Dosage
3.6. Effect of pH Value
3.7. Degradation Performance of Cu-N-C/PMS to Other Representative Organic Contaminants
3.8. Recyclability of Cu-N-C
3.9. TOC Removal Performance
4. Pathways of BPA Degradation by M-N-C-Activated PMS and Toxicity Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mu, C.; Zhang, Y.; Cui, W.; Liang, Y.; Zhu, Y. Removal of bisphenol A over a separation free 3D Ag3PO4-graphene hydrogel via an adsorption-photocatalysis synergy. Appl. Catal. B Environ. 2017, 212, 41–49. [Google Scholar] [CrossRef]
- Ma, J.; Wang, K.; Wang, C.; Chen, X.; Zhu, W.; Zhu, G.; Yao, W.; Zhu, Y. Photocatalysis-self-Fenton system with high-fluent degradation and high mineralization ability. Appl. Catal. B Environ. 2020, 276, 119150. [Google Scholar] [CrossRef]
- Wu, Y.; Chen, J.; Che, H.; Gao, X.; Ao, Y.; Wang, P. Boosting 2e− oxygen reduction reaction in garland carbon nitride with carbon defects for high-efficient photocatalysis-self-Fenton degradation of 2,4-dichlorophenol. Appl. Catal. B Environ. 2022, 307, 121185. [Google Scholar] [CrossRef]
- Seachrist, D.D.; Bonk, K.W.; Ho, S.M.; Prins, G.S.; Soto, A.M.; Keri, R.A. A review of the carcinogenic potential of bisphenol A. Reprod. Toxicol. 2016, 59, 167–182. [Google Scholar] [CrossRef] [PubMed]
- Giannakis, S.; Lin, K.-Y.A.; Ghanbari, F. A review of the recent advances on the treatment of industrial wastewaters by Sulfate Radical-based Advanced Oxidation Processes (SR-AOPs). Chem. Eng. J. 2021, 406, 127083. [Google Scholar] [CrossRef]
- Yu, C.; Xiong, Z.; Zhou, H.; Zhou, P.; Zhang, H.; Huang, R.; Yao, G.; Lai, B. Marriage of membrane filtration and sulfate radical-advanced oxidation processes (SR-AOPs) for water purification: Current developments, challenges and prospects. Chem. Eng. J. 2022, 433, 133802. [Google Scholar] [CrossRef]
- Zeng, T.; Tang, X.; Huang, Z.; Chen, H.; Jin, S.; Dong, F.; He, J.; Song, S.; Zhang, H. Atomically Dispersed Fe-N4 Site as a Conductive Bridge Enables Efficient and Stable Activation of Peroxymonosulfate: Active Site Renewal, Anti-Oxidative Capacity, and Pathway Alternation Mechanism. Environ. Sci. Technol. 2023, 57, 20929–20940. [Google Scholar] [CrossRef] [PubMed]
- Miao, J.; Geng, W.; Alvarez, P.J.J.; Long, M. 2D N-Doped Porous Carbon Derived from Polydopamine-Coated Graphitic Carbon Nitride for Efficient Nonradical Activation of Peroxymonosulfate. Environ. Sci. Technol. 2020, 54, 8473–8481. [Google Scholar] [CrossRef] [PubMed]
- Ma, W.; Ren, X.; Li, J.; Wang, S.; Wei, X.; Wang, N.; Du, Y. Advances in Atomically Dispersed Metal and Nitrogen Co-Doped Carbon Catalysts for Advanced Oxidation Technologies and Water Remediation: From Microenvironment Modulation to Non-Radical Mechanisms. Small 2023, 2308957. [Google Scholar] [CrossRef]
- Zhan, Y.; Yu, X.; Cao, L.; Zhang, B.; Wu, X.; Xie, F.; Zhang, W.; Chen, J.; Xie, W.; Mai, W.; et al. The influence of nitrogen source and doping sequence on the electrocatalytic activity for oxygen reduction reaction of nitrogen doped carbon materials. Int. J. Hydrogen Energy 2016, 41, 13493–13503. [Google Scholar] [CrossRef]
