Pollution Characteristics and Health Risks of Polycyclic Aromatic Compounds (PACs) in Soils of a Coking Plant
Abstract
:1. Introduction
2. Materials and Methods
2.1. Soil Sampling and Pretreatment
2.2. PACs Analysis, Quality Assurance (QA), and Quality Control (QC)
2.3. Total Organic Carbon Analysis
2.4. Data Analysis
3. Results and Discussion
3.1. PAC Concentrations
3.2. Composition Profiles of PACs
3.3. Spatial Distribution and Influencing Factors
3.4. Potential Emission Sources and PCA-MLR Analysis
3.5. Exposure Risk Assessment
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Srogi, K. Monitoring of environmental exposure to polycyclic aromatic hydrocarbons: A review. Environ. Chem. Lett. 2007, 5, 169–195. [Google Scholar] [CrossRef]
- Yunker, M.B.; Snowdon, L.R.; MacDonald, R.W.; Smith, J.N.; Fowler, M.G.; Skibo, D.N.; McLaughlin, F.A.; Danyushevskaya, A.I.; Petrova, V.I.; Ivanov, G.I. Polycyclic aromatic hydrocarbon composition and potential sources for sediment samples from the Beaufort and Barents Seas. Environ. Sci. Technol. 1996, 30, 1310–1320. [Google Scholar] [CrossRef]
- Wang, C.H.; Zhou, S.L.; Song, J.; Wu, S.H. Human health risks of polycyclic aromatic hydrocarbons in the urban soils of Nanjing, China. Sci. Total Environ. 2018, 612, 750–757. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Wang, J.F.; Bao, H.Y.; Li, J.; Wu, F.Y. Polycyclic aromatic hydrocarbons in urban soils of Zhengzhou City, China: Occurrence, source and human health evaluation. Bull. Environ. Contam. Toxicol. 2020, 105, 446–452. [Google Scholar] [CrossRef] [PubMed]
- Davie-Martin, C.L.; Stratton, K.G.; Teeguarden, J.G.; Waters, K.M.; Simonich, S.L.M. Implications of bioremediation of polycyclic aromatic hydrocarbon contaminated soils for human health and cancer risk. Environ. Sci. Technol. 2017, 51, 9458–9468. [Google Scholar] [CrossRef] [PubMed]
- Dreij, K.; Lundin, L.; Le Bihanic, F.; Lundstedt, S. Polycyclic aromatic compounds in urban soils of Stockholm City: Occurrence, sources and human health risk assessment. Environ. Res. 2020, 182, 108989. [Google Scholar] [CrossRef] [PubMed]
- Tarafdar, A.; Chawda, S.; Sinha, A. Health risk assessment from polycyclic aromatic hydrocarbons (PAHs) present in dietary components: A meta-analysis on a global scale. Polycycl. Aromat. Compd. 2020, 40, 850–861. [Google Scholar] [CrossRef]
- Zheng, H.; Qu, C.K.; Zhang, J.Q.; Talpur, S.A.; Ding, Y.; Xing, X.L.; Qi, S.H. Polycyclic aromatic hydrocarbons (PAHs) in agricultural soils from Ningde, China: Levels, sources, and human health risk assessment. Environ. Geochem. Health 2019, 41, 907–919. [Google Scholar] [CrossRef] [PubMed]
- Shen, H.Z.; Huang, Y.; Wang, R.; Zhu, D.; Li, W.; Shen, G.F.; Wang, B.; Zhang, Y.Y.; Chen, Y.C.; Lu, Y.; et al. Global atmospheric emissions of polycyclic aromatic hydrocarbons from 1960 to 2008 and future predictions. Environ. Sci. Technol. 2013, 47, 6415–6424. [Google Scholar] [CrossRef]
- Sarigiannis, D.A.; Karakitsios, S.P.; Zikopoulos, D.; Nikolaki, S.; Kermenidou, M. Lung cancer risk from PAHs emitted from biomass combustion. Environ. Res. 2015, 137, 147–156. [Google Scholar] [CrossRef]
