Analysis of Mercury in Aquifers in Gold Mining Areas in the Ecuadorian Amazon and Its Associated Risk for Human Health
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sampling and Laboratory Analisys
2.2.1. Brief Description of EPA Standard Method 3015
2.2.2. Brief Description of EPA Standard Method 7473
2.3. Risk Assessment and Characterization
- CSW (Concentration): It represents the concentration of mercury detected at selected sampling points.
- EF (Exposure Frequency): It is a representative parameter of the average number of days per year the receptor is considered to be exposed to contamination.
- IR (Ingestion Rate): It represents, on average, the amount of contaminated water ingested daily by the receptor. Clearly, this quantity varies depending on the type of receptor.
- ET (Exposure Time): It represents the duration of exposure with reference to the individual contamination event.
- ED (Exposure Duration): It represents the duration, expressed in years, over which, on average, the receptor is considered to be exposed to contamination. Therefore, the ED value varies depending on the type of receptor: adult or child.
- SA (Skin Area): It is the average area of skin considered to be exposed to contamination through dermal contact. It varies depending on the type of receptor considered.
- Kp (Skin Permeability Constant): The amount of contaminant absorbed per centimeter of skin exposed per hour.
- AT (Averaging Time): It represents the period over which the exposure is averaged.
- BW (Body Weight): It is the average body weight of the receptor, so it has a different value for adult and child receptors.
- CF (Conversion Factor): It is used to standardize units of measurement.
- RfD (Chronic Reference Dose): It represents the maximum dose of toxic contaminant that can be accepted. In essence, it is the concentration value of the pollutant for which no adverse effects on human health have been found in the literature.
3. Results
3.1. Hg Concentration in Water
3.2. Human Health Risk Assessment
3.2.1. Deterministic Approach
3.2.2. Probabilistic Approach
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Verbrugge, B.; Geenen, S. The Gold Commodity Frontier: A Fresh Perspective on Change and Diversity in the Global Gold Mining Economy. Extr. Ind. Soc. 2019, 6, 413–423. [Google Scholar] [CrossRef]
- Niane, B.; Guédron, S.; Feder, F.; Legros, S.; Ngom, P.M.; Moritz, R. Impact of Recent Artisanal Small-Scale Gold Mining in Senegal: Mercury and Methylmercury Contamination of Terrestrial and Aquatic Ecosystems. Sci. Total Environ. 2019, 669, 185–193. [Google Scholar] [CrossRef]
- Bengtsson, U.G.; Hylander, L.D. Increased Mercury Emissions from Modern Dental Amalgams. Biometals 2017, 30, 277–283. [Google Scholar] [CrossRef]