- Zhang, P.; Zhang, J.; Dai, S. Mesoporous Carbon Materials with Functional Compositions. Chemistry 2017, 23, 1986–1998. [Google Scholar] [CrossRef] [PubMed]
- Antolini, E. Nitrogen-doped carbons by sustainable N- and C-containing natural resources as nonprecious catalysts and catalyst supports for low temperature fuel cells. Renew. Sustain. Energy Rev. 2016, 58, 34–51. [Google Scholar] [CrossRef]
- Choi, B.; Yoon, H.; Park, I.-S.; Jang, J.; Sung, Y.-E. Highly dispersed Pt nanoparticles on nitrogen-doped magnetic carbon nanoparticles and their enhanced activity for methanol oxidation. Carbon 2007, 45, 2496–2501. [Google Scholar] [CrossRef]
- Xia, W. Interactions between metal species and nitrogen-functionalized carbon nanotubes. Catal. Sci. Technol. 2016, 6, 630–644. [Google Scholar] [CrossRef]
- Zhu, Y.; Zhang, B.; Liu, X.; Wang, D.W.; Su, D.S. Unravelling the structure of electrocatalytically active Fe-N complexes in carbon for the oxygen reduction reaction. Angew. Chem. Int. Ed. Engl. 2014, 53, 10673–10677. [Google Scholar] [CrossRef]
- Zitolo, A.; Goellner, V.; Armel, V.; Sougrati, M.T.; Mineva, T.; Stievano, L.; Fonda, E.; Jaouen, F. Identification of catalytic sites for oxygen reduction in iron- and nitrogen-doped graphene materials. Nat. Mater. 2015, 14, 937–942. [Google Scholar] [CrossRef]
- Yang, X.F.; Wang, A.; Qiao, B.; Li, J.; Liu, J.; Zhang, T. Single-atom catalysts: A new frontier in heterogeneous catalysis. Acc. Chem. Res. 2013, 46, 1740–1748. [Google Scholar] [CrossRef]
- Qiao, B.; Wang, A.; Yang, X.; Allard, L.F.; Jiang, Z.; Cui, Y.; Liu, J.; Li, J.; Zhang, T. Single-atom catalysis of CO oxidation using Pt1/FeOx. Nat. Chem. 2011, 3, 634–641. [Google Scholar] [CrossRef] [PubMed]
- Flytzani-Stephanopoulos, M.; Gates, B.C. Atomically dispersed supported metal catalysts. Annu. Rev. Chem. Biomol. Eng. 2012, 3, 545–574. [Google Scholar] [CrossRef]
- Li, K.; Chen, M.; Chen, L.; Zhao, S.; Pan, W.; Li, P.; Han, Y. Adsorption of tetracycline from aqueous solution by ZIF-8: Isotherms, kinetics and thermodynamics. Environ. Res. 2023, 241, 117588. [Google Scholar] [CrossRef]
- Yin, H.; Kim, H.; Choi, J.; Yip, A.C.K. Thermal stability of ZIF-8 under oxidative and inert environments: A practical perspective on using ZIF-8 as a catalyst support. Chem. Eng. J. 2015, 278, 293–300. [Google Scholar] [CrossRef]
- Msayib, K.J.; Book, D.; Budd, P.M.; Chaukura, N.; Harris, K.D.M.; Helliwell, M.; Tedds, S.; Walton, A.; Warren, J.E.; Xu, M.; et al. Nitrogen and Hydrogen Adsorption by an Organic Microporous Crystal. Angew. Chem. 2009, 121, 3323–3327. [Google Scholar] [CrossRef]
- Deng, W.; Wu, T.; Wu, Y.; Zheng, H.; Li, G.; Yang, M.; Zou, X.; Bai, Y.; Yang, Y.; Jing, M.; et al. Single atomic Fe-pyridine N catalyst with dense active sites improve bifunctional electrocatalyst activity for rechargeable and flexible Zn-air batteries. J. Mater. Chem. A 2022, 10, 20993–21003. [Google Scholar] [CrossRef]
