Behavioral Studies of Zebrafish Reveal a New Perspective on the Reproductive Toxicity of Micro- and Nanoplastics
Abstract
:1. Introduction
2. Association of Behavioral Changes with Reproductive Toxicity
2.1. Behavioral Changes as Early Biomarker of Reproductive Toxicity
2.2. Behavioral and Reproductive Endocrine Interactions
3. Effects of MNPs on the Behavior of Zebrafish
3.1. Short-Term and Long-Term Effects of MNPs’ Exposure on Fish Behavior
3.2. Exploration of the Physiological Mechanisms of Behavioral Change
4. Effects of MNPs on the Reproductive System of Zebrafish
4.1. Direct Effects of MNPs on Reproductive Organs and Reproductive Endocrine Effects
4.2. Synergistic Effects of MNPs with Other Pollutants
5. Research Methods and Technical Progress
6. Environmental and Public Health Implications
7. Challenges and Future Prospects
- (a)
- Model enhancement and comparative research: Addressing the limitations of zebrafish as a nonmammalian model is essential. Future studies should focus on establishing validation mechanisms between zebrafish and other animal models, like mice or nematodes, and standardizing experimental procedures, like the Fish Embryo Toxicity test, to enhance reproducibility and comparability. This approach will provide a more comprehensive assessment of MNPs’ biotoxicity and their health effects.
- (b)
- Bridging laboratory and Field studies: It is important to bridge the gap between laboratory studies and real-world conditions. Future research should incorporate a range of environmental factors, such as exposure time, concentration, and mixed toxicity with other pollutants, to better represent field conditions and understand the combined exposure effects of MNPs with other environmental pollutants.
- (c)
- Advancing research with emerging technologies: There is a pressing need for rapid and accurate toxicity assessments, for example, with behavioral help, to support environmental policies and public health strategies. Future research should focus on long-term studies, multigenerational effects, and the early detection of biomarkers, especially finding and validating specific behavioral biomarkers. Integrating HTS, omics methods, and computational modeling will deepen our understanding of the mechanisms and risks related to MNPs. Global cooperation in research, the standardization of methods, and policy formulation is crucial to address the challenges posed by MNPs effectively.
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
MPs | Microplastics |
NPs | Nanoplastics |
MNPs | Micro- and nanoplastics |
ROS | Reactive oxygen species |
PLA | Polylactic acid |
HPG | Hypothalamic–pituitary–gonadal |
NET | Norethindrone |
PS | Polystyrene |
TPhP | Triphenyl phosphate |
VTG | Vitellogenin |
T | Testosterone |
PE | Polyethylene |
EDCs | Endocrine-disrupting chemicals |
AR | Androgen receptor |
ERα | Estrogen receptor α |
ERβ | Estrogen receptor β |
E2 | Estradiol |
SOD | Superoxide dismutase |
CAT | Catalase |
GPX | Glutathione peroxidase |
AChE | Acetylcholinesterase |
LH | Luteinizing hormone |
FSH | Follicle-stimulating hormone |
HTS | High-throughput screening |
References
- Abdurahman, A.; Cui, K.; Wu, J.; Li, S.; Gao, R.; Dai, J.; Liang, W.; Zeng, F. Adsorption of Dissolved Organic Matter (DOM) on Polystyrene Microplastics in Aquatic Environments: Kinetic, Isotherm and Site Energy Distribution Analysis. Ecotoxicol. Environ. Saf. 2020, 198, 110658. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.; Wang, C.; Duan, X.; Liang, B.; Genbo Xu, E.; Huang, Z. Micro- and Nanoplastics: A New Cardiovascular Risk Factor? Environ. Int. 2023, 171, 107662. [Google Scholar] [CrossRef] [PubMed]
- Lacerda, A.L.d.F.; Rodrigues, L.d.S.; van Sebille, E.; Rodrigues, F.L.; Ribeiro, L.; Secchi, E.R.; Kessler, F.; Proietti, M.C. Plastics in Sea Surface Waters around the Antarctic Peninsula. Sci. Rep. 2019, 9, 3977. [Google Scholar] [CrossRef] [PubMed]
- Alfaro-Núñez, A.; Astorga, D.; Cáceres-Farías, L.; Bastidas, L.; Soto Villegas, C.; Macay, K.; Christensen, J.H. Microplastic Pollution in Seawater and Marine Organisms across the Tropical Eastern Pacific and Galápagos. Sci. Rep. 2021, 11, 6424. [Google Scholar] [CrossRef]
- Kang, H.-M.; Byeon, E.; Jeong, H.; Kim, M.-S.; Chen, Q.; Lee, J.-S. Different Effects of Nano- and Microplastics on Oxidative Status and Gut Microbiota in the Marine Medaka Oryzias melastigma. J. Hazard. Mater. 2021, 405, 124207. [Google Scholar] [CrossRef]
- Vethaak, A.D.; Legler, J. Microplastics and Human Health. Science 2021, 371, 672–674. [Google Scholar] [CrossRef]
- Thompson, R.C.; Olsen, Y.; Mitchell, R.P.; Davis, A.; Rowland, S.J.; John, A.W.G.; McGonigle, D.; Russell, A.E. Lost at Sea: Where Is All the Plastic? Science 2004, 304, 838. [Google Scholar] [CrossRef]
- Full Article: Quantifying Ecological Risks of Aquatic Micro- and Nanoplastic. Crit. Rev. Environ. Sci. Technol. 2019, 49, 32–80. [CrossRef]
- Leslie, H.A.; van Velzen, M.J.M.; Brandsma, S.H.; Vethaak, A.D.; Garcia-Vallejo, J.J.; Lamoree, M.H. Discovery and Quantification of Plastic Particle Pollution in Human Blood. Environ. Int. 2022, 163, 107199. [Google Scholar] [CrossRef]
- Peng, L.; Fu, D.; Qi, H.; Lan, C.Q.; Yu, H.; Ge, C. Micro- and Nano-Plastics in Marine Environment: Source, Distribution and Threats—A Review. Sci. Total Environ. 2020, 698, 134254. [Google Scholar] [CrossRef]
- Shi, Y.; Liu, P.; Wu, X.; Shi, H.; Huang, H.; Wang, H.; Gao, S. Insight into Chain Scission and Release Profiles from Photodegradation of Polycarbonate Microplastics. Water Res. 2021, 195, 116980. [Google Scholar] [CrossRef]
- Zhu, K.; Jia, H.; Sun, Y.; Dai, Y.; Zhang, C.; Guo, X.; Wang, T.; Zhu, L. Long-Term Phototransformation of Microplastics under Simulated Sunlight Irradiation in Aquatic Environments: Roles of Reactive Oxygen Species. Water Res. 2020, 173, 115564. [Google Scholar] [CrossRef]
- Zhang, X.; Xia, M.; Su, X.; Yuan, P.; Li, X.; Zhou, C.; Wan, Z.; Zou, W. Photolytic Degradation Elevated the Toxicity of Polylactic Acid Microplastics to Developing Zebrafish by Triggering Mitochondrial Dysfunction and Apoptosis. J. Hazard. Mater. 2021, 413, 125321. [Google Scholar] [CrossRef]