- Capparelli, V.M.; Cabrera, M.; Rico, A.; Lucas-Solis, O.; Alvear-S, D.; Vasco, S.; Galarza, E.; Shiguango, L.; Pinos-Velez, V.; Pérez-González, A. An Integrative Approach to Assess the Environmental Impacts of Gold Mining Contamination in the Amazon. Toxics 2021, 9, 149. [Google Scholar] [CrossRef]
- Mestanza-Ramón, C.; Mora-Silva, D.; D’Orio, G.; Tapia-Segarra, E.; Gaibor, I.D.; Esparza Parra, J.F.; Chávez Velásquez, C.R.; Straface, S. Artisanal and Small-Scale Gold Mining (ASGM): Management and Socioenvironmental Impacts in the Northern Amazon of Ecuador. Sustainability 2022, 14, 6854. [Google Scholar] [CrossRef]
- Chamba Quizhpe, A.V. Diseño de Un Sistema de Gestión Ambiental Aplicado a La Agencia de Regulación y Control de Energía y Recursos Naturales No Renovables En Las Áreas Administrativas y Laboratorio Ubicados En El Edificio de La Armenia. Master’s Thesis, Universidad de las Fuerzas Armadas, Sangolquí, Ecuador, 2022. [Google Scholar]
- World Health Organization. COVID-19: Operational Guidance for Maintaining Essential Health Services during an Outbreak: Interim Guidance; World Health Organization: Geneva, Switzerland, 2021. [Google Scholar]
- Fuentes-Gandara, F.; Herrera-Herrera, C.; Pinedo-Hernández, J.; Marrugo-Negrete, J.; Díez, S. Assessment of Human Health Risk Associated with Methylmercury in the Imported Fish Marketed in the Caribbean. Environ. Res. 2018, 165, 324–329. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, S.M.; Coelho, C.; Cruz, N.; Monteiro, R.J.R.; Henriques, B.; Duarte, A.C.; Römkens, P.; Pereira, E. Oral Bioaccessibility and Human Exposure to Anthropogenic and Geogenic Mercury in Urban, Industrial and Mining Areas. Sci. Total Environ. 2014, 496, 649–661. [Google Scholar] [CrossRef] [PubMed]
- Briffa, J.; Sinagra, E.; Blundell, R. Heavy Metal Pollution in the Environment and Their Toxicological Effects on Humans. Heliyon 2020, 6, e04691. [Google Scholar] [CrossRef] [PubMed]
- Fernandes Azevedo, B.; Barros Furieri, L.; Peçanha, F.M.; Wiggers, G.A.; Frizera Vassallo, P.; Ronacher Simões, M.; Fiorim, J.; Rossi de Batista, P.; Fioresi, M.; Rossoni, L. Toxic Effects of Mercury on the Cardiovascular and Central Nervous Systems. Biomed Res. Int. 2012, 2012, 949048. [Google Scholar] [CrossRef] [PubMed]
- Khan, F.; Momtaz, S.; Abdollahi, M. The Relationship between Mercury Exposure and Epigenetic Alterations Regarding Human Health, Risk Assessment and Diagnostic Strategies. J. Trace Elem. Med. Biol. 2019, 52, 37–47. [Google Scholar] [CrossRef] [PubMed]
- Mestanza-Ramón, C.; Jiménez-Oyola, S.; Montoya, A.V.G.; Vizuete, D.D.C.; D’Orio, G.; Cedeño-Laje, J.; Straface, S. Assessment of Hg Pollution in Stream Waters and Human Health Risk in Areas Impacted by Mining Activities in the Ecuadorian Amazon. Environ. Geochem. Health 2023, 45, 7183–7197. [Google Scholar] [CrossRef] [PubMed]
- Abercrombie, M.I. Mercury in Sediment, Fish and Hair: An Ecosystem Study of Bioaccumulation of Mercury in Mexico. Ph.D. Thesis, Rensselaer Polytechnic Institute, Troy, NY, USA, 2010. [Google Scholar]