- Wang, W.T.; Jariyasopit, N.; Schrlau, J.; Jia, Y.L.; Tao, S.; Yu, T.W.; Dashwood, R.H.; Zhang, W.; Wang, X.J.; Simonich, S.L.M. Concentration and photochemistry of PAHs, NPAHs, and OPAHs and toxicity of PM2.5 during the Beijing Olympic Games. Environ. Sci. Technol. 2011, 45, 6887–6895. [Google Scholar] [CrossRef]
- Kelly, J.M.; Ivatt, P.D.; Evans, M.J.; Kroll, J.H.; Hrdina, A.I.H.; Kohale, I.N.; White, F.M.; Engelward, B.P.; Selin, N.E. Global cancer risk from unregulated polycyclic aromatic hydrocarbons. GeoHealth 2021, 5, e2021GH000401. [Google Scholar] [CrossRef]
- Zhu, Y.Y.; Duan, X.L.; Qin, N.; Li, J.H.; Tian, J.; Zhong, Y.; Chen, L.G.; Fan, R.F.; Yu, Y.; Wu, G.P.; et al. Internal biomarkers and external estimation of exposure to polycyclic aromatic hydrocarbons and their relationships with cancer mortality in a high cancer incidence area. Sci. Total Environ. 2019, 688, 742–750. [Google Scholar] [CrossRef] [PubMed]
- Tian, F.J.; Li, W.X.; Lyu, Y.; Zhang, P.; Mu, J.B.; Pei, Q.L.; Zheng, J.P. Heat-shock protein 70 (HSP70) polymorphisms affect the risk of coke-oven emission-induced neurobehavioral damage. Neurotoxicology 2020, 76, 174–182. [Google Scholar] [CrossRef] [PubMed]
- Yuan, T.H.; Ke, D.Y.; Wang, J.E.H.; Chan, C.C. Associations between renal functions and exposure of arsenic and polycyclic aromatic hydrocarbon in adults living near a petrochemical complex. Environ. Pollut. 2020, 256, 113457. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.B. Research on the status and green development of China’s coking industry. Coal Econ. Res. 2019, 39, 4–14. (In Chinese) [Google Scholar]
- Xu, S.S.; Liu, W.X.; Tao, S. Estimation of annual emission of polycyclic aromatic hydrocarbons (PAHs) in China. J. Agro-Environ. Sci. 2005, 24, 476–479. (In Chinese) [Google Scholar]
- Xu, Y.; Shen, H.Z.; Yun, X.; Gao, F.; Chen, Y.L.; Li, B.G.; Liu, J.F.; Ma, J.M.; Wang, X.L.; Liu, X.P.; et al. Health effects of banning beehive coke ovens and implementation of the ban in China. Proc. Natl. Acad. Sci. USA 2018, 115, 2693–2698. [Google Scholar] [CrossRef] [PubMed]
- Xu, S.S.; Liu, W.X.; Tao, S. Emission of polycyclic aromatic hydrocarbons in China. Environ. Sci. Technol. 2006, 40, 702–708. [Google Scholar] [CrossRef]
- Yan, Y.L.; He, Q.S.; Guo, L.L.; Li, H.Y.; Zhang, H.F.; Shao, M.; Wang, Y.H. Source apportionment and toxicity of atmospheric polycyclic aromatic hydrocarbons by PMF: Quantifying the influence of coal usage in Taiyuan, China. Atmos. Res. 2017, 193, 50–59. [Google Scholar] [CrossRef]
- Li, H.L.; Chen, J.J.; Wu, W.; Piao, X.S. Distribution of polycyclic aromatic hydrocarbons in different size fractions of soil from a coke oven plant and its relationship to organic carbon content. J. Hazard. Mater. 2010, 176, 729–734. [Google Scholar] [CrossRef]
- Zhang, Q.F.; Meng, J.; Su, G.J.; Liu, Z.L.; Shi, B.; Wang, T.Y. Source apportionment and risk assessment for polycyclic aromatic hydrocarbons in soils at a typical coking plant. Ecotoxicol. Environ. Saf. 2021, 222, 112509. [Google Scholar] [CrossRef]
- Hou, W.; Zhang, L.; Li, Y.; Zhang, L.H.; Li, S.X.; Ji, L.; Dan, S. Distribution and health risk assessment of polycyclic aromatic hydrocarbons in soil from a typical contaminated urban coking sites in Shenyang City. Bull. Environ. Contam. Toxicol. 2015, 95, 815–821. [Google Scholar] [CrossRef]
