Difference of Microbial Community in the Stream Adjacent to the Mixed Antibiotic Effluent Source
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Site Description and Sample Collection
2.3. Physicochemical Analysis for Surface Water and Sediment
2.4. Antibiotics Analysis
2.4.1. Antibiotics Extraction and Clean-Up Process
2.4.2. Instrumental Analysis
2.4.3. Method Validation
2.5. Microbiome Analysis
2.5.1. DNA Extraction and 16S rRNA Gene Amplicon Sequencing
2.5.2. Bioinformatic Analysis
2.6. Statistical Analysis
3. Results
3.1. Physicochemical Properties of Surface Water and Sediment
3.2. Antibiotics Concentrations of Surface Water and Sediment
3.3. Diversity of Bacterial Communities in Sediments
3.4. Bacterial Community Structure in Sediments
3.5. Distribution of the Gut Bacteria in Sediment Samples
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ahmad, M.; Khan, A.U. Global economic impact of antibiotic resistance: A review. J. Glob. Antimicrob. Resist. 2019, 19, 313–316. [Google Scholar] [CrossRef] [PubMed]
- García, J.; García-Galán, M.J.; Day, J.W.; Boopathy, R.; White, J.R.; Wallace, S.; Hunter, R.G. A review of emerging organic contaminants (EOCs), antibiotic resistant bacteria (ARB), and antibiotic resistance genes (ARGs) in the environment: Increasing removal with wetlands and reducing environmental impacts. Bioresour. Technol. 2020, 307, 123228. [Google Scholar] [CrossRef] [PubMed]
- Leonard, A.F.; Morris, D.; Schmitt, H.; Gaze, W.H. Natural recreational waters and the risk that exposure to antibiotic resistant bacteria poses to human health. Curr. Opin. Microbiol. 2022, 65, 40–46. [Google Scholar] [CrossRef] [PubMed]
- Cai, Y.; Tang, R.; Tian, L.; Chang, S.X. Environmental impacts of livestock excreta under increasing livestock production and management considerations: Implications for developing countries. Curr. Opin. Environ. Sci. Health 2021, 24, 100300. [Google Scholar] [CrossRef]
- Patel, S.J.; Wellington, M.; Shah, R.M.; Ferreira, M.J. Antibiotic stewardship in food-producing animals: Challenges, progress, and opportunities. Clin. Ther. 2020, 42, 1649–1658. [Google Scholar] [CrossRef] [PubMed]
- Jjemba, P.K. The potential impact of veterinary and human therapeutic agents in manure and biosolids on plants grown on arable land: A review. Agric. Ecosyst. Environ. 2002, 93, 267–278. [Google Scholar] [CrossRef]
- Zhou, X.; Wang, J.; Lu, C.; Liao, Q.; Gudda, F.O.; Ling, W. Antibiotics in animal manure and manure-based fertilizers: Occurrence and ecological risk assessment. Chemosphere 2020, 255, 127006. [Google Scholar] [CrossRef]
- Zhang, L.; Bai, J.; Zhang, K.; Wang, Y.; Xiao, R.; Campos, M.; Acuña, J.; Jorquera, M.A. Occurrence, bioaccumulation and ecological risks of antibiotics in the water-plant-sediment systems in different functional areas of the largest shallow lake in North China: Impacts of river input and historical agricultural activities. Sci. Total Environ. 2023, 857, 159260. [Google Scholar] [CrossRef]
- Vilca, F.Z.; Galarza, N.C.; Tejedo, J.R.; Cuba, W.A.Z.; Quiróz, C.N.C.; Tornisielo, V.L. Occurrence of residues of veterinary antibiotics in water, sediment and trout tissue (Oncorhynchus mykiss) in the southern area of Lake Titicaca, Peru. J. Great Lakes Res. 2021, 47, 1219–1227. [Google Scholar] [CrossRef]
- Gao, F.-Z.; He, L.-Y.; Hu, L.-X.; Chen, J.; Yang, Y.-Y.; He, L.-X.; Bai, H.; Liu, Y.-S.; Zhao, J.-L.; Ying, G.-G. The variations of antibiotics and antibiotic resistance genes in two subtropical large river basins of south China: Anthropogenic impacts and environmental risks. Environ. Pollut. 2022, 312, 119978. [Google Scholar] [CrossRef] [PubMed]
- Gržinić, G.; Piotrowicz-Cieślak, A.; Klimkowicz-Pawlas, A.; Górny, R.L.; Ławniczek-Wałczyk, A.; Piechowicz, L.; Olkowska, E.; Potrykus, M.; Tankiewicz, M.; Krupka, M. Intensive poultry farming: A review of the impact on the environment and human health. Sci. Total Environ. 2023, 858, 160014. [Google Scholar] [CrossRef]