- De Miguel, E.; Clavijo, D.; Ortega, M.F.; Gómez, A. Probabilistic Meta-Analysis of Risk from the Exposure to Hg in Artisanal Gold Mining Communities in Colombia. Chemosphere 2014, 108, 183–189. [Google Scholar] [CrossRef]
- Zhao, H.; Wang, Q.; Groves, D.I.; Santosh, M.; Zhang, J.; Fan, T. Genesis of Orogenic Gold Systems in the Daduhe Belt: Evidence of Long-Lived Fertile Mantle Lithosphere as a Source of Diverse Metallogeny on the Western Margin of the Yangtze Craton, China. Ore Geol. Rev. 2022, 145, 104861. [Google Scholar] [CrossRef]
- Tran, T.S.; Dinh, V.C.; Nguyen, T.A.H.; Kim, K.-W. Soil Contamination and Health Risk Assessment from Heavy Metals Exposure near Mining Area in Bac Kan Province, Vietnam. Environ. Geochem. Health 2022, 44, 1189–1202. [Google Scholar] [CrossRef] [PubMed]
- Mestanza-Ramón, C.; D’ORIO, G.; Straface, S. Gold Mining in Ecuador: Innovative Recommendations for the Management and Remediation of Mercury-Contaminated Waters. Green World J. 2021, 4, 11. [Google Scholar] [CrossRef]
- Melo, C.; Mena, C.F.; Arsel, M.; Pellegrini, L.; CoCooN, N. The State Is Dead, Long Live the State: Re-Inserting the State in the Gold-Mining Industry in Zamora-Chinchipe, Ecuador. CoCooN NEBE 2013. [Google Scholar]
- Capparelli, M.V.; Moulatlet, G.M.; de Souza Abessa, D.M.; Lucas-Solis, O.; Rosero, B.; Galarza, E.; Tuba, D.; Carpintero, N.; Ochoa-Herrera, V.; Cipriani-Avila, I. An Integrative Approach to Identify the Impacts of Multiple Metal Contamination Sources on the Eastern Andean Foothills of the Ecuadorian Amazonia. Sci. Total Environ. 2020, 709, 136088. [Google Scholar] [CrossRef] [PubMed]
- López-Blanco, C.; Collahuazo, L.; Torres, S.; Chinchay, L.; Ayala, D.; Benítez, P. Mercury Pollution in Soils from the Yacuambi River (Ecuadorian Amazon) as a Result of Gold Placer Mining. Bull. Environ. Contam. Toxicol. 2015, 95, 311–316. [Google Scholar] [CrossRef]
- Mestanza-Ramón, C.; Cuenca-Cumbicus, J.; D’Orio, G.; Flores-Toala, J.; Segovia-Cáceres, S.; Bonilla-Bonilla, A.; Straface, S. Gold Mining in the Amazon Region of Ecuador: History and a Review of Its Socio-Environmental Impacts. Land 2022, 11, 221. [Google Scholar] [CrossRef]
- Hecht, S.; Schmink, M.; Abers, R.; Assad, E.; Humphreys Bebbington, D.; Eduaro, B.; Costa, F.; Durán Calisto, A.M.; Fearnside, P.M.; Garrett, R. The Amazon in Motion: Changing Politics, Development Strategies, Peoples, Landscapes, and Livelihoods. In Amazon Assessment Report 2021, Part II; United Nations Development Solutions Network: New York, NY, USA, 2021; pp. 12–14. [Google Scholar]
- Martinez-Alier, J.; Walter, M. Social Metabolism and Conflicts over Extractivism. Environ. Gov. Lat. Am. 2016, 58–85. [Google Scholar]
- Villacís, B.; Carrillo, D.; Martínez, A.G. Estadística Demográfica En El Ecuador: Diagnóstico y Propuesta; Instituto Nacional de Estadística y Censos: Quito, Ecuador, 2011; pp. 1–74. [Google Scholar]