- Duan, Y.H.; Shen, G.F.; Tao, S.; Hong, J.P.; Chen, Y.C.; Xue, M.; Li, T.C.; Su, S.; Shen, H.Z.; Fu, X.F.; et al. Characteristics of polycyclic aromatic hydrocarbons in agricultural soils at a typical coke production base in Shanxi, China. Chemosphere 2015, 127, 64–69. [Google Scholar] [CrossRef]
- Wu, J.; Li, K.K.; Ma, D.; Yu, N.; Chai, C. Contamination, source identification, and risk assessment of polycyclic aromatic hydrocarbons in agricultural soils around a typical coking plant in Shandong, China. Hum. Ecol. Risk Assess. 2018, 24, 225–241. [Google Scholar] [CrossRef]
- Zhang, W.H.; Wei, C.H.; Feng, C.H.; Yu, Z.; Ren, M.; Yan, B.; Peng, P.A.; Fu, J.M. Distribution and health-risk of polycyclic aromatic hydrocarbons in soils at a coking plant. J. Environ. Monit. 2011, 13, 3429–3436. [Google Scholar] [CrossRef]
- Du, W.; Yun, X.; Chen, Y.C.; Zhong, Q.R.; Wang, W.; Wang, L.Z.; Qi, M.; Shen, G.F.; Tao, S. PAHs emissions from residential biomass burning in real-world cooking stoves in rural China. Environ. Pollut. 2020, 267, 115592. [Google Scholar] [CrossRef]
- Shen, G.F.; Du, W.; Zhuo, S.J.; Yu, J.L.; Tao, S. Improving regulations on residential emissions and non-criteria hazardous contaminants-Insights from a field campaign on ambient PM and PAHs in North China Plain. Environ. Sci. Policy 2019, 92, 201–206. [Google Scholar] [CrossRef]
- Idowu, O.; Semple, K.T.; Ramadass, K.; O’Connor, W.; Hansbro, P.; Thavamani, P. Analysis of polycyclic aromatic hydrocarbons (PAHs) and their polar derivatives in soils of an industrial heritage city of Australia. Sci. Total Environ. 2020, 699, 134303. [Google Scholar] [CrossRef] [PubMed]
- Yadav, I.C.; Devi, N.L. Nitrated- and oxygenated-polycyclic aromatic hydrocarbon in urban soil from Nepal: Source assessment, air-soil exchange, and soil-air partitioning. Ecotox. Environ. Saf. 2021, 211, 111951. [Google Scholar] [CrossRef] [PubMed]
- Zhuo, S.J.; Shen, G.F.; Zhu, Y.; Du, W.; Pan, X.L.; Li, T.C.; Han, Y.; Li, B.G.; Liu, J.F.; Cheng, H.F.; et al. Source-oriented risk assessment of inhalation exposure to ambient polycyclic aromatic hydrocarbons and contributions of non-priority isomers in urban Nanjing, a megacity located in Yangtze River Delta, China. Environ. Pollut. 2017, 224, 796–809. [Google Scholar] [CrossRef]
- Samburova, V.; Zielinska, B.; Khlystov, A. Do 16 polycyclic aromatic hydrocarbons represent PAH air toxicity? Toxics 2017, 5, 17. [Google Scholar] [CrossRef]
- Gramblicka, T.; Parizek, O.; Stupak, M.; Pulkrabova, J. Assessment of atmospheric pollution by oxygenated and nitrated derivatives of polycyclic aromatic hydrocarbons in two regions of the Czech Republic. Atmos. Environ. 2023, 310, 119981. [Google Scholar] [CrossRef]
- Lakhmanov, D.E.; Kozhevnikov, A.Y.; Pokryshkin, S.A.; Semiletov, I.P.; Kosyakov, D.S. Polycyclic aromatic hydrocarbons in the Siberian Arctic seas sediments. Mar. Pollut. Bull. 2022, 180, 113741. [Google Scholar] [CrossRef] [PubMed]