- Masry, M.; Rossignol, S.; Gardette, J.-L.; Therias, S.; Bussière, P.-O.; Wong-Wah-Chung, P. Characteristics, Fate, and Impact of Marine Plastic Debris Exposed to Sunlight: A Review. Mar. Pollut. Bull. 2021, 171, 112701. [Google Scholar] [CrossRef]
- Lomonaco, T.; Manco, E.; Corti, A.; La Nasa, J.; Ghimenti, S.; Biagini, D.; Di Francesco, F.; Modugno, F.; Ceccarini, A.; Fuoco, R.; et al. Release of Harmful Volatile Organic Compounds (VOCs) from Photo-Degraded Plastic Debris: A Neglected Source of Environmental Pollution. J. Hazard. Mater. 2020, 394, 122596. [Google Scholar] [CrossRef]
- Fan, X.; Zou, Y.; Geng, N.; Liu, J.; Hou, J.; Li, D.; Yang, C.; Li, Y. Investigation on the Adsorption and Desorption Behaviors of Antibiotics by Degradable MPs with or without UV Ageing Process. J. Hazard. Mater. 2021, 401, 123363. [Google Scholar] [CrossRef]
- Kalčíková, G.; Skalar, T.; Marolt, G.; Jemec Kokalj, A. An Environmental Concentration of Aged Microplastics with Adsorbed Silver Significantly Affects Aquatic Organisms. Water Res. 2020, 175, 115644. [Google Scholar] [CrossRef]
- Luo, H.; Liu, C.; He, D.; Xu, J.; Sun, J.; Li, J.; Pan, X. Environmental Behaviors of Microplastics in Aquatic Systems: A Systematic Review on Degradation, Adsorption, Toxicity and Biofilm under Aging Conditions. J. Hazard. Mater. 2022, 423, 126915. [Google Scholar] [CrossRef]
- Chen, J.-C.; Fang, C.; Zheng, R.-H.; Chen, M.-L.; Kim, D.-H.; Lee, Y.-H.; Bailey, C.; Wang, K.-J.; Lee, J.-S.; Bo, J. Environmentally Relevant Concentrations of Microplastics Modulated the Immune Response and Swimming Activity, and Impaired the Development of Marine Medaka Oryzias melastigma Larvae. Ecotoxicol. Environ. Saf. 2022, 241, 113843. [Google Scholar] [CrossRef]
- Yang, S.; Li, M.; Kong, R.Y.C.; Li, L.; Li, R.; Chen, J.; Lai, K.P. Reproductive Toxicity of Micro- and Nanoplastics. Environ. Int. 2023, 177, 108002. [Google Scholar] [CrossRef]
- Hodkovicova, N.; Hollerova, A.; Svobodova, Z.; Faldyna, M.; Faggio, C. Effects of Plastic Particles on Aquatic Invertebrates and Fish—A Review. Environ. Toxicol. Pharmacol. 2022, 96, 104013. [Google Scholar] [CrossRef]
- Daam, M.A.; Teixeira, H.; Lillebø, A.I.; Nogueira, A.J.A. Establishing Causal Links between Aquatic Biodiversity and Ecosystem Functioning: Status and Research Needs. Sci. Total Environ. 2019, 656, 1145–1156. [Google Scholar] [CrossRef]
- Amereh, F.; Babaei, M.; Eslami, A.; Fazelipour, S.; Rafiee, M. The Emerging Risk of Exposure to Nano(micro)plastics on Endocrine Disturbance and Reproductive Toxicity: From a Hypothetical Scenario to A Global Public Health Challenge. Environ. Pollut. 2020, 261, 114158. [Google Scholar] [CrossRef] [PubMed]
- Jaikumar, G.; Brun, N.R.; Vijver, M.G.; Bosker, T. Reproductive Toxicity of Primary and Secondary Microplastics to Three Cladocerans during Chronic Exposure. Environ. Pollut. 2019, 249, 638–646. [Google Scholar] [CrossRef]
- Hou, B.; Wang, F.; Liu, T.; Wang, Z. Reproductive Toxicity of Polystyrene Microplastics: In Vivo Experimental Study on Testicular Toxicity in Mice. J. Hazard. Mater. 2021, 405, 124028. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Zhang, J.; Zhao, H.; Cai, J.; Sultan, Y.; Fang, H.; Zhang, B.; Ma, J. Effects of Polyvinyl Chloride Microplastics on Reproduction, Oxidative Stress and Reproduction and Detoxification-Related Genes in Daphnia Magna. Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 2022, 254, 109269. [Google Scholar] [CrossRef]
- Liu, T.; Hou, B.; Zhang, Y.; Wang, Z. Determination of Biological and Molecular Attributes Related to Polystyrene Microplastic-Induced Reproductive Toxicity and Its Reversibility in Male Mice. Int. J. Environ. Res. Public Health 2022, 19, 14093. [Google Scholar] [CrossRef]
- Zhou, R.; Lu, G.; Yan, Z.; Jiang, R.; Bao, X.; Lu, P. A Review of the Influences of Microplastics on Toxicity and Transgenerational Effects of Pharmaceutical and Personal Care Products in Aquatic Environment. Sci. Total Environ. 2020, 732, 139222. [Google Scholar] [CrossRef]
- Sun, S.; Jin, Y.; Luo, P.; Shi, X. Polystyrene Microplastics Induced Male Reproductive Toxicity and Transgenerational Effects in Freshwater Prawn. Sci. Total Environ. 2022, 842, 156820. [Google Scholar] [CrossRef]
- Xu, J.-L.; Lin, X.; Wang, J.J.; Gowen, A.A. A Review of Potential Human Health Impacts of Micro- and Nanoplastics Exposure. Sci. Total Environ. 2022, 851, 158111. [Google Scholar] [CrossRef]
- Liu, Z.; Zhuan, Q.; Zhang, L.; Meng, L.; Fu, X.; Hou, Y. Polystyrene Microplastics Induced Female Reproductive Toxicity in Mice. J. Hazard. Mater. 2022, 424, 127629. [Google Scholar] [CrossRef]
- Yang, L.; Zhang, Y.; Kang, S.; Wang, Z.; Wu, C. Microplastics in Soil: A Review on Methods, Occurrence, Sources, and Potential Risk. Sci. Total Environ. 2021, 780, 146546. [Google Scholar] [CrossRef]
- Tallec, K.; Huvet, A.; Di Poi, C.; González-Fernández, C.; Lambert, C.; Petton, B.; Le Goïc, N.; Berchel, M.; Soudant, P.; Paul-Pont, I. Nanoplastics Impaired Oyster Free Living Stages, Gametes and Embryos. Environ. Pollut. 2018, 242, 1226–1235. [Google Scholar] [CrossRef]
- Lin, J.; Yan, D.; Fu, J.; Chen, Y.; Ou, H. Ultraviolet-C and Vacuum Ultraviolet Inducing Surface Degradation of Microplastics. Water Res. 2020, 186, 116360. [Google Scholar] [CrossRef]
- Li, M.; Hou, Z.; Meng, R.; Hao, S.; Wang, B. Unraveling the Potential Human Health Risks from Used Disposable Face Mask-Derived Micro/Nanoplastics during the COVID-19 Pandemic Scenario: A Critical Review. Environ. Int. 2022, 170, 107644. [Google Scholar] [CrossRef] [PubMed]
- Qiao, R.; Sheng, C.; Lu, Y.; Zhang, Y.; Ren, H.; Lemos, B. Microplastics Induce Intestinal Inflammation, Oxidative Stress, and Disorders of Metabolome and Microbiome in Zebrafish. Sci. Total Environ. 2019, 662, 246–253. [Google Scholar] [CrossRef]
- Patel, P.; Nandi, A.; Verma, S.K.; Kaushik, N.; Suar, M.; Choi, E.H.; Kaushik, N.K. Zebrafish-Based Platform for Emerging Bio-Contaminants and Virus Inactivation Research. Sci. Total Environ. 2023, 872, 162197. [Google Scholar] [CrossRef]