- Gaballah, M.S.; Guo, J.; Sun, H.; Aboagye, D.; Sobhi, M.; Muhmood, A.; Dong, R. A review targeting veterinary antibiotics removal from livestock manure management systems and future outlook. Bioresour. Technol. 2021, 333, 125069. [Google Scholar] [CrossRef]
- Nealson, K.H. Sediment bacteria: Who’s there, what are they doing, and what’s new? Annu. Rev. Earth Planet. Sci. 1997, 25, 403–434. [Google Scholar] [CrossRef]
- Schultz, P.; Urban, N.R. Effects of bacterial dynamics on organic matter decomposition and nutrient release from sediments: A modeling study. Ecol. Model. 2008, 210, 1–14. [Google Scholar] [CrossRef]
- Capone, D.G.; Kiene, R.P. Comparison of microbial dynamics in marine and freshwater sediments: Contrasts in anaerobic carbon catabolism 1. Limnol. Oceanogr. 1988, 33, 725–749. [Google Scholar] [CrossRef]
- Sun, M.Y.; Dafforn, K.A.; Brown, M.V.; Johnston, E.L. Bacterial communities are sensitive indicators of contaminant stress. Mar. Pollut. Bull. 2012, 64, 1029–1038. [Google Scholar] [CrossRef] [PubMed]
- Tao, K.; Liu, Y.; Ke, T.; Zhang, Y.; Xiao, L.; Li, S.; Wei, S.; Chen, L.; Hu, T. Patterns of bacterial and archaeal communities in sediments in response to dam construction and sewage discharge in Lhasa River. Ecotoxicol. Environ. Saf. 2019, 178, 195–201. [Google Scholar] [CrossRef]
- Ding, C.; He, J. Effect of antibiotics in the environment on microbial populations. Appl. Microbiol. Biotechnol. 2010, 87, 925–941. [Google Scholar] [CrossRef]
- Zheng, Y.; Liu, Y.; Qu, M.; Hao, M.; Yang, D.; Yang, Q.; Wang, X.C.; Dzakpasu, M. Fate of an antibiotic and its effects on nitrogen transformation functional bacteria in integrated vertical flow constructed wetlands. J. Chem. Eng. 2021, 417, 129272. [Google Scholar] [CrossRef]
- Baquero, F.; Martínez, J.-L.; Cantón, R. Antibiotics and antibiotic resistance in water environments. Curr. Opin. Biotechnol. 2008, 19, 260–265. [Google Scholar] [CrossRef] [PubMed]
- Zarei-Baygi, A.; Smith, A.L. Intracellular versus extracellular antibiotic resistance genes in the environment: Prevalence, horizontal transfer, and mitigation strategies. Bioresour. Technol. 2021, 319, 124181. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, A.; Yang, Y.; Zhang, C.; Lian, K.; Liu, C. Structure and function response of bacterial communities towards antibiotic contamination in hyporheic zone sediments. Chemosphere. 2022, 309, 136606. [Google Scholar] [CrossRef]
- Chen, X.; Chen, J.; Yu, X.; Sanganyado, E.; Wang, L.; Li, P.; Liu, W. Effects of norfloxacin, copper, and their interactions on microbial communities in estuarine sediment. Environ. Res. 2022, 212, 113506. [Google Scholar] [CrossRef]
- Milaković, M.; Vestergaard, G.; González-Plaza, J.J.; Petrić, I.; Kosić-Vukšić, J.; Senta, I.; Kublik, S.; Schloter, M.; Udiković-Kolić, N. Effects of industrial effluents containing moderate levels of antibiotic mixtures on the abundance of antibiotic resistance genes and bacterial community composition in exposed creek sediments. Sci. Total Environ. 2020, 706, 136001. [Google Scholar] [CrossRef]
- Sanschagrin, S.; Yergeau, E. Next-generation sequencing of 16S ribosomal RNA gene amplicons. J. Vis. Exp. 2014, 90, e51709. [Google Scholar]
- Tringe, S.G.; Hugenholtz, P. A renaissance for the pioneering 16S rRNA gene. Curr. Opin. Microbiol. 2008, 11, 442–446. [Google Scholar] [CrossRef]
- Li, X.; Lu, S.; Liu, S.; Zheng, Q.; Shen, P.; Wang, X. Shifts of bacterial community and molecular ecological network at the presence of fluoroquinolones in a constructed wetland system. Sci. Total Environ. 2020, 708, 135156. [Google Scholar] [CrossRef] [PubMed]
- Deng, C.; Liu, X.; Li, L.; Shi, J.; Guo, W.; Xue, J. Temporal dynamics of antibiotic resistant genes and their association with the bacterial community in a water-sediment mesocosm under selection by 14 antibiotics. Environ. Int. 2020, 137, 105554. [Google Scholar] [CrossRef]
- Fisher, J.C.; Eren, A.M.; Green, H.C.; Shanks, O.C.; Morrison, H.G.; Vineis, J.H.; Sogin, M.L.; McLellan, S.L. Comparison of sewage and animal fecal microbiomes by using oligotyping reveals potential human fecal indicators in multiple taxonomic groups. Appl. Environ. Microbiol. 2015, 81, 7023–7033. [Google Scholar] [CrossRef]