- Mueller, A.; Ulrich, N.; Hollmann, J.; Zapata Sanchez, C.E.; Rolle-Kampczyk, U.E.; von Bergen, M. Characterization of a multianalyte GC-MS/MS procedure for detecting and quantifying polycyclic aromatic hydrocarbons (PAHs) and PAH derivatives from air particulate matter for an improved risk assessment. Environ. Pollut. 2019, 255, 112967. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Su, P.; Ge, X.; Ren, H.; Ma, S.; Shen, G.; Chen, Q.; Yu, Y.; An, T. Identification of specific halogenated polycyclic aromatic hydrocarbons in surface soils of petrochemical, flame retardant, and electronic waste dismantling industrial parks. J. Hazard. Mater. 2022, 436, 129160. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Wang, X.; Gong, P.; Yao, T. Polycyclic aromatic hydrocarbons in surface soil across the Tibetan Plateau: Spatial distribution, source and air-soil exchange. Environ. Pollut. 2014, 184, 138–144. [Google Scholar] [CrossRef] [PubMed]
- Yadav, I.C.; Devi, N.L.; Li, J.; Zhang, G. Organophosphate ester flame retardants in Nepalese soil: Spatial distribution, source apportionment and air-soil exchange assessment. Chemosphere 2018, 190, 114–123. [Google Scholar] [CrossRef]
- Liu, G.R.; Peng, X.; Wang, R.K.; Tian, Y.Z.; Shi, G.L.; Wu, J.H.; Zhang, P.; Zhou, L.D.; Feng, Y.C. A new receptor model-incremental lifetime cancer risk method to quantify the carcinogenic risks associated with sources of particle-bound polycyclic aromatic hydrocarbons from Chengdu in China. J. Hazard. Mater. 2015, 283, 462–468. [Google Scholar] [CrossRef]
- Shi, G.T.; Chen, Z.L.; Bi, C.J.; Wang, L.; Teng, J.Y.; Li, Y.S.; Xu, S.Y. A comparative study of health risk of potentially toxic metals in urban and suburban road dust in the most populated city of China. Atmos. Environ. 2011, 45, 764–771. [Google Scholar] [CrossRef]
- Peng, C.; Chen, W.P.; Liao, X.L.; Wang, M.E.; Ouyang, Z.Y.; Jiao, W.T.; Bai, Y. Polycyclic aromatic hydrocarbons in urban soils of Beijing: Status, sources, distribution and potential risk. Environ. Pollut. 2011, 159, 802–808. [Google Scholar] [CrossRef]
- Tao, Z.H.; Xie, S.Q.; He, W.N.; Ge, L.L.; Li, W.; Wang, Q.L.; Wang, X.Q. Pollution characteristics and toxicity assessment of PAHs in PM2.5 in Taizhou. Environ. Eng. 2017, 35, 152–156. (In Chinese) [Google Scholar]
- Nisbet, I.C.T.; Lagoy, P.K. Toxic equivalency factors (TEFs) for polycyclic aromatic-hydrocarbons (PAHs). Regul. Toxicol. Pharm. 1992, 16, 290–300. [Google Scholar] [CrossRef]
- Sun, Z.; Zhu, Y.; Zhuo, S.J.; Liu, W.P.; Zeng, E.Y.; Wang, X.L.; Xing, B.S.; Tao, S. Occurrence of nitro- and oxy-PAHs in agricultural soils in eastern China and excess lifetime cancer risks from human exposure through soil ingestion. Environ. Int. 2017, 108, 261–270. [Google Scholar] [CrossRef]
- Cao, W.; Yin, L.; Zhang, D.; Wang, Y.; Yuan, J.; Zhu, Y.; Dou, J. Contamination, sources, and health risks associated with soil PAHs in rebuilt land from a coking plant, Beijing, China. Int. J. Environ. Res. Public Health 2019, 16, 670. [Google Scholar] [CrossRef]
- Chen, S.C.; Liao, C.M. Health risk assessment on human exposed to environmental polycyclic aromatic hydrocarbons pollution sources. Sci. Total Environ. 2006, 366, 112–123. [Google Scholar] [CrossRef]
- Fu, X.W.; Li, T.Y.; Ji, L.; Wang, L.L.; Zheng, L.W.; Wang, J.N.; Zhang, Q. Occurrence, sources and health risk of polycyclic aromatic hydrocarbons in soils around oil wells in the border regions between oil fields and suburbs. Ecotox. Environ. Saf. 2018, 157, 276–284. [Google Scholar] [CrossRef] [PubMed]