- Requelme, M.E.R.; Ramos, J.F.F.; Angélica, R.S.; Brabo, E.S. Assessment of Hg-Contamination in Soils and Stream Sediments in the Mineral District of Nambija, Ecuadorian Amazon (Example of an Impacted Area Affected by Artisanal Gold Mining). Appl. Geochem. 2003, 18, 371–381. [Google Scholar] [CrossRef]
- Ilbay-Yupa, M.; Lavado-Casimiro, W.; Rau, P.; Zubieta, R.; Castillón, F. Updating Regionalization of Precipitation in Ecuador. Theor. Appl. Climatol. 2021, 143, 1513–1528. [Google Scholar] [CrossRef]
- Mensh, M. Direct Mercury Analysis of Soil, Sediments and Waste Waters Using Method 7473. Soil Sediment Contam. 2004, 13, 150. [Google Scholar]
- Jiménez-Oyola, S.; Escobar Segovia, K.; García-Martínez, M.-J.J.; Ortega, M.; Bolonio, D.; García-Garizabal, I.; Salgado, B.; Segovia-Escobar, K.; García-Martínez, M.-J.J.; Ortega, M.; et al. Human Health Risk Assessment for Exposure to Potentially Toxic Elements in Polluted Rivers in the Ecuadorian Amazon. Water 2021, 13, 613. [Google Scholar] [CrossRef]
- Spence, L.R.; Walden, T.; Sunbury, U.K. RISC4. Risk Integrated Software for Clean-Ups; Bp-Amoco Oil: Sunbury, UK, 2001; p. 464. [Google Scholar]
- Israeli, M.; Nelson, C.B. Distribution and Expected Time of Residence for U.S. Households. Risk Anal. 1992, 12, 65–72. [Google Scholar] [CrossRef]
- Anderson, M.R.; Scruton, D.A.; Williams, U.P.; Payne, J.F. Mercury in Fish in the Smallwood Reservoir, Labrador, Twenty One Years after Impoundment. Water. Air. Soil Pollut. 1995, 80, 927–930. [Google Scholar] [CrossRef]
- González-Merizalde, M.V.; Menezes-Filho, J.A.; Cruz-Erazo, C.T.; Bermeo-Flores, S.A.; Sánchez-Castillo, M.O.; Hernández-Bonilla, D.; Mora, A. Manganese and Mercury Levels in Water, Sediments, and Children Living near Gold-Mining Areas of the Nangaritza River Basin, Ecuadorian Amazon. Arch. Environ. Contam. Toxicol. 2016, 71, 171–182. [Google Scholar] [CrossRef]
- Webb, J.; Coomes, O.T.; Mainville, N.; Mergler, D. Mercury Contamination in an Indicator Fish Species from Andean Amazonian Rivers Affected by Petroleum Extraction. Bull. Environ. Contam. Toxicol. 2015, 95, 279–285. [Google Scholar] [CrossRef]
- Yan, J.; Li, R.; Ali, M.U.; Wang, C.; Wang, B.; Jin, X.; Shao, M.; Li, P.; Zhang, L.; Feng, X. Mercury Migration to Surface Water from Remediated Mine Waste and Impacts of Rainfall in a Karst Area–Evidence from Hg Isotopes. Water Res. 2023, 230, 119592. [Google Scholar] [CrossRef] [PubMed]
- Abdelaal, A.; Sultan, M.; Abotalib, A.Z.; Bedair, M.; Krishnamurthy, R.V.; Elhebiry, M. Emerging Mercury and Methylmercury Contamination from New Artisanal and Small-Scale Gold Mining along the Nile Valley, Egypt. Environ. Sci. Pollut. Res. 2023, 30, 52514–52534. [Google Scholar] [CrossRef] [PubMed]
- Mainville, N.; Webb, J.; Lucotte, M.; Davidson, R.; Betancourt, O.; Cueva, E.; Mergler, D. Decrease of Soil Fertility and Release of Mercury Following Deforestation in the Andean Amazon, Napo River Valley, Ecuador. Sci. Total Environ. 2006, 368, 88–98. [Google Scholar] [CrossRef]