- Ahmed, W.; O’Dea, C.; Masters, N.; Kuballa, A.; Marinoni, O.; Katouli, M. Marker genes of fecal indicator bacteria and potential pathogens in animal feces in subtropical catchments. Sci. Total Environ. 2019, 656, 1427–1435. [Google Scholar] [CrossRef]
- Walkley, A.; Black, I.A. An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Sci. 1934, 37, 29–38. [Google Scholar] [CrossRef]
- Kim, J.-W.; Hong, Y.-K.; Ryu, S.-H.; Kwon, O.-K.; Lee, Y.-B.; Kim, S.C. Development of analytical method for veterinary antibiotics and monitoring of residuals in agricultural environment. Appl. Biol. Chem. 2023, 66, 20. [Google Scholar] [CrossRef]
- Magoč, T.; Salzberg, S.L. FLASH: Fast length adjustment of short reads to improve genome assemblies. Bioinformatics 2011, 27, 2957–2963. [Google Scholar] [CrossRef]
- Zhang, Z.; Schwartz, S.; Wagner, L.; Miller, W. A greedy algorithm for aligning DNA sequences. J. Comput. Biol. 2000, 7, 203–214. [Google Scholar] [CrossRef]
- Caporaso, J.G.; Kuczynski, J.; Stombaugh, J.; Bittinger, K.; Bushman, F.D.; Costello, E.K.; Fierer, N.; Pena, A.G.; Goodrich, J.K.; Gordon, J.I. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 2010, 7, 335–336. [Google Scholar] [CrossRef]
- Lozupone, C.; Lladser, M.E.; Knights, D.; Stombaugh, J.; Knight, R. UniFrac: An effective distance metric for microbial community comparison. ISME J. 2011, 5, 169–172. [Google Scholar] [CrossRef]
- Le, H.T.; Maguire, R.O.; Xia, K. Method of dairy manure application and time before rainfall affect antibiotics in surface runoff. J. Environ. Qual. 2018, 47, 1310–1317. [Google Scholar] [CrossRef]
- Kuppusamy, S.; Kakarla, D.; Venkateswarlu, K.; Megharaj, M.; Yoon, Y.-E.; Lee, Y.B. Veterinary antibiotics (VAs) contamination as a global agro-ecological issue: A critical view. Agric. Ecosyst. Environ. 2018, 257, 47–59. [Google Scholar] [CrossRef]
- Chen, J.; Huang, L.; Wang, Q.; Zeng, H.; Xu, J.; Chen, Z. Antibiotics in aquaculture ponds from Guilin, South of China: Occurrence, distribution, and health risk assessment. Environ. Res. 2022, 204, 112084. [Google Scholar] [CrossRef]
- Zhou, Y.; Niu, L.; Zhu, S.; Lu, H.; Liu, W. Occurrence, abundance, and distribution of sulfonamide and tetracycline resistance genes in agricultural soils across China. Sci. Total Environ. 2017, 599, 1977–1983. [Google Scholar] [CrossRef]
- Daghrir, R.; Drogui, P. Tetracycline antibiotics in the environment: A review. Environ. Chem. Lett. 2013, 11, 209–227. [Google Scholar] [CrossRef]
- O’Connor, S.; Aga, D.S. Analysis of tetracycline antibiotics in soil: Advances in extraction, clean-up, and quantification. TrAC Trends Anal. Chem. 2007, 26, 456–465. [Google Scholar] [CrossRef]
- Wegst-Uhrich, S.R.; Navarro, D.A.; Zimmerman, L.; Aga, D.S. Assessing antibiotic sorption in soil: A literature review and new case studies on sulfonamides and macrolides. Chem. Cent. J. 2014, 8, 5. [Google Scholar] [CrossRef]
- Wei, R.; He, T.; Zhang, S.; Zhu, L.; Shang, B.; Li, Z.; Wang, R. Occurrence of seventeen veterinary antibiotics and resistant bacterias in manure-fertilized vegetable farm soil in four provinces of China. Chemosphere 2019, 215, 234–240. [Google Scholar] [CrossRef]
- Conde-Cid, M.; Álvarez-Esmorís, C.; Paradelo-Núñez, R.; Nóvoa-Muñoz, J.C.; Arias-Estévez, M.; Álvarez-Rodríguez, E.; Fernández-Sanjurjo, M.J.; Núñez-Delgado, A. Occurrence of tetracyclines and sulfonamides in manures, agricultural soils and crops from different areas in Galicia (NW Spain). J. Clean. Prod. 2018, 197, 491–500. [Google Scholar] [CrossRef]
- Hong, B.; Yu, S.; Zhou, M.; Li, J.; Li, Q.; Ding, J.; Lin, Q.; Lin, X.; Liu, X.; Chen, P. Sedimentary spectrum and potential ecological risks of residual pharmaceuticals in relation to sediment-water partitioning and land uses in a watershed. Sci. Total Environ. 2022, 817, 152979. [Google Scholar] [CrossRef]