- Larsen, R.K.; Baker, J.E. Source apportionment of polycyclic aromatic hydrocarbons in the urban atmosphere: A comparison of three methods. Environ. Sci. Technol. 2003, 37, 1873–1881. [Google Scholar] [CrossRef] [PubMed]
- Cui, Y.; Guo, L.L.; Zhang, G.X.; Li, H.Y.; He, Q.S. Human health risks of PAHs in soils and agricultural products in coking areas, Shanxi Province, China. J. Agro-Environ. Sci. 2015, 34, 72–79. (In Chinese) [Google Scholar]
- Song, L.C.; Niu, X.G.; Tian, Y.M.; Xiao, Y.N. Assessment of PAH degradation potential of native species from a coking plant through identifying of the beneficial bacterial community within the rhizosphere soil. Chemosphere 2021, 264, 128513. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Jiang, P.; Zhang, H.; Xu, S.H.; Chen, L.N. Distribution characteristics and polluting process of PAHs in soil and groundwater at a coking plant site. Res. Environ. Sci. 2015, 28, 752–759. (In Chinese) [Google Scholar]
- Meng, X.; Chen, H.; Zheng, C.; Wang, X.; Yue, X. Pollution characteristics of PAHs in soil at an abandoned coking plant affected by different sources. China Environ. Sci. 2020, 40, 4857–4864. (In Chinese) [Google Scholar]
- Cai, C.Y.; Li, J.Y.; Wu, D.; Wang, X.L.; Tsang, D.C.W.; Li, X.D.; Sun, J.T.; Zhu, L.Z.; Shen, H.Z.; Tao, S.; et al. Spatial distribution, emission source and health risk of parent PAHs and derivatives in surface soils from the Yangtze River Delta, eastern China. Chemosphere 2017, 178, 301–308. [Google Scholar] [CrossRef] [PubMed]
- Boulange, M.; Lorgeoux, C.; Biache, C.; Michel, J.; Michels, R.; Faure, P. Aging as the main factor controlling PAH and polar-PAC (polycyclic aromatic compound) release mechanisms in historically coal-tar-contaminated soils. Environ. Sci. Pollut. Res. 2019, 26, 1693–1705. [Google Scholar] [CrossRef]
- Khairy, M.A.; Lohmann, R. Source apportionment and risk assessment of polycyclic aromatic hydrocarbons in the atmospheric environment of Alexandria, Egypt. Chemosphere 2013, 91, 895–903. [Google Scholar] [CrossRef]
- Kong, S.F.; Yan, Q.; Zheng, H.; Liu, H.B.; Wang, W.; Zheng, S.R.; Yang, G.W.; Zheng, M.M.; Wu, J.; Qi, S.H.; et al. Substantial reductions in ambient PAHs pollution and lives saved as a co-benefit of effective long-term PM2.5 pollution controls. Environ. Int. 2018, 114, 266–279. [Google Scholar] [CrossRef]
- Zhang, J.M.; Yang, L.X.; Mellouki, A.; Chen, J.M.; Chen, X.F.; Gao, Y.; Jiang, P.; Li, Y.Y.; Yu, H.; Wang, W.X. Diurnal concentrations, sources, and cancer risk assessments of PM2.5-bound PAHs, NPAHs, and OPAHs in urban, marine and mountain environments. Chemosphere 2018, 209, 147–155. [Google Scholar] [CrossRef]
- Ramdahl, T. Retene—A molecular marker of wood combustion in ambient air. Nature 1983, 306, 580–583. [Google Scholar] [CrossRef]
- Shen, G.F.; Tao, S.; Wei, S.Y.; Zhang, Y.Y.; Wang, R.; Wang, B.; Li, W.; Shen, H.Z.; Huang, Y.; Yang, Y.F.; et al. Retene emission from residential solid fuels in China and evaluation of retene as a unique marker for soft wood combustion. Environ. Sci. Technol. 2012, 46, 4666–4672. [Google Scholar] [CrossRef]
- Liao, X.Y.; Zhao, D.; Yan, X.L. Determination of potassium permanganate demand variation with depth for oxidation-remediation of soils from a PAHs-contaminated coking plant. J. Hazard. Mater. 2011, 193, 164–170. [Google Scholar] [CrossRef]