- Dorleku, M.K.; Nukpezah, D.; Carboo, D. Effects of Small-Scale Gold Mining on Heavy Metal Levels in Groundwater in the Lower Pra Basin of Ghana. Appl. Water Sci. 2018, 8, 1–11. [Google Scholar] [CrossRef]
- Al-Hobaib, A.S.; Al-Jaseem, Q.K.; Baioumy, H.M.; Ahmed, A.H. Heavy Metals Concentrations and Usability of Groundwater at Mahd Adh Dhahab Gold Mine, Saudi Arabia. Arab. J. Geosci. 2013, 6, 259–270. [Google Scholar] [CrossRef]
- Taiwo, A.M.; Awomeso, J.A. Assessment of Trace Metal Concentration and Health Risk of Artisanal Gold Mining Activities in Ijeshaland, Osun State Nigeria—Part 1. J. Geochem. Explor. 2017, 177, 1–10. [Google Scholar] [CrossRef]
- Feng, Z.; Deng, L.; Guo, Y.; Guo, G.; Wang, L.; Zhou, G.; Huan, Y.; Liang, T. The Spatial Analysis, Risk Assessment and Source Identification for Mercury in a Typical Area with Multiple Pollution Sources in Southern China. Environ. Geochem. Health 2023, 45, 4057–4069. [Google Scholar] [CrossRef]
- Khattak, S.A.; Rashid, A.; Tariq, M.; Ali, L.; Gao, X.; Ayub, M.; Javed, A. Potential Risk and Source Distribution of Groundwater Contamination by Mercury in District Swabi, Pakistan: Application of Multivariate Study. Environ. Dev. Sustain. 2021, 23, 2279–2297. [Google Scholar] [CrossRef]
- Grandjean, P.; Budtz-Jørgensen, E.; Jørgensen, P.J.; Weihe, P. Umbilical Cord Mercury Concentration as Biomarker of Prenatal Exposure to Methylmercury. Environ. Health Perspect. 2005, 113, 905–908. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. The World Health Report 2005: Make Every Mother and Child Count; World Health Organization: Geneva, Switzerland, 2005; ISBN 9241562900. [Google Scholar]
- World Health Organization. World Health Statistics 2008; World Health Organization: Geneva, Switzerland, 2008; ISBN 9241563591. [Google Scholar]
- Cano Polania, A.J.; Malagón Sanchez, M.C. Evaluación de Trazas de Mercurio En El Tramo Caña Brava-Buenos Aires Del Río Cotuhé, Asociados a La Actividad Minera Artesanal de Oro En El Amazonas Colombiano; Universidad de La Salle: Boston, MA, USA, 2016. [Google Scholar]
- Manahan, S.E. Introducción a La Química Ambiental; Reverté: Barcelona, Spain, 2006; ISBN 8429179070. [Google Scholar]
- Toro Ruiz, E. Impactos Socioambientales Derivados Del Uso Del Mercurio En La Minería Aurífera Ilegal En El Bajo Cauca Antioqueño; Tecnológico de Antioquia: Medellín, Colombia, 2021. [Google Scholar]
- Hammond, D.S.; Rosales, J.; Ouboter, P.E. Gestión Del Impacto de La Explotación Minera a Cielo Abierto Sobre El Agua Dulce En América Latina. Banco Interam. Desarro. 2013, 40. [Google Scholar]
- Santos-Francés, F.; García-Sánchez, A.; Alonso-Rojo, P.; Contreras, F.; Adams, M. Distribution and Mobility of Mercury in Soils of a Gold Mining Region, Cuyuni River Basin, Venezuela. J. Environ. Manag. 2011, 92, 1268–1276. [Google Scholar] [CrossRef] [PubMed]