- Zhou, J.; Yun, X.; Wang, J.; Li, Q.; Wang, Y. A review on the ecotoxicological effect of sulphonamides on aquatic organisms. Toxicol. Rep. 2022, 9, 534–540. [Google Scholar] [CrossRef]
- Fan, Y.; Ji, Y.; Kong, D.; Lu, J.; Zhou, Q. Kinetic and mechanistic investigations of the degradation of sulfamethazine in heat-activated persulfate oxidation process. J. Hazard. Mater. 2015, 300, 39–47. [Google Scholar] [CrossRef]
- Cao, S.-S.; Duan, Y.-P.; Tu, Y.-J.; Tang, Y.; Liu, J.; Zhi, W.-D.; Dai, C. Pharmaceuticals and personal care products in a drinking water resource of Yangtze River Delta Ecology and Greenery Integration Development Demonstration Zone in China: Occurrence and human health risk assessment. Sci. Total Environ. 2020, 721, 137624. [Google Scholar] [CrossRef]
- Hall, M.C.; Mware, N.A.; Gilley, J.E.; Bartelt-Hunt, S.L.; Snow, D.D.; Schmidt, A.M.; Eskridge, K.M.; Li, X. Influence of setback distance on antibiotics and antibiotic resistance genes in runoff and soil following the land application of swine manure slurry. Environ. Sci. Technol. 2020, 54, 4800–4809. [Google Scholar] [CrossRef]
- Cha, J.; Yang, S.; Carlson, K. Trace determination of β-lactam antibiotics in surface water and urban wastewater using liquid chromatography combined with electrospray tandem mass spectrometry. J. Chromatogr. A 2006, 1115, 46–57. [Google Scholar] [CrossRef]
- Boxall, A.B.; Fogg, L.; Blackwell, P.; Blackwell, P.; Kay, P.; Pemberton, E.; Croxford, A. Veterinary medicines in the environment. Rev. Environ. Contam. Toxicol. 2004, 180, 1–91. [Google Scholar]
- Wang, B.; Li, G.; Cai, C.; Zhang, J.; Liu, H. Assessing the safety of thermally processed penicillin mycelial dreg following the soil application: Organic matter’s maturation and antibiotic resistance genes. Sci. Total Environ. 2018, 636, 1463–1469. [Google Scholar] [CrossRef]
- Mitchell, S.M.; Ullman, J.L.; Teel, A.L.; Watts, R.J. pH and temperature effects on the hydrolysis of three β-lactam antibiotics: Ampicillin, cefalotin and cefoxitin. Sci. Total Environ. 2014, 466, 547–555. [Google Scholar] [CrossRef]
- Awad, Y.M.; Kim, S.-C.; Abd El-Azeem, S.A.; Kim, K.-H.; Kim, K.-R.; Kim, K.; Jeon, C.; Lee, S.S.; Ok, Y.S. Veterinary antibiotics contamination in water, sediment, and soil near a swine manure composting facility. Environ. Earth Sci. 2014, 71, 1433–1440. [Google Scholar] [CrossRef]
- Zhang, K.; Ruan, R.; Zhang, Z.; Zhi, S. An exhaustive investigation on antibiotics contamination from livestock farms within sensitive reservoir water area: Spatial density, source apportionment and risk assessment. Sci. Total Environ. 2022, 847, 157688. [Google Scholar] [CrossRef]
- Ding, H.; Wu, Y.; Zhang, W.; Zhong, J.; Lou, Q.; Yang, P.; Fang, Y. Occurrence, distribution, and risk assessment of antibiotics in the surface water of Poyang Lake, the largest freshwater lake in China. Chemosphere 2017, 184, 137–147. [Google Scholar] [CrossRef]
- Xiaona, L.; Yang, S.; Mingyun, J.; Fang, W.; Yongrong, B.; Jiang, X. Sorption and desorption characteristics of sulfamethazine in three different soils before and after removal of organic matter. Pedosphere 2021, 31, 796–806. [Google Scholar]
- Sahoo, R.K.; Gaur, M.; Das, A.; Singh, A.; Kumar, M.; Subudhi, E. Comparative analysis of 16S rRNA gene Illumina sequence for microbial community structure in diverse unexplored hot springs of Odisha, India. Geomicrobiol. J. 2017, 34, 567–576. [Google Scholar] [CrossRef]
- Pradhan, S.K.; Singh, N.R.; Kumar, U.; Mishra, S.R.; Perumal, R.C.; Benny, J.; Thatoi, H. Illumina MiSeq based assessment of bacterial community structure and diversity along the heavy metal concentration gradient in Sukinda chromite mine area soils, India. Ecol. Genet. Genom. 2020, 15, 100054. [Google Scholar] [CrossRef]