- Howe, K.; Clark, M.D.; Torroja, C.F.; Torrance, J.; Berthelot, C.; Muffato, M.; Collins, J.E.; Humphray, S.; McLaren, K.; Matthews, L.; et al. The Zebrafish Reference Genome Sequence and Its Relationship to the Human Genome. Nature 2013, 496, 498–503. [Google Scholar] [CrossRef] [PubMed]
- Pereira, A.C.; Gomes, T.; Ferreira Machado, M.R.; Rocha, T.L. The Zebrafish Embryotoxicity Test (ZET) for Nanotoxicity Assessment: From Morphological to Molecular Approach. Environ. Pollut. 2019, 252, 1841–1853. [Google Scholar] [CrossRef]
- Wang, L.; Liu, F.; Fang, Y.; Ma, J.; Wang, J.; Qu, L.; Yang, Q.; Wu, W.; Jin, L.; Sun, D. Advances in Zebrafish as a Comprehensive Model of Mental Disorders. Depress. Anxiety 2023, 2023, e6663141. [Google Scholar] [CrossRef]
- Fu, C.-W.; Horng, J.-L.; Tong, S.-K.; Cherng, B.-W.; Liao, B.-K.; Lin, L.-Y.; Chou, M.-Y. Exposure to Silver Impairs Learning and Social Behaviors in Adult Zebrafish. J. Hazard. Mater. 2021, 403, 124031. [Google Scholar] [CrossRef]
- Xiao, W.-Y.; Li, Y.-W.; Chen, Q.-L.; Liu, Z.-H. Tributyltin Impaired Reproductive Success in Female Zebrafish through Disrupting Oogenesis, Reproductive Behaviors and Serotonin Synthesis. Aquat. Toxicol. 2018, 200, 206–216. [Google Scholar] [CrossRef]
- Chen, Q.; An, J.; Xie, D.; Gong, S.; Lian, X.; Liu, Z.; Shen, Y.; Li, Y. Suppression and Recovery of Reproductive Behavior Induced by Early Life Exposure to Mercury in Zebrafish. Comp. Biochem. Physiol. Part. C Toxicol. Pharmacol. 2021, 239, 108876. [Google Scholar] [CrossRef]
- Lan, X.-R.; Li, Y.-W.; Chen, Q.-L.; Shen, Y.-J.; Liu, Z.-H. Tributyltin Impaired Spermatogenesis and Reproductive Behavior in Male Zebrafish. Aquat. Toxicol. 2020, 224, 105503. [Google Scholar] [CrossRef]
- Forner-Piquer, I.; Faucherre, A.; Byram, J.; Blaquiere, M.; de Bock, F.; Gamet-Payrastre, L.; Ellero-Simatos, S.; Audinat, E.; Jopling, C.; Marchi, N. Differential Impact of Dose-Range Glyphosate on Locomotor Behavior, Neuronal Activity, Glio-Cerebrovascular Structures, and Transcript Regulations in Zebrafish Larvae. Chemosphere 2021, 267, 128986. [Google Scholar] [CrossRef] [PubMed]
- Hong, Y.; Wu, S.; Wei, G. Adverse Effects of Microplastics and Nanoplastics on The Reproductive System: A Comprehensive Review of Fertility and Potential Harmful Interactions. Sci. Total Environ. 2023, 903, 166258. [Google Scholar] [CrossRef]
- Yi, J.; Ma, Y.; Ruan, J.; You, S.; Ma, J.; Yu, H.; Zhao, J.; Zhang, K.; Yang, Q.; Jin, L.; et al. The Invisible Threat: Assessing The Reproductive and Transgenerational Impacts of Micro- and Nanoplastics on Fish. Environ. Int. 2024, 183, 108432. [Google Scholar] [CrossRef]
- Sussarellu, R.; Suquet, M.; Thomas, Y.; Lambert, C.; Fabioux, C.; Pernet, M.E.J.; Le Goïc, N.; Quillien, V.; Mingant, C.; Epelboin, Y.; et al. Oyster Reproduction Is Affected by Exposure to Polystyrene Microplastics. Proc. Natl. Acad. Sci. USA 2016, 113, 2430–2435. [Google Scholar] [CrossRef]
- Sarasamma, S.; Audira, G.; Siregar, P.; Malhotra, N.; Lai, Y.-H.; Liang, S.-T.; Chen, J.-R.; Chen, K.H.-C.; Hsiao, C.-D. Nanoplastics Cause Neurobehavioral Impairments, Reproductive and Oxidative Damages, and Biomarker Responses in Zebrafish: Throwing up Alarms of Wide Spread Health Risk of Exposure. Int. J. Mol. Sci. 2020, 21, 1410. [Google Scholar] [CrossRef]
- Spence, R.; Gerlach, G.; Lawrence, C.; Smith, C. The Behaviour and Ecology of the Zebrafish, Danio rerio. Biol. Rev. 2008, 83, 13–34. [Google Scholar] [CrossRef]
- Spence, R.; Smith, C. Male Territoriality Mediates Density and Sex Ratio Effects on Oviposition in the Zebrafish, Danio rerio. Anim. Behav. 2005, 69, 1317–1323. [Google Scholar] [CrossRef]
- Hou, L.; Chen, S.; Shi, W.; Chen, H.; Liang, Y.; Wang, X.; Tan, J.; Wang, Y.; Deng, X.; Zhan, M.; et al. Norethindrone Alters Mating Behaviors, Ovary Histology, Hormone Production and Transcriptional Expression of Steroidogenic Genes in Zebrafish (Danio rerio). Ecotoxicol. Environ. Saf. 2020, 195, 110496. [Google Scholar] [CrossRef]
- Yan, W.; Li, G.; Lu, Q.; Hou, J.; Pan, M.; Peng, M.; Peng, X.; Wan, H.; Liu, X.; Wu, Q. Molecular Mechanisms of Tebuconazole Affecting the Social Behavior and Reproduction of Zebrafish. Int. J. Environ. Res. Public Health 2023, 20, 3928. [Google Scholar] [CrossRef]
- Yang, J.; Guo, C.; Luo, Y.; Fan, J.; Wang, W.; Yin, X.; Xu, J. Effect of Thiamethoxam on the Behavioral Profile Alteration and Toxicity of Adult Zebrafish at Environmentally Relevant Concentrations. Sci. Total Environ. 2023, 858, 159883. [Google Scholar] [CrossRef]
- Tongo, I.; Erhunmwunse, N.O. Effects of Ingestion of Polyethylene Microplastics on Survival Rate, Opercular Respiration Rate and Swimming Performance of African Catfish (Clarias gariepinus). J. Hazard. Mater. 2022, 423, 127237. [Google Scholar] [CrossRef]
- Wang, L.; Zhu, Y.; Gu, J.; Yin, X.; Guo, L.; Qian, L.; Shi, L.; Guo, M.; Ji, G. The Toxic Effect of Bisphenol AF and Nanoplastic Coexposure in Parental and Offspring Generation Zebrafish. Ecotoxicol. Environ. Saf. 2023, 251, 114565. [Google Scholar] [CrossRef]
- Munakata, A.; Kobayashi, M. Endocrine Control of Sexual Behavior in Teleost Fish. General. Comp. Endocrinol. 2010, 165, 456–468. [Google Scholar] [CrossRef]
- Cao, F.; Zhu, L.; Li, H.; Yu, S.; Wang, C.; Qiu, L. Reproductive Toxicity of Azoxystrobin to Adult Zebrafish (Danio rerio). Environ. Pollut. 2016, 219, 1109–1121. [Google Scholar] [CrossRef]
- Cao, J.; Wang, G.; Wang, T.; Chen, J.; Wenjing, G.; Wu, P.; He, X.; Xie, L. Copper Caused Reproductive Endocrine Disruption in Zebrafish (Danio rerio). Aquat. Toxicol. 2019, 211, 124–136. [Google Scholar] [CrossRef]
- Lei, P.; Zhang, W.; Ma, J.; Xia, Y.; Yu, H.; Du, J.; Fang, Y.; Wang, L.; Zhang, K.; Jin, L.; et al. Advances in the Utilization of Zebrafish for Assessing and Understanding the Mechanisms of Nano-/Microparticles Toxicity in Water. Toxics 2023, 11, 380. [Google Scholar] [CrossRef]
- Torres-Ruiz, M.; de Alba González, M.; Morales, M.; Martin-Folgar, R.; González, M.C.; Cañas-Portilla, A.I.; De la Vieja, A. Neurotoxicity and Endocrine Disruption Caused by Polystyrene Nanoparticles in Zebrafish Embryo. Sci. Total Environ. 2023, 874, 162406. [Google Scholar] [CrossRef]