- Du, J.Q.; Liu, J.X.; Jia, T.; Chai, B.F. The relationships between soil physicochemical properties, bacterial communities and polycyclic aromatic hydrocarbon concentrations in soils proximal to coking plants. Environ. Pollut. 2022, 298, 118823. [Google Scholar] [CrossRef]
- Glaser, B.; Dreyer, A.; Bock, M.; Fiedler, S.; Mehring, M.; Heitmann, T. Source apportionment of organic pollutants of a highway-traffic-influenced urban area in Bayreuth (Germany) using biomarker and stable carbon isotope signatures. Environ. Sci. Technol. 2005, 39, 3911–3917. [Google Scholar] [CrossRef]
- Wietzoreck, M.; Bandowe, B.A.M.; Hofman, J.; Martinik, J.; Nezikova, B.; Kukucka, P.; Pribylova, P.; Lammel, G. Nitro- and oxy-PAHs in grassland soils from decade-long sampling in central Europe. Environ. Geochem. Health 2022, 44, 2743–2765. [Google Scholar] [CrossRef]
- Ma, T.; Kong, J.J.; Li, W.D.; Cheng, X.Y.; Zhang, Y.Q.; Kong, D.Y.; Yang, S.G.; Li, S.Y.; Zhang, L.M.; He, H. Inventory, source and health risk assessment of nitrated and parent PAHs in agricultural soils over a rural river in Southeast China. Chemosphere 2023, 329, 138688. [Google Scholar] [CrossRef] [PubMed]
- Chang, Y.S.; Chiao, H.T.; Abimannan, S.; Huang, Y.P.; Tsai, Y.T.; Lin, K.M. An LSTM-based aggregated model for air pollution forecasting. Atmos. Pollut. Res. 2020, 11, 1451–1463. [Google Scholar] [CrossRef]
- Talbot, N.; Takada, A.; Bingham, A.H.; Elder, D.; Yee, S.L.; Golubiewski, N.E. An investigation of the impacts of a successful COVID-19 response and meteorology on air quality in New Zealand. Atmos. Environ. 2021, 254, 118322. [Google Scholar] [CrossRef] [PubMed]
- Ren, H.L.; Su, P.X.; Kang, W.; Ge, X.; Ma, S.T.; Shen, G.F.; Chen, Q.; Yu, Y.X.; An, T.C. Heterologous spatial distribution of soil polycyclic aromatic hydrocarbons and the primary influencing factors in three industrial parks. Environ. Pollut. 2022, 310, 119912. [Google Scholar] [CrossRef] [PubMed]
- Qi, X.B.; Huang, S.F.; Sha, C.Y.; Wang, M.; Wu, J.; Zhu, Y.; Xu, Z.H. Pollution characteristics and source apportionment of polycyclic aromatic hydrocarbons in surface soil of the steel industrial downwind area. Res. Environ. Sci. 2018, 31, 927–934. (In Chinese) [Google Scholar]
- Wang, L.; Zhao, Y.; Yi, X.; Wang, Z.X.; Yi, Y.Y.; Huang, T.; Gao, H.; Ma, J.M. Spatial distribution of atmospheric PAHs and their genotoxicity in petrochemical industrialized Lanzhou valley, northwest China. Environ. Sci. Pollut. Res. 2017, 24, 12820–12834. [Google Scholar] [CrossRef]
- Yunker, M.B.; Macdonald, R.W.; Vingarzan, R.; Mitchell, R.H.; Goyette, D.; Sylvestre, S. PAHs in the Fraser River basin: A critical appraisal of PAH ratios as indicators of PAH source and composition. Org. Geochem. 2002, 33, 489–515. [Google Scholar] [CrossRef]
- Zhang, X.L.; Tao, S.; Liu, W.X.; Yang, Y.; Zuo, Q.; Liu, S.Z. Source diagnostics of polycyclic aromatic hydrocarbons based on species ratios: A multimedia approach. Environ. Sci. Technol. 2005, 39, 9109–9114. [Google Scholar] [CrossRef]
- Bandowe, B.A.M.; Wilcke, W. Analysis of polycyclic aromatic hydrocarbons and their oxygen-containing derivatives and metabolites in soils. J. Environ. Qual. 2010, 39, 1349–1358. [Google Scholar] [CrossRef]