- Li, C.; Quan, Q.; Gan, Y.; Dong, J.; Fang, J.; Wang, L.; Liu, J. Effects of heavy metals on microbial communities in sediments and establishment of bioindicators based on microbial taxa and function for environmental monitoring and management. Sci. Total Environ. 2020, 749, 141555. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Zhang, C.; Lian, K.; Liu, C. Effects of chronic exposure of antibiotics on microbial community structure and functions in hyporheic zone sediments. J. Hazard. Mater. 2021, 416, 126141. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Shen, W.; Yan, L.; Wang, X.-H.; Xu, H. Stepwise impact of urban wastewater treatment on the bacterial community structure, antibiotic contents, and prevalence of antimicrobial resistance. Environ. Pollut. 2017, 231, 1578–1585. [Google Scholar] [CrossRef] [PubMed]
- Cleary, D.W.; Bishop, A.H.; Zhang, L.; Topp, E.; Wellington, E.M.; Gaze, W.H. Long-term antibiotic exposure in soil is associated with changes in microbial community structure and prevalence of class 1 integrons. FEMS Microbiol. Ecol. 2016, 92, fiw159. [Google Scholar] [CrossRef] [PubMed]
- Laverman, A.M.; Cazier, T.; Yan, C.; Roose-Amsaleg, C.; Petit, F.; Garnier, J.; Berthe, T. Exposure to vancomycin causes a shift in the microbial community structure without affecting nitrate reduction rates in river sediments. Environ. Sci. Pollut. Res. 2015, 22, 13702–13709. [Google Scholar] [CrossRef] [PubMed]
- Wolińska, A.; Kuźniar, A.; Zielenkiewicz, U.; Banach, A.; Błaszczyk, M. Indicators of arable soils fatigue–Bacterial families and genera: A metagenomic approach. Ecol. Indic. 2018, 93, 490–500. [Google Scholar] [CrossRef]
- Jiang, X.-T.; Peng, X.; Deng, G.-H.; Sheng, H.-F.; Wang, Y.; Zhou, H.-W.; Tam, N.F.-Y. Illumina sequencing of 16S rRNA tag revealed spatial variations of bacterial communities in a mangrove wetland. Microb. Ecol. 2013, 66, 96–104. [Google Scholar] [CrossRef]
- Siles, J.A.; Margesin, R. Abundance and diversity of bacterial, archaeal, and fungal communities along an altitudinal gradient in alpine forest soils: What are the driving factors? Microb. Ecol. 2016, 72, 207–220. [Google Scholar] [CrossRef]
- Zhang, J.; Yang, Y.; Zhao, L.; Li, Y.; Xie, S.; Liu, Y. Distribution of sediment bacterial and archaeal communities in plateau freshwater lakes. Appl. Microbiol. Biotechnol. 2015, 99, 3291–3302. [Google Scholar] [CrossRef]
- Wu, H.; Li, Y.; Zhang, J.; Niu, L.; Zhang, W.; Cai, W.; Zhu, X. Sediment bacterial communities in a eutrophic lake influenced by multiple inflow-rivers. Environ. Sci. Pollut. Res. 2017, 24, 19795–19806. [Google Scholar] [CrossRef]
- Fang, H.; Huang, K.; Yu, J.; Ding, C.; Wang, Z.; Zhao, C.; Yuan, H.; Wang, Z.; Wang, S.; Hu, J. Metagenomic analysis of bacterial communities and antibiotic resistance genes in the Eriocheir sinensis freshwater aquaculture environment. Chemosphere 2019, 224, 202–211. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Li, R.; Chen, H.; Gao, J.; Wang, Y.; Zhang, Y.; Qi, Z. Effect of different seasons (spring vs summer) on the microbiota diversity in the feces of dairy cows. Int. J. Biometeorol. 2020, 64, 345–354. [Google Scholar] [CrossRef] [PubMed]
- Allen, H.K.; Looft, T.; Bayles, D.O.; Humphrey, S.; Levine, U.Y.; Alt, D.; Stanton, T.B. Antibiotics in feed induce prophages in swine fecal microbiomes. MBio 2011, 2, e00260–11. [Google Scholar] [CrossRef] [PubMed]
- Mahowald, M.A.; Rey, F.E.; Seedorf, H.; Turnbaugh, P.J.; Fulton, R.S.; Wollam, A.; Shah, N.; Wang, C.; Magrini, V.; Wilson, R.K. Characterizing a model human gut microbiota composed of members of its two dominant bacterial phyla. Proc. Natl. Acad. Sci. USA 2009, 106, 5859–5864. [Google Scholar] [CrossRef] [PubMed]
- Su, J.-Q.; An, X.-L.; Li, B.; Chen, Q.-L.; Gillings, M.R.; Chen, H.; Zhang, T.; Zhu, Y.-G. Metagenomics of urban sewage identifies an extensively shared antibiotic resistome in China. Microbiome 2017, 5, 84. [Google Scholar] [CrossRef]
- Sun, H.; He, X.; Ye, L.; Zhang, X.-X.; Wu, B.; Ren, H. Diversity, abundance, and possible sources of fecal bacteria in the Yangtze River. Appl. Microbiol. Biotechnol. 2017, 101, 2143–2152. [Google Scholar] [CrossRef]
- Hwang, O.; Yun, Y.-M.; Trabue, S. Impact of Bacillus subtilis on manure solids, odor, and microbiome. J. Environ. Manag. 2023, 333, 117390. [Google Scholar] [CrossRef]