- Dekanovsky, L.; Huang, H.; Akir, S.; Ying, Y.; Sofer, Z.; Khezri, B. Light-Driven MXene-Based Microrobots: Mineralization of Bisphenol A to CO2 and H2O. Small Methods 2023, 7, e2201547. [Google Scholar] [CrossRef] [PubMed]
- Abdul, L.; Si, X.; Sun, K.; Si, Y. Degradation of bisphenol A in aqueous environment using peroxymonosulfate activated with carbonate: Performance, possible pathway, and mechanism. J. Environ. Chem. Eng. 2021, 9, 105419. [Google Scholar] [CrossRef]
- Babatabar, S.; Zamir, S.M.; Shojaosadati, S.A.; Yakhchali, B.; Zarch, A.B. Cometabolic degradation of bisphenol A by pure culture of Ralstonia eutropha and metabolic pathway analysis. J. Biosci. Bioeng. 2019, 127, 732–737. [Google Scholar] [CrossRef] [PubMed]
- Ji, R.; Zhang, Z.; Tian, L.; Jin, L.; Xu, Q.; Lu, J. Z-scheme heterojunction of BiOI nanosheets grown in situ on NH2-UiO-66 crystals with rapid degradation of BPA in real water. Chem. Eng. J. 2023, 453, 139897. [Google Scholar] [CrossRef]
- Zhao, X.; Du, P.; Cai, Z.; Wang, T.; Fu, J.; Liu, W. Photocatalysis of bisphenol A by an easy-settling titania/titanate composite: Effects of water chemistry factors, degradation pathway and theoretical calculation. Environ. Pollut. 2018, 232, 580–590. [Google Scholar] [CrossRef] [PubMed]
- Inoue, M.; Masuda, Y.; Okada, F.; Sakurai, A.; Takahashi, I.; Sakakibara, M. Degradation of bisphenol A using sonochemical reactions. Water Res. 2008, 42, 1379–1386. [Google Scholar] [CrossRef]
- Qian, K.; Chen, H.; Li, W.; Ao, Z.; Wu, Y.N.; Guan, X. Single-Atom Fe Catalyst Outperforms Its Homogeneous Counterpart for Activating Peroxymonosulfate to Achieve Effective Degradation of Organic Contaminants. Environ. Sci. Technol. 2021, 55, 7034–7043. [Google Scholar] [CrossRef]
- Zhang, R.; Yang, Y.; Huang, C.H.; Li, N.; Liu, H.; Zhao, L.; Sun, P. UV/H2O2 and UV/PDS Treatment of Trimethoprim and Sulfamethoxazole in Synthetic Human Urine: Transformation Products and Toxicity. Environ. Sci. Technol. 2016, 50, 2573–2583. [Google Scholar] [CrossRef] [PubMed]
- Jin, S.; Tan, W.; Tang, X.; Yao, X.; Bao, Y.; Zhang, H.; Song, S.; Zeng, T. Unveiling the fundamental understanding of two dimensional π-conjugated FeN4+4 sites for boosting peroxymonosulfate activation. J. Mater. Chem. 2024. [Google Scholar] [CrossRef]
- Peng, X.; Wu, J.; Zhao, Z.; Wang, X.; Dai, H.; Wei, Y.; Xu, G.; Hu, F. Activation of Peroxymonosulfate by Single Atom Co-N-C Catalysts for High-efficient Removal of Chloroquine Phosphate via Non-radical Pathways: Electron-transfer Mechanism. Chemical Engineering Journal. 2022, 429, 132245. [Google Scholar] [CrossRef]
- Liu, F.; Dong, Q.; Nie, C.; Li, Z.; Zhang, B.; Han, P.; Yang, W.; Tong, M. Peroxymonosulfate enhanced photocatalytic degradation of serial bisphenols by metal-free covalent organic frameworks under visible light irradiation: Mechanisms, degradation pathway and DFT calculation. Chemical Engineering Journal 2022, 430, 132833. [Google Scholar] [CrossRef]