- Castilhos, Z.; Rodrigues-Filho, S.; Cesar, R.; Rodrigues, A.P.; Villas-Bôas, R.; de Jesus, I.; Lima, M.; Faial, K.; Miranda, A.; Brabo, E. Human Exposure and Risk Assessment Associated with Mercury Contamination in Artisanal Gold Mining Areas in the Brazilian Amazon. Environ. Sci. Pollut. Res. 2015, 22, 11255–11264. [Google Scholar] [CrossRef] [PubMed]
- Lino, A.S.; Kasper, D.; Guida, Y.S.; Thomaz, J.R.; Malm, O. Total and Methyl Mercury Distribution in Water, Sediment, Plankton and Fish along the Tapajós River Basin in the Brazilian Amazon. Chemosphere 2019, 235, 690–700. [Google Scholar] [CrossRef] [PubMed]
- Cordy, P.; Veiga, M.M.; Salih, I.; Al-Saadi, S.; Console, S.; Garcia, O.; Mesa, L.A.; Velásquez-López, P.C.; Roeser, M. Mercury Contamination from Artisanal Gold Mining in Antioquia, Colombia: The World’s Highest per Capita Mercury Pollution. Sci. Total Environ. 2011, 410, 154–160. [Google Scholar] [CrossRef]
- Restrepo, E.; Ciro, E. Residuos Mineros, Una Fuente Alternativa de Materias Primas. Rev. Colomb. Mater. 2021, 1–2. [Google Scholar] [CrossRef]
- Villegas Rosas, C.A. Impacto Ambiental Por El Uso de Mercurio En Minería Aurífera: Una Revisión de La Literatura Científica Entre Los Años 2009–2019; Universidad Privada del Norte: Trujillo, Peru, 2020. [Google Scholar]
- Fernández-Martínez, R.; Loredo, J.; Ordóñez, A.; Rucandio, I. Mercury Availability by Operationally Defined Fractionation in Granulometric Distributions of Soils and Mine Wastes from an Abandoned Cinnabar Mine. Environ. Sci. Process. Impacts 2014, 16, 1069–1075. [Google Scholar] [CrossRef] [PubMed]
Deterministic | Probabilistic | ||
---|---|---|---|
Parameters | Value | Distribution | Values |
EF | 350 | Triangular | (26–260) |
ED (adults) | 120 | LogNormal | 11.36 ± 13.72 |
ED (children) | 0.22 | Uniform | (1–6) |
ET (adults and children) | 2.6 | Triangular | (0.5–6) |
SA (adults) | 23,000 | Normal | 18,400 ± 2300 |
SA (children) | 7380 | Normal | 6800 ± 600 |
BW (adults) | 72 | Normal | 72 ± 15.9 |
BW (children) | 15.6 | Normal | 15.6 ± 3.7 |
IR (adults) | 2.04 | - | 2.04 |
IR (children) | 1.28 | - | 1.28 |
Kp | 0.001 | - | 0.001 |
Province | n | Min–Max | p50 | S.D. |
---|---|---|---|---|
Sucumbíos | 14 | 0.0009–0.0044 | 0.0030 | 0.0013 |
Orellana | 3 | * | * | * |
Napo | 7 | 0.0029–0.0045 | 0.0037 | 0.0011 |
Pastaza | 12 | 0.0009–0.0045 | 0.0022 | 0.0013 |
Morona Santiago | 23 | 0.0008–0.0056 | 0.0026 | 0.0015 |
Zamora Chinchipe | 16 | 0.0007–0.0037 | 0.0015 | 0.0010 |
Province | Adults | Children | ||||||
---|---|---|---|---|---|---|---|---|
Min–Max | p50 | p95 | S.D. | Min–Max | p50 | p95 | S.D. | |
Sucumbíos | 2.34 × 10−2–4.13 × 10−1 | 9.85 × 10−2 | 4.07 × 10−1 | 1.53 × 10−1 | 6.67 × 10−2–1.17 | 2.80 × 10−1 | 1.16 | 4.36 × 10−1 |
Orellana | 2.34 × 10−2–2.34 × 10−2 | 2.34 × 10−2 | 2.34 × 10−2 | 1.0 × 10−3 | 6.67 × 10−2–6.67 × 10−2 | 6.67 × 10−2 | 6.67 × 10−2 | 1.0 × 10−3 |