- Im, S.; Mostafa, A.; Shin, S.-R.; Kim, D.-H. Combination of H2SO4-acidification and temperature-decrease for eco-friendly storage of pig slurry. J. Hazard. Mater. 2020, 399, 123063. [Google Scholar] [CrossRef]
- Torres-Pitarch, A.; Gardiner, G.E.; Cormican, P.; Rea, M.; Crispie, F.; O’Doherty, J.V.; Cozannet, P.; Ryan, T.; Lawlor, P.G. Effect of cereal soaking and carbohydrase supplementation on growth, nutrient digestibility and intestinal microbiota in liquid-fed grow-finishing pigs. Sci. Rep. 2020, 10, 1023. [Google Scholar] [CrossRef]
- Kelly, W.; Asmundson, R.; Hopcroft, D. Isolation and characterization of a strictly anaerobic, cellulolytic spore former: Clostridium chartatabidum sp. nov. Arch. Microbiol. 1987, 147, 169–173. [Google Scholar] [CrossRef]
- Levesque, C.L.; Hooda, S.; Swanson, K.S.; De Lange, K. Alterations in ileal mucosa bacteria related to diet complexity and growth performance in young pigs. PLoS ONE 2014, 9, e108472. [Google Scholar] [CrossRef] [PubMed]
- Lan, Q.; Lian, Y.; Peng, P.; Yang, L.; Zhao, H.; Huang, P.; Ma, H.; Wei, H.; Yin, Y.; Liu, M. Association of gut microbiota and SCFAs with finishing weight of Diannan small ear pigs. Front. Microbiol. 2023, 14, 1117965. [Google Scholar] [CrossRef] [PubMed]
- Looft, T.; Allen, H.K.; Cantarel, B.L.; Levine, U.Y.; Bayles, D.O.; Alt, D.P.; Henrissat, B.; Stanton, T.B. Bacteria, phages and pigs: The effects of in-feed antibiotics on the microbiome at different gut locations. ISME J. 2014, 8, 1566–1576. [Google Scholar] [CrossRef]
- Goh, S.; Mabbett, A.; Welch, J.; Hall, S.; McEwan, A. Molecular ecology of a facultative swine waste lagoon. Lett. Appl. Microbiol. 2009, 48, 486–492. [Google Scholar] [CrossRef]
- Kuok, F.; Mimoto, H.; Nakasaki, K. Effects of turning on the microbial consortia and the in situ temperature preferences of microorganisms in a laboratory-scale swine manure composting. Bioresour. Technol. 2012, 116, 421–427. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.-H.; Hong, S.H.; Cho, S.B.; Lim, J.S.; Bae, S.E.; Ahn, H.; Lee, E.Y. Characterization of microbial community in the leachate associated with the decomposition of entombed pigs. J. Microbiol. Biotechnol. 2012, 22, 1330–1335. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.; Song, L.; Dong, X. Proteiniclasticum ruminis gen. nov., sp. nov., a strictly anaerobic proteolytic bacterium isolated from yak rumen. Int. J. Syst. Evol. Microbiol. 2010, 60, 2221–2225. [Google Scholar] [CrossRef] [PubMed]
- Kong, Y.; Wang, G.; Chen, W.; Yang, Y.; Ma, R.; Li, D.; Shen, Y.; Li, G.; Yuan, J. Phytotoxicity of farm livestock manures in facultative heap composting using the seed germination index as indicator. Ecotoxicol. Environ. Saf. 2022, 247, 114251. [Google Scholar] [CrossRef]
- Xu, J.; Jiang, Z.; Li, M.; Li, Q. A compost-derived thermophilic microbial consortium enhances the humification process and alters the microbial diversity during composting. J. Environ. Manag. 2019, 243, 240–249. [Google Scholar] [CrossRef]
- Stoeva, M.K.; Garcia-So, J.; Justice, N.; Myers, J.; Tyagi, S.; Nemchek, M.; McMurdie, P.J.; Kolterman, O.; Eid, J. Butyrate-producing human gut symbiont, Clostridium butyricum, and its role in health and disease. Gut Microbes. 2021, 13, 1907272. [Google Scholar] [CrossRef]
- Finegold, S.M.; Sutter, V.L.; Mathisen, G.E. Normal indigenous intestinal flora. In Human Intestinal Microflora in Health and Disease; Hentges, D.J., Ed.; Academic Press: Cambridge, MA, USA, 1983; Volume 1, pp. 3–31. [Google Scholar]
- Zhao, X.; Guo, Y.; Guo, S.; Tan, J. Effects of Clostridium butyricum and Enterococcus faecium on growth performance, lipid metabolism, and cecal microbiota of broiler chickens. Appl. Microbiol. Biotechnol. 2013, 97, 6477–6488. [Google Scholar] [CrossRef]
- Li, W.; Xu, B.; Wang, L.; Sun, Q.; Deng, W.; Wei, F.; Ma, H.; Fu, C.; Wang, G.; Li, S. Effects of Clostridium butyricum on growth performance, gut microbiota and intestinal barrier function of broilers. Front. Microbiol. 2021, 12, 777456. [Google Scholar] [CrossRef]