- Hu, H.L.; Tian, M.; Zhang, L.M.; Yang, F.M.; Peng, C.; Chen, Y.; Shi, G.M.; Yao, X.J.; Jiang, C.T.; Wang, J. Sources and gas-particle partitioning of atmospheric parent, oxygenated, and nitrated polycyclic aromatic hydrocarbons in a humid city in southwest China. Atmos. Environ. 2019, 206, 1–10. [Google Scholar] [CrossRef]
- Slezakova, K.; Castro, D.; Delerue-Matos, C.; Alvim-Ferraz, M.D.C.; Morais, S.; Pereira, M.D.C. Impact of vehicular traffic emissions on particulate-bound PAHs: Levels and associated health risks. Atmos. Res. 2013, 127, 141–147. [Google Scholar] [CrossRef]
- Teixeira, E.C.; Agudelo-Castaneda, D.M.; Guimaraes Fachel, J.M.; Leal, K.A.; Garcia, K.d.O.; Wiegand, F. Source identification and seasonal variation of polycyclic aromatic hydrocarbons associated with atmospheric fine and coarse particles in the Metropolitan Area of Porto Alegre, RS, Brazil. Atmos. Res. 2012, 118, 390–403. [Google Scholar] [CrossRef]
- Gao, R.; Jiang, W.; Gao, W.D.; Sun, S.D. Emission inventory of crop residue open burning and its high-resolution spatial distribution in 2014 for Shandong province, China. Atmos. Pollut. Res. 2017, 8, 545–554. [Google Scholar] [CrossRef]
- Sun, J.F.; Peng, H.Y.; Chen, J.M.; Wang, X.M.; Wei, M.; Li, W.J.; Yang, L.X.; Zhang, Q.Z.; Wang, W.X.; Mellouki, A. An estimation of CO2 emission via agricultural crop residue open field burning in China from 1996 to 2013. J. Clean. Prod. 2016, 112, 2625–2631. [Google Scholar] [CrossRef]
- Tian, M.; Yang, F.M.; Chen, S.J.; Wang, H.B.; Chen, Y.; Zhang, L.Y.; Zhang, L.M.; Xiang, L.; Qiao, B.Q. Atmospheric deposition of polycyclic aromatic compounds and associated sources in an urban and a rural area of Chongqing, China. Chemosphere 2017, 187, 78–87. [Google Scholar] [CrossRef]
- Shen, G.F.; Tao, S.; Wei, S.Y.; Chen, Y.C.; Zhang, Y.Y.; Shen, H.Z.; Huang, Y.; Zhu, D.; Yuan, C.Y.; Wang, H.C.; et al. Field measurement of emission factors of PM, EC, OC, parent, nitro-, and oxy- polycyclic aromatic hydrocarbons for residential briquette, coal cake, and wood in rural Shanxi, China. Environ. Sci. Technol. 2013, 47, 2998–3005. [Google Scholar] [CrossRef]
- Shen, G.F.; Tao, S.; Wang, W.; Yang, Y.F.; Ding, J.N.; Xue, M.; Min, Y.J.; Zhu, C.; Shen, H.Z.; Li, W.; et al. Emission of oxygenated polycyclic aromatic hydrocarbons from indoor solid fuel combustion. Environ. Sci. Technol. 2011, 45, 3459–3465. [Google Scholar] [CrossRef] [PubMed]
- Wei, C.; Bandowe, B.a.M.; Han, Y.; Cao, J.J.; Zhan, C.L.; Wilcke, W. Polycyclic aromatic hydrocarbons (PAHs) and their derivatives (alkyl-PAHs, oxygenated-PAHs, nitrated-PAHs and azaarenes) in urban road dusts from Xi’an, Central China. Chemosphere 2015, 134, 512–520. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.F.; Zhang, N.; Wang, Y.Q.; Ren, Y.B.; Yuan, Z.Y.; Li, N. Concentrations of polycyclic aromatic hydrocarbons in street dust from bus stops in Qingyang city: Estimates of lifetime cancer risk and sources of exposure for daily commuters in Northwest China. Environ. Pollut. 2020, 266, 115222. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Li, R.F.; Zhang, X.Y.; Bai, Y.; Cao, P.; Hua, P. Vehicular contribution of PAHs in size dependent road dust: A source apportionment by PCA-MLR, PMF, and Unmix receptor models. Sci. Total Environ. 2019, 649, 1314–1322. [Google Scholar] [CrossRef] [PubMed]