- Sun, M.; Zhou, P.; Peng, J.; He, C.; Du, Y.; Pan, Z.; Su, S.; Dong, F.; Liu, Y.; Lai, B. Insights into peroxymonosulfate activation under visible Light: Sc2O3@C3N4 mediated photoexcited electron transfer. Chemical Engineering Journal. 2022, 435, 134836. [Google Scholar] [CrossRef]
- Xu, L.; Qi, L.; Han, Y.; Lu, W.; Han, J.; Qiao, W.; Mei, X.; Pan, Y.; Song, K.; Ling, C.; et al. Improvement of Fe2+/peroxymonosulfate oxidation of organic pollutants by promoting Fe2+ regeneration with visible light driven g-C3N4 photocatalysis. Chemical Engineering Journal. 2022, 430, 132828. [Google Scholar] [CrossRef]
- Gong, Y.; Zhao, X.; Zhang, H.; Yang, B.; Xiao, K.; Guo, T.; Zhang, J.; Shao, H.; Wang, Y.; Yu, G. MOF-derived nitrogen doped carbon modified g-C3N4 heterostructure composite with enhanced photocatalytic activity for bisphenol A degradation with peroxymonosulfate under visible light irradiation. Applied Catalysis B: Environmental. 2018; 233, 35–45. [Google Scholar]
- Wang, G.; Zhao, Y.; Ma, H.; Zhang, C.; Dong, X.; Zhang, X. Enhanced peroxymonosulfate activation on dual active sites of N vacancy modified g-C3N4 under visible-light assistance and its selective removal of organic pollutants. Sci Total Environ. 2021, 756, 144139. [Google Scholar] [CrossRef]
- Cui, M.; Cui, K.; Liu, X.; Chen, X.; Chen, Y.; Guo, Z. Roles of alkali metal dopants and surface defects on polymeric carbon nitride in photocatalytic peroxymonosulfate activation towards water decontamination. J Hazard Mater. 2022, 424 (Pt A), 127292. [Google Scholar] [CrossRef]
- He, J.; Yang, J.; Jiang, F.; Liu, P.; Zhu, M. Photo-assisted peroxymonosulfate activation via 2D/2D heterostructure of Ti3C2/g-C3N4 for degradation of diclofenac. Chemosphere. 2020, 258, 127339. [Google Scholar] [CrossRef]
Catalyst | Content of Metal Ion |
---|---|
Filtrate of Cu-N-C | ND |
Possible Products | Acute Toxicity (mg·L−1) | Chronic Toxicity (mg·L−1) | ||||
---|---|---|---|---|---|---|
Fish | Daphnid | Green Algae | Fish | Daphnid | Green Algae | |
(LC50) | (LC50) | (EC50) | (ChV) | (ChV) | (ChV) | |
P5 | 53,300 | 25,300 | 8960 | 4220 | 1500 | 1570 |
P6 | 355,000 | 152,000 | 35,100 | 24,800 | 6730 | 4890 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tang, X.; Xue, H.; Li, J.; Wang, S.; Yu, J.; Zeng, T. Degradation of Bisphenol A by Nitrogen-Rich ZIF-8-Derived Carbon Materials-Activated Peroxymonosulfate. Toxics 2024, 12, 359. https://doi.org/10.3390/toxics12050359
Tang X, Xue H, Li J, Wang S, Yu J, Zeng T. Degradation of Bisphenol A by Nitrogen-Rich ZIF-8-Derived Carbon Materials-Activated Peroxymonosulfate. Toxics. 2024; 12(5):359. https://doi.org/10.3390/toxics12050359
Chicago/Turabian StyleTang, Xiaofeng, Hanqing Xue, Jiawen Li, Shengnan Wang, Jie Yu, and Tao Zeng. 2024. "Degradation of Bisphenol A by Nitrogen-Rich ZIF-8-Derived Carbon Materials-Activated Peroxymonosulfate" Toxics 12, no. 5: 359. https://doi.org/10.3390/toxics12050359
APA StyleTang, X., Xue, H., Li, J., Wang, S., Yu, J., & Zeng, T. (2024). Degradation of Bisphenol A by Nitrogen-Rich ZIF-8-Derived Carbon Materials-Activated Peroxymonosulfate. Toxics, 12(5), 359. https://doi.org/10.3390/toxics12050359