- Liang, J.; Kou, S.; Chen, C.; Raza, S.H.A.; Wang, S.; Ma, X.; Zhang, W.-J.; Nie, C. Effects of Clostridium butyricum on growth performance, metabonomics and intestinal microbial differences of weaned piglets. BMC Microbiol. 2021, 21, 85. [Google Scholar] [CrossRef]
- Schauss, T.; Busse, H.-J.; Golke, J.; Kämpfer, P.; Glaeser, S.P. Moheibacter stercoris sp. nov., isolated from an input sample of a biogas plant. Int. J. Syst. Evol. Microbiol. 2016, 66, 2585–2591. [Google Scholar] [CrossRef]
- Li, M.M.; Ray, P.; Teets, C.; Pruden, A.; Xia, K.; Knowlton, K.F. Increasing temperature and pH can facilitate reductions of cephapirin and antibiotic resistance genes in dairy manure slurries. J. Dairy Sci. 2020, 103, 2877–2882. [Google Scholar] [CrossRef] [PubMed]
- Zhai, W.; Wong, M.T.; Luo, F.; Hashmi, M.Z.; Liu, X.; Edwards, E.A.; Tang, X.; Xu, J. Arsenic methylation and its relationship to abundance and diversity of arsM genes in composting manure. Sci. Rep. 2017, 7, srep42198. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.; Liu, B.; Che, J.; Liu, G.; Shi, H.; Wang, J.; Zhong, L. Succession of Bacterial Community Function in a Continuous Composting System with Spent Mushroom Substrate and Sawdust as Bulking Agents. J. Soil Sci. Plant Nutr. 2022, 22, 4587–4597. [Google Scholar] [CrossRef]
- Duan, H.; Ji, M.; Chen, A.; Zhang, B.; Shi, J.; Liu, L.; Li, X.; Sun, J. Evaluating the impact of rice husk on successions of bacterial and fungal communities during cow manure composting. Environ. Technol. Innov. 2021, 24, 102084. [Google Scholar] [CrossRef]
- Lee, S.M.; Kim, N.; Nam, R.H.; Park, J.H.; Choi, S.I.; Park, Y.-T.; Kim, Y.-R.; Seok, Y.-J.; Shin, C.M.; Lee, D.H. Gut microbiota and butyrate level changes associated with the long-term administration of proton pump inhibitors to old rats. Sci. Rep. 2019, 9, 6626. [Google Scholar] [CrossRef] [PubMed]
- Zeibich, L.; Koebele, S.V.; Bernaud, V.E.; Ilhan, Z.E.; Dirks, B.; Northup-Smith, S.N.; Neeley, R.; Maldonado, J.; Nirmalkar, K.; Files, J.A. Surgical menopause and estrogen therapy modulate the gut microbiota, obesity markers, and spatial memory in rats. Front. Cell. Infect. Microbiol. 2021, 11, 702628. [Google Scholar] [CrossRef]
- El Mouzan, M.; Al-Hussaini, A.A.; Al Sarkhy, A.; Assiri, A.; Alasmi, M. Intestinal microbiota profile in healthy Saudi children: The bacterial domain. Saudi J. Gastroenterol. 2022, 28, 312. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Doestzada, M.; Chen, L.; Andreu-Sanchez, S.; van den Munckhof, I.C.; Augustijn, H.E.; Koehorst, M.; Ruiz-Moreno, A.J.; Bloks, V.W.; Riksen, N.P. Characterization of gut microbial structural variations as determinants of human bile acid metabolism. Cell Host Microbe 2021, 29, 1802–1814. [Google Scholar] [CrossRef] [PubMed]
- Angelakis, E.; Bibi, F.; Ramasamy, D.; Azhar, E.I.; Jiman-Fatani, A.A.; Aboushoushah, S.M.; Lagier, J.-C.; Robert, C.; Caputo, A.; Yasir, M. Non-contiguous finished genome sequence and description of Clostridium saudii sp. nov. Stand. Genom. Sci. 2014, 9, 8. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Tashiro, Y.; Asakura, Y.; Ishida, N.; Watanabe, K.; Yue, S.; Akiko, M.-N.; Sakai, K. Lab-scale autothermal thermophilic aerobic digestion can maintain and remove nitrogen by controlling shear stress and oxygen supply system. J. Biosci. Bioeng. 2021, 132, 293–301. [Google Scholar] [CrossRef]
- Cuív, P.r.O.; Klaassens, E.S.; Durkin, A.S.; Harkins, D.M.; Foster, L.; McCorrison, J.; Torralba, M.; Nelson, K.E.; Morrison, M. Draft genome sequence of Turicibacter sanguinis PC909, isolated from human feces. J. Bacteriol. 2011, 193, 1288–1289. [Google Scholar] [CrossRef]
Location | pH 1 | EC | TOC | T-N | T-P |
---|---|---|---|---|---|
1:5 | dS m−1 | mg L−1 | mg L−1 | mg L−1 | |
Site 1 | 7.53 ± 0.03 b | 0.45 ± 0.01 c | 12.11 ± 0.06 c | 16.90 ± 2.44 b | 0.44 ± 0.02 c |
Site 2 | 7.49 ± 0.01 b | 0.28 ± 0.03 c | 5.81 ± 0.08 d | 4.11 ± 0.52 c | 0.24 ± 0.03 c |