- Du, W.; Wang, J.Z.; Zhuo, S.J.; Zhong, Q.R.; Wang, W.; Chen, Y.C.; Wang, Z.L.; Mao, K.; Huang, Y.; Shen, G.F.; et al. Emissions of particulate PAHs from solid fuel combustion in indoor cookstoves. Sci. Total Environ. 2021, 771, 145411. [Google Scholar] [CrossRef]
- Pedersen, D.U.; Durant, J.L.; Taghizadeh, K.; Hemond, H.F.; Lafleur, A.L.; Cass, G.R. Human cell mutagens in respirable airborne particles from the Northeastern United States. 2. Quantification of mutagens and other organic compounds. Environ. Sci. Technol. 2005, 39, 9547–9560. [Google Scholar] [CrossRef]
Parameter | Unit | Child | Adolescent | Adult | |||
---|---|---|---|---|---|---|---|
Male | Female | Male | Female | Male | Female | ||
Average body weight (BW) | kg | 17.2 | 16.5 | 47.1 | 44.8 | 60.2 | 53.1 |
Exposure frequency (EF) | d/year | 350 | 350 | 350 | 350 | 350 | 350 |
Exposure duration (ED) | year | 6.0 | 6.0 | 14.0 | 14.0 | 30.0 | 30.0 |
Inhalation intake rate (IRair) | m3/d | 10.9 | 10.9 | 17.7 | 17.7 | 17.5 | 17.5 |
Soil intake rate (IRsoil) | mg/d | 200 | 200 | 100 | 100 | 100 | 100 |
Dermal surface exposure (SA) | cm2/d | 1800 | 1800 | 5000 | 5000 | 5000 | 5000 |
Average life span (AT) | year | 25,550 | 25,550 | 25,550 | 25,550 | 25,550 | 25,550 |
Soil dust produce factor (PEF) | m3/kg | 6.2 × 109 | 6.2 × 109 | 6.2 × 109 | 6.2 × 109 | 6.2 × 109 | 6.2 × 109 |
Carcinogenic slope factor (CSF) Ingestion | (mg/kg·d)−1 | 7.3 | 7.3 | 7.3 | 7.3 | 7.3 | 7.3 |
Carcinogenic slope factor (CSF) Dermal | (mg/kg·d)−1 | 25 | 25 | 25 | 25 | 25 | 25 |
Carcinogenic slope factor (CSF) Inhalation | (mg/kg·d)−1 | 3.85 | 3.85 | 3.85 | 3.85 | 3.85 | 3.85 |
Particle-to-skin adherence factor (AF) | mg/cm2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 |
Dermal adsorption fraction (ABS) | - | 0.16 | 0.16 | 0.16 | 0.16 | 0.16 | 0.16 |
Exposure Pathway | Priority PAHs | Non-Priority PAHs | Total |
---|---|---|---|
Dermal | 3.6 × 10−5 | 2.5 × 10−6 | 3.8 × 10−5 |
Ingestion | 9.4 × 10−6 | 6.4 × 10−7 | 1.0 × 10−5 |
Inhalation | 1.1 × 10−7 | 7.2 × 10−9 | 1.1 × 10−7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, Y.; Li, Y.; Fu, D.; Zhang, Y.; Xiao, K.; Jiang, K.; Luo, J.; Shen, G.; Liu, W.; Tao, S. Pollution Characteristics and Health Risks of Polycyclic Aromatic Compounds (PACs) in Soils of a Coking Plant. Toxics 2024, 12, 179. https://doi.org/10.3390/toxics12030179
Zhou Y, Li Y, Fu D, Zhang Y, Xiao K, Jiang K, Luo J, Shen G, Liu W, Tao S. Pollution Characteristics and Health Risks of Polycyclic Aromatic Compounds (PACs) in Soils of a Coking Plant. Toxics. 2024; 12(3):179. https://doi.org/10.3390/toxics12030179
Chicago/Turabian StyleZhou, Yousong, Yuancheng Li, Donglei Fu, Yongqiang Zhang, Kai Xiao, Ke Jiang, Jinmu Luo, Guofeng Shen, Wenxin Liu, and Shu Tao. 2024. "Pollution Characteristics and Health Risks of Polycyclic Aromatic Compounds (PACs) in Soils of a Coking Plant" Toxics 12, no. 3: 179. https://doi.org/10.3390/toxics12030179
APA StyleZhou, Y., Li, Y., Fu, D., Zhang, Y., Xiao, K., Jiang, K., Luo, J., Shen, G., Liu, W., & Tao, S. (2024). Pollution Characteristics and Health Risks of Polycyclic Aromatic Compounds (PACs) in Soils of a Coking Plant. Toxics, 12(3), 179. https://doi.org/10.3390/toxics12030179