- Lorenzi, V.; Choe, R.; Schlenk, D. Effects of Environmental Exposure to Diazepam on the Reproductive Behavior of Fathead Minnow, Pimephales promelas. Environ. Toxicol. 2016, 31, 561–568. [Google Scholar] [CrossRef]
- Zempo, B.; Tanaka, N.; Daikoku, E.; Ono, F. High-speed Camera Recordings Uncover Previously Unidentified Elements of Zebrafish Mating Behaviors Integral to Successful Fertilization. Sci. Rep. 2021, 11, 20228. [Google Scholar] [CrossRef]
- Fusani, L.; Day, L.B.; Canoine, V.; Reinemann, D.; Hernandez, E.; Schlinger, B.A. Androgen and the Elaborate Courtship Behavior of a Tropical Lekking Bird. Horm. Behav. 2007, 51, 62–68. [Google Scholar] [CrossRef]
- Tsang, B.; Zahid, H.; Ansari, R.; Lee, R.C.-Y.; Partap, A.; Gerlai, R. Breeding Zebrafish: A Review of Different Methods and a Discussion on Standardization. Zebrafish 2017, 14, 561–573. [Google Scholar] [CrossRef]
- Santos, D.; Luzio, A.; Félix, L.; Cabecinha, E.; Bellas, J.; Monteiro, S.M. Microplastics and Copper Induce Apoptosis, Alter Neurocircuits, and Cause Behavioral Changes in Zebrafish (Danio rerio) Brain. Ecotoxicol. Environ. Saf. 2022, 242, 113926. [Google Scholar] [CrossRef]
- Jennings, K.J.; de Lecea, L. Neural and Hormonal Control of Sexual Behavior. Endocrinology 2020, 161, bqaa150. [Google Scholar] [CrossRef]
- He, J.; Yang, X.; Liu, H. Enhanced Toxicity of Triphenyl Phosphate to Zebrafish in the Presence of Micro- and Nano-Plastics. Sci. Total Environ. 2021, 756, 143986. [Google Scholar] [CrossRef]
- Dai, X.; Pradhan, A.; Liu, J.; Liu, R.; Zhai, G.; Zhou, L.; Dai, J.; Shao, F.; Yuan, Z.; Wang, Z.; et al. Zebrafish Gonad Mutant Models Reveal Neuroendocrine Mechanisms of Brain Sexual Dimorphism and Male Mating Behaviors of Different Brain Regions. Biol. Sex. Differ. 2023, 14, 53. [Google Scholar] [CrossRef]
- Swank, A.; Blevins, K.; Bourne, A.; Ward, J. Do Microplastics Impair Male Dominance Interactions in Fish? A Test of the Vector Hypothesis. Ecol. Evol. 2022, 12, e8620. [Google Scholar] [CrossRef]
- Pedersen, A.F.; Meyer, D.N.; Petriv, A.-M.V.; Soto, A.L.; Shields, J.N.; Akemann, C.; Baker, B.B.; Tsou, W.-L.; Zhang, Y.; Baker, T.R. Nanoplastics Impact the Zebrafish (Danio rerio) Transcriptome: Associated Developmental and Neurobehavioral Consequences. Environ. Pollut. 2020, 266, 115090. [Google Scholar] [CrossRef]
- Yi, J.; Ma, Y.; Ma, J.; Yu, H.; Zhang, K.; Jin, L.; Yang, Q.; Sun, D.; Wu, D. Rapid Assessment of Ocular Toxicity from Environmental Contaminants Based on Visually Mediated Zebrafish Behavior Studies. Toxics 2023, 11, 706. [Google Scholar] [CrossRef]
- Stewart, A.M.; Braubach, O.; Spitsbergen, J.; Gerlai, R.; Kalueff, A.V. Zebrafish Models for Translational Neuroscience Research: From Tank to Bedside. Trends Neurosci. 2014, 37, 264–278. [Google Scholar] [CrossRef]
- Zhu, M.; Chernick, M.; Rittschof, D.; Hinton, D.E. Chronic Dietary Exposure to Polystyrene Microplastics in Maturing Japanese Medaka (Oryzias latipes). Aquat. Toxicol. 2020, 220, 105396. [Google Scholar] [CrossRef]
- Umamaheswari, S.; Priyadarshinee, S.; Bhattacharjee, M.; Kadirvelu, K.; Ramesh, M. Exposure to Polystyrene Microplastics Induced Gene Modulated Biological Responses in Zebrafish (Danio rerio). Chemosphere 2021, 281, 128592. [Google Scholar] [CrossRef]
- Qiang, L.; Cheng, J. Exposure to Microplastics Decreases Swimming Competence in Larval Zebrafish (Danio rerio). Ecotoxicol. Environ. Saf. 2019, 176, 226–233. [Google Scholar] [CrossRef]
- Cormier, B.; Cachot, J.; Blanc, M.; Cabar, M.; Clérandeau, C.; Dubocq, F.; Le Bihanic, F.; Morin, B.; Zapata, S.; Bégout, M.-L.; et al. Environmental Microplastics Disrupt Swimming Activity in Acute Exposure in Danio rerio Larvae and Reduce Growth and Reproduction Success in Chronic Exposure in D. rerio and Oryzias melastigma. Environ. Pollut. 2022, 308, 119721. [Google Scholar] [CrossRef]
- Pitt, J.A.; Trevisan, R.; Massarsky, A.; Kozal, J.S.; Levin, E.D.; Di Giulio, R.T. Maternal Transfer of Nanoplastics to Offspring in Zebrafish (Danio rerio): A Case Study with Nanopolystyrene. Sci. Total Environ. 2018, 643, 324–334. [Google Scholar] [CrossRef]
- Chen, Q.; Gundlach, M.; Yang, S.; Jiang, J.; Velki, M.; Yin, D.; Hollert, H. Quantitative Investigation of the Mechanisms of Microplastics and Nanoplastics toward Zebrafish Larvae Locomotor Activity. Sci. Total Environ. 2017, 584–585, 1022–1031. [Google Scholar] [CrossRef]
- Brun, N.R.; Koch, B.E.V.; Varela, M.; Peijnenburg, W.J.G.M.; Spaink, H.P.; Vijver, M.G. Nanoparticles Induce Dermal and Intestinal Innate Immune System Responses in Zebrafish Embryos. Environ. Sci. Nano 2018, 5, 904–916. [Google Scholar] [CrossRef]
- Trevisan, R.; Voy, C.; Chen, S.; Di Giulio, R.T. Nanoplastics Decrease the Toxicity of a Complex PAH Mixture but Impair Mitochondrial Energy Production in Developing Zebrafish. Environ. Sci. Technol. 2019, 53, 8405–8415. [Google Scholar] [CrossRef]
- Torres-Ruiz, M.; De la Vieja, A.; de Alba Gonzalez, M.; Esteban Lopez, M.; Castaño Calvo, A.; Cañas Portilla, A.I. Toxicity of Nanoplastics for Zebrafish Embryos, What We Know and Where to Go next Epub. Sci. Total Environ. 2021, 797, 149125. [Google Scholar] [CrossRef]
- Tao, Y.; Li, Z.; Yang, Y.; Jiao, Y.; Qu, J.; Wang, Y.; Zhang, Y. Effects of Common Environmental Endocrine-Disrupting Chemicals on Zebrafish Behavior. Water Res. 2022, 208, 117826. [Google Scholar] [CrossRef]
- Gupta, P.; Mahapatra, A.; Suman, A.; Ray, S.S.; Malafaia, G.; Singh, R.K. Polystyrene Microplastics Disrupt Female Reproductive Health and Fertility via Sirt1 Modulation in Zebrafish (Danio rerio). J. Hazard. Mater. 2023, 460, 132359. [Google Scholar] [CrossRef]
- Ullah, S.; Ahmad, S.; Guo, X.; Ullah, S.; Ullah, S.; Nabi, G.; Wanghe, K. A Review of the Endocrine Disrupting Effects of Micro and Nano Plastic and Their Associated Chemicals in Mammals. Front. Endocrinol. 2022, 13, 1084236. [Google Scholar] [CrossRef]
- Liu, L.; Xu, K.; Zhang, B.; Ye, Y.; Zhang, Q.; Jiang, W. Cellular Internalization and Release of Polystyrene Microplastics and Nanoplastics. Sci. Total Environ. 2021, 779, 146523. [Google Scholar] [CrossRef]
- Trestrail, C.; Nugegoda, D.; Shimeta, J. Invertebrate Responses to Microplastic Ingestion: Reviewing the Role of the Antioxidant System. Sci. Total Environ. 2020, 734, 138559. [Google Scholar] [CrossRef]