Site 3 | 6.98 ± 0.03 d | 18.69 ± 0.88 a | 265.96 ± 6.84 a | 289.43 ± 7.27 a | 9.77 ± 0.96 a |
Site 4 | 7.24 ± 0.21 c | 1.01 ± 0.11 c | 6.25 ± 0.07 d | 5.43 ± 0.24 c | 0.54 ± 0.06 c |
Site 5 | 7.87 ± 0.02 a | 4.15 ± 0.43 b | 98.02 ± 0.14 b | 5.80 ± 0.64 c | 3.87 ± 0.27 b |
Location | Soil Texture | pH 1 | EC | SOM | T-C | T-N |
---|---|---|---|---|---|---|
1:5 | dS m−1 | % | g kg−1 | g kg−1 | ||
Site 1 | Loamy sand | 6.94 ± 0.01 d | 0.44 ± 0.01 d | 1.41 ± 0.14 cd | 2.87 ± 0.99 d | 0.99 ± 0.37 d |
Site 2 | Sandy loam | 6.87 ± 0.01 e | 0.39 ± 0.01 d | 0.91 ± 0.15 d | 9.95 ± 2.07 c | 1.61 ± 0.26 c |
Site 3 | Sandy loam | 7.14 ± 0.03 c | 16.23 ± 0.13 a | 3.36 ± 0.12 a | 19.10 ± 1.29 a | 4.86 ± 0.16 a |
Site 4 | Sandy loam | 7.71 ± 0.05 a | 4.15 ± 0.04 b | 2.45 ± 0.57 b | 12.38 ± 1.40 c | 1.60 ± 0.11 c |
Site 5 | Sandy loam | 7.62 ± 0.01 b | 3.18 ± 0.14 c | 1.85 ± 0.20 c | 15.79 ± 0.85 b | 3.22 ± 0.14 b |
Samples | Location | Antibiotic Concentration 1 (Mean ± SD) | ||||||
---|---|---|---|---|---|---|---|---|
CTC 2 | OTC | TC | TYL | SMZ 3 | SMX | STZ | ||
Surface water (μg L−1) | Site 1 | 0.17 ± 0.11 a | 0.20 ± 0.06 ab | 0.08 ± 0.01 b | 0.04 ± 0.01 b | 0.04 ± 0.02 a | 0.03 ± 0.01 * | ND 4 |
Site 2 | ND | ND | ND | ND | ND | ND | ND | |
Site 3 | 0.11 ± 0.02 a | 0.31 ± 0.08 a | 0.14 ± 0.01 a | 0.01 ± 0.00 c | ND | 0.06 ± 0.01 * | 0.07 ± 0.02 | |
Site 4 | 0.11 ± 0.01 a | ND | 0.13 ± 0.01 a | 0.25 ± 0.02 a | 0.02 ± 0.00 a | ND | ND | |
Site 5 | ND | 0.17 ± 0.01 b | ND | 0.01 ± 0.00 c | 0.02 ± 0.00 a | ND | ND | |
Sediment (μg kg−1) | Site 1 | ND | ND | ND | ND | 3.70 ± 0.35 a | ND | ND |
Site 2 | ND | ND | ND | ND | ND | ND | ND | |
Site 3 | 9.04 ± 0.15 † | ND | 7.62 ± 0.05 | ND | 4.27 ± 0.05 a | ND | 1.45 ± 0.05 | |
Site 4 | 8.86 ± 0.13 † | ND | ND | 5.22 ± 0.17 | 3.73 ± 0.08 a | ND | ND | |
Site 5 | ND | ND | ND | ND | 4.96 ± 2.22 a | ND | ND |
Sample | Number of Reads | OTUs | Good’s Coverage | Chao1 | Shannon |
---|---|---|---|---|---|
Site 1 | 15,547 | 1646 | 94.6% | 2237 | 9.16 |
Site 2 | 15,046 | 1476 | 96.0% | 1903 | 8.85 |
Site 3 | 18,263 | 1621 | 97.3% | 2148 | 8.91 |
Site 4 | 16,504 | 1579 | 96.3% | 2138 | 8.51 |
Site 5 | 22,499 | 1741 | 95.8% | 2285 | 9.07 |
Phylum | Species | Relative Abundance (%) | |||||
---|---|---|---|---|---|---|---|
Site 1 | Site 2 | Site 3 | Site 4 | Site 5 | Total | ||
Actinobacteria | Corynebacterium humireducens | - | 0.61 | 0.31 | 0.87 | - | 1.79 |
Bacteroidetes | Moheibacter stercoris | 0.11 | 1.97 | 1.65 | 1.33 | - | 5.06 |
Chloroflexi | Sphaerobacter thermophilus | 0.30 | - | 1.08 | 0.41 | 0.13 | 1.92 |
Firmicutes | Clostridium butyricum | 0.26 | 0.52 | 2.06 | 1.81 | 3.16 | 7.81 |
Clostridium chartatabidum | - | 0.07 | 0.37 | 0.61 | - | 1.05 | |
Clostridium paraputrificum | - | - | 0.21 | 0.75 | - | 0.96 | |
Clostridium saudiense | 0.29 | 1.04 | 5.90 | 8.10 | 0.07 | 15.4 | |
Proteiniclasticum ruminis | 0.24 | 0.49 | 4.34 | 0.64 | 1.22 | 6.93 | |
Tissierella creatinophila | - | - | 0.40 | - | - | 0.4 | |
Turicibacter sanguinis | 0.34 | 1.26 | 5.97 | 2.19 | 0.23 | 9.99 | |
Total | 1.54 | 5.96 | 22.29 | 16.71 | 4.81 | 51.31 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, J.-W.; Hong, Y.-K.; Kwon, O.-K.; Kim, S.-C. Difference of Microbial Community in the Stream Adjacent to the Mixed Antibiotic Effluent Source. Toxics 2024, 12, 135. https://doi.org/10.3390/toxics12020135
Kim J-W, Hong Y-K, Kwon O-K, Kim S-C. Difference of Microbial Community in the Stream Adjacent to the Mixed Antibiotic Effluent Source. Toxics. 2024; 12(2):135. https://doi.org/10.3390/toxics12020135
Chicago/Turabian StyleKim, Jin-Wook, Young-Kyu Hong, Oh-Kyung Kwon, and Sung-Chul Kim. 2024. "Difference of Microbial Community in the Stream Adjacent to the Mixed Antibiotic Effluent Source" Toxics 12, no. 2: 135. https://doi.org/10.3390/toxics12020135
APA StyleKim, J. -W., Hong, Y. -K., Kwon, O. -K., & Kim, S. -C. (2024). Difference of Microbial Community in the Stream Adjacent to the Mixed Antibiotic Effluent Source. Toxics, 12(2), 135. https://doi.org/10.3390/toxics12020135