Napo | 2.34 × 10−2–4.22 × 10−1 | 2.34 × 10−2 | 3.77 × 10−1 | 1.64 × 10−1 | 6.67 × 10−2–1.20 | 6.67 × 10−2 | 1.07 | 4.66 × 10−1 |
Pastaza | 2.34 × 10−2–4.22 × 10−1 | 9.38 × 10−2 | 3.60 × 10−1 | 1.39 × 10−1 | 6.67 × 10−2–1.20 | 2.67 × 10−1 | 1.03 | 3.97 × 10−1 |
Morona Santiago | 2.34 × 10−2–5.25 × 10−1 | 2.34 × 10−2 | 3.95 × 10−1 | 1.47 × 10−1 | 2.34 × 10−2–1.49 | 6.67 × 10−2 | 1.12 | 4.18 × 10−1 |
Zamora Chinchipe | 6.56 × 10−2–3.47 × 10−1 | 1.36 × 10−1 | 3.26 × 10−1 | 9.27 × 10−2 | 1.87 × 10−1–9.88 × 10−1 | 3.87 × 10−1 | 9.28 × 10−1 | 2.64 × 10−1 |
Risk | Adults | Children | ||||||
---|---|---|---|---|---|---|---|---|
Min–Max | p50 | p95 | S.D. | Min–Max | p50 | p95 | S.D. | |
HQingestion | 5.14 × 10−3–4.39 × 10−1 | 4.18 × 10−2 | 2.05 × 10−1 | 6.89 × 10−2 | 1.20 × 10−2–8.66 × 10−1 | 8.94 × 10−2 | 4.22 × 10−1 | 1.42 × 10−1 |
HQdermal | 8.55 × 10−5–7.42 × 10−3 | 7.02 × 10−4 | 3.58 × 10−3 | 1.17 × 10−3 | 2.65 × 10−4–2.71 × 10−2 | 2.54 × 10−3 | 1.19 × 10−2 | 4.13 × 10−3 |
HI | 5.23 × 10−3–4.47 × 10−1 | 4.26 × 10−2 | 2.08 × 10−1 | 7.01 × 10−2 | 1.23 × 10−2–8.93 × 10−1 | 9.20 × 10−2 | 4.33 × 10−1 | 1.47 × 10−1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Passarelli, I.; Villacis Verdesoto, M.V.; Jiménez-Oyola, S.; Flores Huilcapi, A.G.; Mora-Silva, D.; Anfuso, G.; Esparza Parra, J.F.; Jimenez-Gutierrez, M.; Carrera Almendáriz, L.S.; Avalos Peñafiel, V.G.; et al. Analysis of Mercury in Aquifers in Gold Mining Areas in the Ecuadorian Amazon and Its Associated Risk for Human Health. Toxics 2024, 12, 162. https://doi.org/10.3390/toxics12020162
Passarelli I, Villacis Verdesoto MV, Jiménez-Oyola S, Flores Huilcapi AG, Mora-Silva D, Anfuso G, Esparza Parra JF, Jimenez-Gutierrez M, Carrera Almendáriz LS, Avalos Peñafiel VG, et al. Analysis of Mercury in Aquifers in Gold Mining Areas in the Ecuadorian Amazon and Its Associated Risk for Human Health. Toxics. 2024; 12(2):162. https://doi.org/10.3390/toxics12020162
Chicago/Turabian StylePassarelli, Irene, Michelle Vanessa Villacis Verdesoto, Samantha Jiménez-Oyola, Ana Gabriela Flores Huilcapi, Demmy Mora-Silva, Giorgio Anfuso, Jose Fernando Esparza Parra, Mirian Jimenez-Gutierrez, Luis Santiago Carrera Almendáriz, Victor Gabriel Avalos Peñafiel, and et al. 2024. "Analysis of Mercury in Aquifers in Gold Mining Areas in the Ecuadorian Amazon and Its Associated Risk for Human Health" Toxics 12, no. 2: 162. https://doi.org/10.3390/toxics12020162
APA StylePassarelli, I., Villacis Verdesoto, M. V., Jiménez-Oyola, S., Flores Huilcapi, A. G., Mora-Silva, D., Anfuso, G., Esparza Parra, J. F., Jimenez-Gutierrez, M., Carrera Almendáriz, L. S., Avalos Peñafiel, V. G., Straface, S., & Mestanza-Ramón, C. (2024). Analysis of Mercury in Aquifers in Gold Mining Areas in the Ecuadorian Amazon and Its Associated Risk for Human Health. Toxics, 12(2), 162. https://doi.org/10.3390/toxics12020162