- Pitt, J.A.; Kozal, J.S.; Jayasundara, N.; Massarsky, A.; Trevisan, R.; Geitner, N.; Wiesner, M.; Levin, E.D.; Di Giulio, R.T. Uptake, Tissue Distribution, and Toxicity of Polystyrene Nanoparticles in Developing Zebrafish (Danio rerio). Aquat. Toxicol. 2018, 194, 185–194. [Google Scholar] [CrossRef]
- Lu, Y.; Zhang, Y.; Deng, Y.; Jiang, W.; Zhao, Y.; Geng, J.; Ding, L.; Ren, H. Uptake and Accumulation of Polystyrene Microplastics in Zebrafish (Danio rerio) and Toxic Effects in Liver. Environ. Sci. Technol. 2016, 50, 4054–4060. [Google Scholar] [CrossRef]
- Yang, H.-Y.; Lee, T.-H. Antioxidant Enzymes as Redox-Based Biomarkers: A Brief Review. BMB Rep. 2015, 48, 200–208. [Google Scholar] [CrossRef]
- Ratan, R.R. The Chemical Biology of Ferroptosis in the Central Nervous System. Cell Chem. Biol. 2020, 27, 479–498. [Google Scholar] [CrossRef]
- Sökmen, T.Ö.; Sulukan, E.; Türkoğlu, M.; Baran, A.; Özkaraca, M.; Ceyhun, S.B. Polystyrene Nanoplastics (20 nm) Are Able to Bioaccumulate and Cause Oxidative DNA Damages in the Brain Tissue of Zebrafish Embryo (Danio rerio). Neurotoxicology 2020, 77, 51–59. [Google Scholar] [CrossRef]
- Xiang, C.; Chen, H.; Liu, X.; Dang, Y.; Li, X.; Yu, Y.; Li, B.; Li, X.; Sun, Y.; Ding, P.; et al. UV-Aged Microplastics Induces Neurotoxicity by Affecting the Neurotransmission in Larval Zebrafish. Chemosphere 2023, 324, 138252. [Google Scholar] [CrossRef]
- Shi, W.; Sun, S.; Han, Y.; Tang, Y.; Zhou, W.; Du, X.; Liu, G. Microplastics Impair Olfactory-Mediated Behaviors of Goldfish Carassius Auratus. J. Hazard. Mater. 2021, 409, 125016. [Google Scholar] [CrossRef] [PubMed]
- de Souza Lima, A.C.M.; de Alvarenga, K.A.F.; Codo, B.C.; Sacramento, E.K.; Rosa, D.V.F.; Souza, R.P.; Romano-Silva, M.A.; Souza, B.R. Impairment of Motor but Not Anxiety-like Behavior Caused by the Increase of Dopamine during Development Is Sustained in Zebrafish Larvae at Later Stages. Int. J. Dev. Neurosci. 2020, 80, 106–122. [Google Scholar] [CrossRef] [PubMed]
- Ding, J.; Zhang, S.; Razanajatovo, R.M.; Zou, H.; Zhu, W. Accumulation, Tissue Distribution, and Biochemical Effects of Polystyrene Microplastics in the Freshwater Fish Red Tilapia (Oreochromis niloticus). Environ. Pollut. 2018, 238, 1–9. [Google Scholar] [CrossRef]
- Huang, J.; Wen, B.; Xu, L.; Ma, H.; Li, X.; Gao, J.; Chen, Z. Micro/Nano-Plastics Cause Neurobehavioral Toxicity in Discus Fish (Symphysodon aequifasciatus): Insight from Brain-Gut-Microbiota Axis. J. Hazard. Mater. 2022, 421, 126830. [Google Scholar] [CrossRef] [PubMed]
- Bhagat, J.; Zang, L.; Nishimura, N.; Shimada, Y. Zebrafish: An Emerging Model to Study Microplastic and Nanoplastic Toxicity. Sci. Total Environ. 2020, 728, 138707. [Google Scholar] [CrossRef]
- Wang, J.; Li, Y.; Lu, L.; Zheng, M.; Zhang, X.; Tian, H.; Wang, W.; Ru, S. Polystyrene Microplastics Cause Tissue Damages, Sex-Specific Reproductive Disruption and Transgenerational Effects in Marine Medaka (Oryzias melastigma). Environ. Pollut. 2019, 254, 113024. [Google Scholar] [CrossRef]
- Lin, X.; Wang, Y.; Yang, X.; Watson, P.; Yang, F.; Liu, H. Endocrine Disrupting Effect and Reproductive Toxicity of the Separate Exposure and Co-Exposure of Nano-Polystyrene and Diethylstilbestrol to Zebrafish. Sci. Total Environ. 2023, 865, 161100. [Google Scholar] [CrossRef] [PubMed]
- Rong, W.; Chen, Y.; Xiong, Z.; Zhao, H.; Li, T.; Liu, Q.; Song, J.; Wang, X.; Liu, Y.; Liu, S. Effects of Combined Exposure to Polystyrene Microplastics and 17α-Methyltestosterone on the Reproductive System of Zebrafish. Theriogenology 2024, 215, 158–169. [Google Scholar] [CrossRef]
- Qiang, L.; Lo, L.S.H.; Gao, Y.; Cheng, J. Parental Exposure to Polystyrene Microplastics at Environmentally Relevant Concentrations Has Negligible Transgenerational Effects on Zebrafish (Danio rerio). Ecotoxicol. Environ. Saf. 2020, 206, 111382. [Google Scholar] [CrossRef]
- Santos, D.; Luzio, A.; Félix, L.; Bellas, J.; Monteiro, S.M. Oxidative Stress, Apoptosis and Serotonergic System Changes in Zebrafish (Danio rerio) Gills after Long-Term Exposure to Microplastics and Copper. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 2022, 258, 109363. [Google Scholar] [CrossRef]
- Zhang, L.; Luo, Y.; Zhang, Z.; Pan, Y.; Li, X.; Zhuang, Z.; Li, J.; Luo, Q.; Chen, X. Enhanced Reproductive Toxicity of Photodegraded Polylactic Acid Microplastics in Zebrafish. Sci. Total Environ. 2024, 912, 168742. [Google Scholar] [CrossRef]
- Copinet, A.; Bertrand, C.; Govindin, S.; Coma, V.; Couturier, Y. Effects of Ultraviolet Light (315 nm), Temperature and Relative Humidity on the Degradation of Polylactic Acid Plastic Films. Chemosphere 2004, 55, 763–773. [Google Scholar] [CrossRef]
- Yilmaz, B.; Terekeci, H.; Sandal, S.; Kelestimur, F. Endocrine Disrupting Chemicals: Exposure, Effects on Human Health, Mechanism of Action, Models for Testing and Strategies for Prevention. Rev. Endocr. Metab. Disord. 2020, 21, 127–147. [Google Scholar] [CrossRef] [PubMed]
- Sambolino, A.; Iniguez, E.; Herrera, I.; Kaufmann, M.; Dinis, A.; Cordeiro, N. Microplastic Ingestion and Plastic Additive Detection in Pelagic Squid and Fish: Implications for Bioindicators and Plastic Tracers in Open Oceanic Food Webs. Sci. Total Environ. 2023, 894, 164952. [Google Scholar] [CrossRef] [PubMed]
- Ngoc Do, A.T.; Ha, Y.; Kang, H.-J.; Kim, J.M.; Kwon, J.-H. Equilibrium Leaching of Selected Ultraviolet Stabilizers from Plastic Products. J. Hazard. Mater. 2022, 427, 128144. [Google Scholar] [CrossRef] [PubMed]
- Fauser, P.; Vorkamp, K.; Strand, J. Residual Additives in Marine Microplastics and Their Risk Assessment—A Critical Review. Mar. Pollut. Bull. 2022, 177, 113467. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Wang, X.L.; Zhang, J.W.; Wu, K.S. Impact of Endocrine-Disrupting Chemicals on Reproductive Function in Zebrafish (Danio rerio). Reprod. Domest. Anim. 2015, 50, 1–6. [Google Scholar] [CrossRef]
- Gallo, F.; Fossi, C.; Weber, R.; Santillo, D.; Sousa, J.; Ingram, I.; Nadal, A.; Romano, D. Marine Litter Plastics and Microplastics and Their Toxic Chemicals Components: The Need for Urgent Preventive Measures. Environ. Sci. Eur. 2018, 30, 13. [Google Scholar] [CrossRef] [PubMed]
- Solleiro-Villavicencio, H.; Gomez-De León, C.T.; Del Río-Araiza, V.H.; Morales-Montor, J. The Detrimental Effect of Microplastics on Critical Periods of Development in the Neuroendocrine System. Birth Defects Res. 2020, 112, 1326–1340. [Google Scholar] [CrossRef]
- Zhang, Y.; Xue, W.; Long, R.; Yang, H.; Wei, W. Acetochlor Affects Zebrafish Ovarian Development by Producing Estrogen Effects and Inducing Oxidative Stress. Environ. Sci. Pollut. Res. 2020, 27, 27688–27696. [Google Scholar] [CrossRef]
- Hu, C.; Bai, Y.; Li, J.; Sun, B.; Chen, L. Endocrine Disruption and Reproductive Impairment of Methylparaben in Adult Zebrafish. Food Chem. Toxicol. 2023, 171, 113545. [Google Scholar] [CrossRef]
- Mak, C.W.; Ching-Fong Yeung, K.; Chan, K.M. Acute Toxic Effects of Polyethylene Microplastic on Adult Zebrafish. Ecotoxicol. Environ. Saf. 2019, 182, 109442. [Google Scholar] [CrossRef]
- Haddadi, A.; Kessabi, K.; Boughammoura, S.; Rhouma, M.B.; Mlouka, R.; Banni, M.; Messaoudi, I. Exposure to Microplastics Leads to a Defective Ovarian Function and Change in Cytoskeleton Protein Expression in Rat. Environ. Sci. Pollut. Res. Int. 2022, 29, 34594–34606. [Google Scholar] [CrossRef]
- An, R.; Wang, X.; Yang, L.; Zhang, J.; Wang, N.; Xu, F.; Hou, Y.; Zhang, H.; Zhang, L. Polystyrene Microplastics Cause Granulosa Cells Apoptosis and Fibrosis in Ovary through Oxidative Stress in Rats. Toxicology 2021, 449, 152665. [Google Scholar] [CrossRef]
- Pannetier, P.; Morin, B.; Le Bihanic, F.; Dubreil, L.; Clérandeau, C.; Chouvellon, F.; Van Arkel, K.; Danion, M.; Cachot, J. Environmental Samples of Microplastics Induce Significant Toxic Effects in Fish Larvae. Environ. Int. 2020, 134, 105047. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Xiong, H.; Mi, K.; Xue, W.; Wei, W.; Zhang, Y. Toxicity Comparison of Nano-Sized and Micron-Sized Microplastics to Goldfish Carassius Auratus Larvae. J. Hazard. Mater. 2020, 388, 122058. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Ding, Y.; Cheng, X.; Sheng, D.; Xu, Z.; Rong, Q.; Wu, Y.; Zhao, H.; Ji, X.; Zhang, Y. Polyethylene Microplastics Affect the Distribution of Gut Microbiota and Inflammation Development in Mice. Chemosphere 2020, 244, 125492. [Google Scholar] [CrossRef] [PubMed]
- Chatterjee, A.; Maity, S.; Banerjee, S.; Dutta, S.; Adhikari, M.; Guchhait, R.; Biswas, C.; De, S.; Pramanick, K. Polystyrene Microplastics Disrupt Female Reproductive Health and Fertility via Sirt1 Modulation in Zebrafish (Danio rerio). Sci. Total Environ. 2022, 830, 154796. [Google Scholar] [CrossRef] [PubMed]
- Manikkam, M.; Tracey, R.; Guerrero-Bosagna, C.; Skinner, M.K. Plastics Derived Endocrine Disruptors (BPA, DEHP and DBP) Induce Epigenetic Transgenerational Inheritance of Obesity, Reproductive Disease and Sperm Epimutations. Plos one 2013, 8, e55387. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.-H.; Yu, Y.-B.; Choi, J.-H. Toxic Effects on Bioaccumulation, Hematological Parameters, Oxidative Stress, Immune Responses and Neurotoxicity in Fish Exposed to Microplastics: A Review. J. Hazard. Mater. 2021, 413, 125423. [Google Scholar] [CrossRef] [PubMed]
- Wen, S.; Chen, Y.; Tang, Y.; Zhao, Y.; Liu, S.; You, T.; Xu, H. Male Reproductive Toxicity of Polystyrene Microplastics: Study on the Endoplasmic Reticulum Stress Signaling Pathway. Food Chem. Toxicol. 2023, 172, 113577. [Google Scholar] [CrossRef]
- Li, S.; Wang, Q.; Yu, H.; Yang, L.; Sun, Y.; Xu, N.; Wang, N.; Lei, Z.; Hou, J.; Jin, Y.; et al. Polystyrene Microplastics Induce Blood-Testis Barrier Disruption Regulated by the MAPK-Nrf2 Signaling Pathway in Rats. Environ. Sci. Pollut. Res. Int. 2021, 28, 47921–47931. [Google Scholar] [CrossRef] [PubMed]
- Xie, X.; Deng, T.; Duan, J.; Xie, J.; Yuan, J.; Chen, M. Exposure to Polystyrene Microplastics Causes Reproductive Toxicity through Oxidative Stress and Activation of the P38 MAPK Signaling Pathway. Ecotoxicol. Environ. Saf. 2020, 190, 110133. [Google Scholar] [CrossRef] [PubMed]
- Hou, J.; Lei, Z.; Cui, L.; Hou, Y.; Yang, L.; An, R.; Wang, Q.; Li, S.; Zhang, H.; Zhang, L. Polystyrene Microplastics Lead to Pyroptosis and Apoptosis of Ovarian Granulosa Cells via NLRP3/Caspase-1 Signaling Pathway in Rats. Ecotoxicol. Environ. Saf. 2021, 212, 112012. [Google Scholar] [CrossRef]
- Liu, X.; Ji, K.; Jo, A.; Moon, H.-B.; Choi, K. Effects of TDCPP or TPP on Gene Transcriptions and Hormones of HPG Axis, and Their Consequences on Reproduction in Adult Zebrafish (Danio rerio). Aquat. Toxicol. 2013, 134–135, 104–111. [Google Scholar] [CrossRef]
- Lin, W.; Luo, H.; Wu, J.; Liu, X.; Cao, B.; Liu, Y.; Yang, P.; Yang, J. Polystyrene Microplastics Enhance the Microcystin-LR-Induced Gonadal Damage and Reproductive Endocrine Disruption in Zebrafish. Sci. Total Environ. 2023, 876, 162664. [Google Scholar] [CrossRef]
- Zhang, T.; Jiang, B.; Xing, Y.; Ya, H.; Lv, M.; Wang, X. Current Status of Microplastics Pollution in the Aquatic Environment, Interaction with Other Pollutants, and Effects on Aquatic Organisms. Environ. Sci. Pollut. Res. 2022, 29, 16830–16859. [Google Scholar] [CrossRef]
- Godoy, V.; Blázquez, G.; Calero, M.; Quesada, L.; Martín-Lara, M.A. The Potential of Microplastics as Carriers of Metals. Environ. Pollut. 2019, 255, 113363. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, Y.; Su, F.; Wang, Y.; Peng, L.; Liu, D. Adsorption Behaviour of Microplastics on the Heavy Metal Cr(VI) before and after Ageing. Chemosphere 2022, 302, 134865. [Google Scholar] [CrossRef]
- Lee, Y.; Yoon, D.S.; Lee, Y.H.; Kwak, J.I.; An, Y.J.; Lee, J.S.; Park, J.C. Combined Exposure to Microplastics and Zinc Produces Sex-Specific Responses in the Water Flea Daphnia Magna. J. Hazard. Mater. 2021, 420, 126652. [Google Scholar] [CrossRef] [PubMed]
- Lu, K.; Qiao, R.; An, H.; Zhang, Y. Influence of Microplastics on the Accumulation and Chronic Toxic Effects of Cadmium in Zebrafish (Danio rerio). Chemosphere 2018, 202, 514–520. [Google Scholar] [CrossRef]
- Rochman, C.M.; Kurobe, T.; Flores, I.; Teh, S.J. Early Warning Signs of Endocrine Disruption in Adult Fish from the Ingestion of Polyethylene with and without Sorbed Chemical Pollutants from the Marine Environment. Sci. Total Environ. 2014, 493, 656–661. [Google Scholar] [CrossRef]
- Wang, J.; Li, X.; Gao, M.; Li, X.; Zhao, L.; Ru, S. Polystyrene Microplastics Increase Estrogenic Effects of 17α-Ethynylestradiol on Male Marine Medaka (Oryzias melastigma). Chemosphere 2022, 287, 132312. [Google Scholar] [CrossRef]
- Brieño-Enríquez, M.A.; Larriba, E.; Del Mazo, J. Endocrine Disrupters, microRNAs, and Primordial Germ Cells: A Dangerous Cocktail. Fertil. Steril. 2016, 106, 871–879. [Google Scholar] [CrossRef]
- Söffker, M.; Tyler, C.R. Endocrine Disrupting Chemicals and Sexual Behaviors in Fish—A Critical Review on Effects and Possible Consequences. Crit. Rev. Toxicol. 2012, 42, 653–668. [Google Scholar] [CrossRef]
- Qiang, L.; Cheng, J. Exposure to Polystyrene Microplastics Impairs Gonads of Zebrafish (Danio rerio). Chemosphere 2021, 263, 128161. [Google Scholar] [CrossRef]
- Zheng, J.-L.; Chen, X.; Peng, L.-B.; Wang, D.; Zhu, Q.-L.; Li, J.; Han, T. Particles Rather than Released Zn2+ from ZnO Nanoparticles Aggravate Microplastics Toxicity in Early Stages of Exposed Zebrafish and Their Unexposed Offspring. J. Hazard. Mater. 2022, 424, 127589. [Google Scholar] [CrossRef]
- Zhang, X.; Zhao, J.; Gan, T.; Jin, C.; Li, X.; Cao, Z.; Jiang, K.; Zou, W. Aging Relieves the Promotion Effects of Polyamide Microplastics on Parental Transfer and Developmental Toxicity of TDCIPP to Zebrafish Offspring. J. Hazard. Mater. 2022, 437, 129409. [Google Scholar] [CrossRef]
- Cresci, A.; Samuelsen, O.B.; Durif, C.M.F.; Bjelland, R.M.; Skiftesvik, A.B.; Browman, H.I.; Agnalt, A.-L. Exposure to Teflubenzuron Negatively Impacts Exploratory Behavior, Learning and Activity of Juvenile European Lobster (Homarus gammarus). Ecotoxicol. Environ. Saf. 2018, 160, 216–221. [Google Scholar] [CrossRef]
- Wang, A.; Wan, X.; Zhuang, P.; Jia, W.; Ao, Y.; Liu, X.; Tian, Y.; Zhu, L.; Huang, Y.; Yao, J.; et al. High Fried Food Consumption Impacts Anxiety and Depression Due to Lipid Metabolism Disturbance and Neuroinflammation. Proc. Natl. Acad. Sci. USA 2023, 120, e2221097120. [Google Scholar] [CrossRef]
- Orger, M.B.; de Polavieja, G.G. Zebrafish Behavior: Opportunities and Challenges. Annu. Rev. Neurosci. 2017, 40, 125–147. [Google Scholar] [CrossRef] [PubMed]
- Darrow, K.O.; Harris, W.A. Characterization and Development of Courtship in Zebrafish, Danio rerio. Zebrafish 2004, 1, 40–45. [Google Scholar] [CrossRef] [PubMed]
- Sorensen, P.W. Hormones, Pheromones and Chemoreception. In Fish Chemoreception; Hara, T.J., Ed.; Springer: Dordrecht, The Netherlands, 1992; pp. 199–228. ISBN 978-94-010-5030-2. [Google Scholar]
- Zhang, P.; Zhang, Y.; Li, P.; Tu, D.; Zheng, X. Effects of the Adsorption Behavior of Polyamide Microplastics on Male Reproductive Health by Reduction of Testosterone Bioavailability. Ecotoxicol. Environ. Saf. 2024, 269, 115747. [Google Scholar] [CrossRef]
- Marvel, M.; Levavi-Sivan, B.; Wong, T.-T.; Zmora, N.; Zohar, Y. Gnrh2 Maintains Reproduction in Fasting Zebrafish through Dynamic Neuronal Projection Changes and Regulation of Gonadotropin Synthesis, Oogenesis, and Reproductive Behaviors. Sci. Rep. 2021, 11, 6657. [Google Scholar] [CrossRef]
- Forner-Piquer, I.; Mylonas, C.C.; Calduch-Giner, J.; Maradonna, F.; Gioacchini, G.; Allarà, M.; Piscitelli, F.; Di Marzo, V.; Pérez-Sánchez, J.; Carnevali, O. Endocrine Disruptors in the Diet of Male Sparus Aurata: Modulation of the Endocannabinoid System at the Hepatic and Central Level by Di-Isononyl Phthalate and Bisphenol A. Environ. Int. 2018, 119, 54–65. [Google Scholar] [CrossRef]
- Webb, S.; Gaw, S.; Marsden, I.D.; McRae, N.K. Biomarker Responses in New Zealand Green-Lipped Mussels Perna Canaliculus Exposed to Microplastics and Triclosan. Ecotoxicol. Environ. Saf. 2020, 201, 110871. [Google Scholar] [CrossRef]
- Andersson, M.; Kettunen, P. Effects of Holding Density on the Welfare of Zebrafish: A Systematic Review. Zebrafish 2021, 18, 297–306. [Google Scholar] [CrossRef]
- Baganz, D.; Siegmund, R.; Staaks, G.; Pflugmacher, S.; Steinberg, C.E. Temporal Pattern in Swimming Activity of Two Fish Species (Danio rerio and Leucaspius delineatus) under Chemical Stress Conditions. Biol. Rhythm Res. 2005, 36, 263–276. [Google Scholar] [CrossRef]
- Luan, J.; Zhang, S.; Xu, Y.; Wen, L.; Feng, X. Effects of Microplastic Exposure on the Early Developmental Period and Circadian Rhythm of Zebrafish (Danio rerio): A Comparative Study of Polylactic Acid and Polyglycolic Acid. Ecotoxicol. Environ. Saf. 2023, 258, 114994. [Google Scholar] [CrossRef]
- Souza, T.P.; Franscescon, F.; Stefanello, F.V.; Müller, T.E.; Santos, L.W.; Rosemberg, D.B. Acute Effects of Ethanol on Behavioral Responses of Male and Female Zebrafish in the Open Field Test with the Influence of a Non-Familiar Object. Behav. Process. 2021, 191, 104474. [Google Scholar] [CrossRef] [PubMed]
- Truong, L.; Simonich, M.T.; Tanguay, R.L. Better, Faster, Cheaper: Getting the Most Out of High-Throughput Screening with Zebrafish. Methods Mol. Biol. 2016, 1473, 89–98. [Google Scholar] [CrossRef] [PubMed]
- Garcia, G.R.; Noyes, P.D.; Tanguay, R.L. Advancements in Zebrafish Applications for 21st Century Toxicology. Pharmacol. Ther. 2016, 161, 11–21. [Google Scholar] [CrossRef]
- Noyes, P.D.; Haggard, D.E.; Gonnerman, G.D.; Tanguay, R.L. Advanced Morphological—Behavioral Test Platform Reveals Neurodevelopmental Defects in Embryonic Zebrafish Exposed to Comprehensive Suite of Halogenated and Organophosphate Flame Retardants. Toxicol. Sci. 2015, 145, 177–195. [Google Scholar] [CrossRef] [PubMed]
- Braun, D.; Rosenberg, A.M.; Rabaniam, E.; Haruvi, R.; Malamud, D.; Barbara, R.; Aiznkot, T.; Levavi-Sivan, B.; Kawashima, T. High-Resolution Tracking of Unconfined Zebrafish Behavior Reveals Stimulatory and Anxiolytic Effects of Psilocybin. Mol. Psychiatry 2024, 1–17. [Google Scholar] [CrossRef]
- Yang, P.; Takahashi, H.; Murase, M.; Itoh, M. Zebrafish Behavior Feature Recognition Using Three-Dimensional Tracking and Machine Learning. Sci. Rep. 2021, 11, 13492. [Google Scholar] [CrossRef]
- Thomson, J.S.; Al-Temeemy, A.A.; Isted, H.; Spencer, J.W.; Sneddon, L.U. Assessment of Behaviour in Groups of Zebrafish (Danio rerio) Using an Intelligent Software Monitoring Tool, the Chromatic Fish Analyser. J. Neurosci. Methods 2019, 328, 108433. [Google Scholar] [CrossRef]
- Barreiros, M.D.O.; Barbosa, F.G.; Dantas, D.D.O.; Santos, D.D.M.L.D.; Ribeiro, S.; Santos, G.C.D.O.; Barros, A.K. Zebrafish Automatic Monitoring System for Conditioning and Behavioral Analysis. Sci. Rep. 2021, 11, 9330. [Google Scholar] [CrossRef]
- Fan, Y.-L.; Hsu, F.-R.; Wang, Y.; Liao, L.-D. Unlocking the Potential of Zebrafish Research with Artificial Intelligence: Advancements in Tracking, Processing, and Visualization. Med. Biol. Eng. Comput. 2023, 61, 2797–2814. [Google Scholar] [CrossRef]
- Sawaki, R.; Sato, D.; Nakayama, H.; Nakagawa, Y.; Shimada, Y. ZF-AutoML: An Easy Machine-Learning-Based Method to Detect Anomalies in Fluorescent-Labelled Zebrafish. Inventions 2019, 4, 72. [Google Scholar] [CrossRef]
- Jeong, Y.-M.; Choi, T.-I.; Hwang, K.-S.; Lee, J.-S.; Gerlai, R.; Kim, C.-H. Optogenetic Manipulation of Olfactory Responses in Transgenic Zebrafish: A Neurobiological and Behavioral Study. Int. J. Mol. Sci. 2021, 22, 7191. [Google Scholar] [CrossRef] [PubMed]
- Gore, S.V.; Kakodkar, R.; Del Rosario Hernández, T.; Edmister, S.T.; Creton, R. Zebrafish Larvae Position Tracker (Z-LaP Tracker): A High-Throughput Deep-Learning Behavioral Approach for the Identification of Calcineurin Pathway-Modulating Drugs Using Zebrafish Larvae. Sci. Rep. 2023, 13, 3174. [Google Scholar] [CrossRef] [PubMed]
- Ragusa, A.; Matta, M.; Cristiano, L.; Matassa, R.; Battaglione, E.; Svelato, A.; De Luca, C.; D’Avino, S.; Gulotta, A.; Rongioletti, M.C.A.; et al. Deeply in Plasticenta: Presence of Microplastics in the Intracellular Compartment of Human Placentas. Int. J. Environ. Res. Public Health 2022, 19, 11593. [Google Scholar] [CrossRef]
- Xu, Z.; Shen, J.; Lin, L.; Chen, J.; Wang, L.; Deng, X.; Wu, X.; Lin, Z.; Zhang, Y.; Yu, R.; et al. Exposure to Irregular Microplastic Shed from Baby Bottles Activates the ROS/NLRP3/Caspase-1 Signaling Pathway, Causing Intestinal Inflammation. Environ. Int. 2023, 181, 108296. [Google Scholar] [CrossRef]
- Ragusa, A.; Notarstefano, V.; Svelato, A.; Belloni, A.; Gioacchini, G.; Blondeel, C.; Zucchelli, E.; De Luca, C.; D’Avino, S.; Gulotta, A.; et al. Raman Microspectroscopy Detection and Characterisation of Microplastics in Human Breastmilk. Polymers 2022, 14, 2700. [Google Scholar] [CrossRef]
Classification | Coexposure | MP/NP Size | MNP Concentration | Exposure Time | Effects | Reference |
---|---|---|---|---|---|---|
PS-MPs | / | 0.5 µm | 500 µg/L | 60 days | Ovarian tissue accumulation, ovarian cell apoptosis, decreased percentage of mature oocytes, changes in serum hormone levels (E2/T ratio), and changes in gene transcription along the HPG axis (erα, cyp19b, fshβ, and lhβ). | [84] |
PS-MPs | / | 1 μm | 10, 100, or 1000 μg/L | 21 days | Oxidative stress, gonadal histological changes (the thickness of the testicular basement membrane was significantly reduced), the level of apoptosis in testicular cells was significantly increased, and the expression of p53-mediated apoptotic pathways was detected. | [139] |
PS-NPs | / | ~70 nm | 0.5 or 1.5 ppm | 1 month | Gonadal bioaccumulation, disorders of lipid and energy metabolism, and oxidative stress. | [49] |
PE MPs | / | 10–22 μm, 45–53 μm 90–106 μm, 212–250 μm and 500–600 μm | 2 mg/L | 96 h | Cyp1a and VTG1 expression levels were changed and the oogenesis process was interrupted. | [115] |
NPs | Diethylstilbestrol (1, 10, and 100 ng/L) | 70 nm | 2 mg/L | 21 days | GSI decreased and gonadal histological lesions inhibited the secretion of sex hormones (E2 and T) and VTG. | [100] |
PS-NPs, PS-MPs | TPhP (0.5, 0.7, 1, 1.2, and 1.5 mg/L) | 46 nm, 5.8 μm | 2 mg/L | 21 days | Exposure to MPs and NPs alone did not affect GSI in fish, while combined exposure of MNPS with TPhP exacerbated gonadal histological lesions and significantly increased VTG secretion. | [68] |
PS-MPs | ZnO (1200 μg/L) ZnSO4 (500 μg/L) | 5.0 µm | 500 μg/L | 30 days | Stronger oxidative stress, aggravated cell apoptosis. Improve antioxidant system and apoptotic responses. | [140] |
PS-MPs | MC-LR (1, 5, and 25 μg/L) | 1 μm | 100 μg/L | 100 μg/L | Gonadal histopathological changes, sex hormone changes (E2 and T), and HPG axis key genes’ (gnrh2, gnrh3, fshβ, lhβ, cyp19a1b, cyp19a1a, erα, cyp11a, 3βhsd, 17βhsd, fshr, and lhr) expression changes. | [129] |
PA-MPs | Tris(1,3-dichloro-2-propyl) phosphate (TDCIPP) (0.4, 2, or 10 μg/L) | 17.4 ± 7.2 μm | 100 μg/L | 4 months | Gonadal bioaccumulation. | [141] |
PS-MPs | 17α-Methyltestosterone (50 ng/L) | 5 μm | 0.5 mg/L | 7, 14, and 21 days | The levels of E2, LH, and FSH were significantly decreased. Gonadal tissue damage, with significantly reduced expression of genes involved in gonadal hormone synthesis and metabolism (cyp11a, cyp17a1, cyp19a1a, StAR, 3β-HSD, and 17β-HSD3). | [101] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, B.; Yu, H.; Yi, J.; Lei, P.; He, J.; Ruan, J.; Xu, P.; Tao, R.; Jin, L.; Wu, W.; et al. Behavioral Studies of Zebrafish Reveal a New Perspective on the Reproductive Toxicity of Micro- and Nanoplastics. Toxics 2024, 12, 178. https://doi.org/10.3390/toxics12030178
Wu B, Yu H, Yi J, Lei P, He J, Ruan J, Xu P, Tao R, Jin L, Wu W, et al. Behavioral Studies of Zebrafish Reveal a New Perspective on the Reproductive Toxicity of Micro- and Nanoplastics. Toxics. 2024; 12(3):178. https://doi.org/10.3390/toxics12030178
Chicago/Turabian StyleWu, Baihui, Haiyang Yu, Jia Yi, Pengyu Lei, Jiaxuan He, Jing Ruan, Peiye Xu, Runchao Tao, Libo Jin, Wei Wu, and et al. 2024. "Behavioral Studies of Zebrafish Reveal a New Perspective on the Reproductive Toxicity of Micro- and Nanoplastics" Toxics 12, no. 3: 178. https://doi.org/10.3390/toxics12030178
APA StyleWu, B., Yu, H., Yi, J., Lei, P., He, J., Ruan, J., Xu, P., Tao, R., Jin, L., Wu, W., Yang, Q., Sun, D., & Zhang, X. (2024). Behavioral Studies of Zebrafish Reveal a New Perspective on the Reproductive Toxicity of Micro- and Nanoplastics. Toxics, 12(3), 178. https://doi.org/10.3390/toxics12030178