Integrated Assessment for the Estrogenic Effects of Pyrethroid Compounds: Defining the Molecular Initiating Events and Key Events for the Adverse Outcome Pathway
Abstract
:1. Introduction
2. IATA for Estrogenicity
2.1. MIE to Assess the Estrogenic Effect of the Pyrethroids
2.1.1. Enzymes for Steroidogenesis
2.1.2. Hormone Levels
2.2. Key Events (KE) to Assess the Estrogenic Effect of the Pyrethroids
2.2.1. Estrogen Receptor Binding
2.2.2. Transactivation of the Estrogen Receptor
2.2.3. Cell Proliferation and Differentiation
3. Adverse Outcome of Estrogenicity
3.1. Uterine Weight
3.2. Histological Changes and Fertility
4. Summary and Limitation
5. Conclusions and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bao, W.; Liu, B.; Simonsen, D.W.; Lehmler, H.J. Association between exposure to pyrethroid insecticides and risk of all-cause and cause-specific mortality in the general US adult population. JAMA Intern. Med. 2020, 180, 367–374. [Google Scholar] [CrossRef] [PubMed]
- Matsuo, N. Discovery and development of pyrethroid insecticides. Proc. Jpn. Acad. Ser. B 2019, 95, 378–400. [Google Scholar] [CrossRef] [PubMed]
- Hołyńska-Iwan, I.; Szewczyk-Golec, K. Pyrethroids: How they affect human and animal health? Medicina 2020, 56, 582. [Google Scholar] [CrossRef] [PubMed]
- Ross, M.K.; Carr, R.L. Pyrethroid insecticides: An update. Encycl. Environ. Health 2019, 2, 429–435. [Google Scholar]
- Lybrand, D.B.; Xu, H.; Last, R.L.; Pichersky, E. How plants synthesize pyrethrins: Safe and biodegradable insecticides. Trends Plant Sci. 2020, 25, 1240–1251. [Google Scholar] [CrossRef]
- Aznar-Alemany, Ò.; Eljarrat, E. Introduction to pyrethroid insecticides: Chemical structures, properties, mode of action and use. In Pyrethroid Insecticides; Springer: Berlin/Heidelberg, Germany, 2020; pp. 1–16. [Google Scholar]
- Ramchandra, A.M.; Chacko, B.; Victor, P.J. Pyrethroid poisoning. Indian J. Crit. Care Med. Peer-Rev. Off. Publ. Indian Soc. Crit. Care Med. 2019, 23 (Suppl. S4), S267. [Google Scholar] [CrossRef]
- Sheikh, I.A.; Beg, M.A. Structural Aspects of Potential Endocrine-Disrupting Activity of Stereoisomers for a Common Pesticide Permethrin against Androgen Receptor. Biology 2021, 10, 143. [Google Scholar] [CrossRef]
- Lehmler, H.J.; Simonsen, D.; Liu, B.; Bao, W. Environmental exposure to pyrethroid pesticides in a nationally representative sample of US adults and children: The National Health and Nutrition Examination Survey 2007–2012. Environ. Pollut. 2020, 267, 115489. [Google Scholar] [CrossRef]
- Ye, X.; Pan, W.; Zhao, Y.; Zhao, S.; Zhu, Y.; Liu, W.; Liu, J. Association of pyrethroids exposure with onset of puberty in Chinese girls. Environ. Pollut. 2017, 227, 606–612. [Google Scholar] [CrossRef]
- Bevan, R.; Brown, T.; Matthies, F.; Sams, C.; Jones, K.; Hanlon, J.; La Vedrine, M. Human biomonitoring data collection from occupational exposure to pesticides. EFSA Support. Publ. 2017, 14, 1185E. [Google Scholar] [CrossRef]
- Burns, C.J.; LaKind, J.S. Elements to increase translation in pyrethroid epidemiology research: A review. Sci. Total Environ. 2022, 813, 152568. [Google Scholar] [CrossRef]
- Jurewicz, J.; Radwan, P.; Wielgomas, B.; Radwan, M.; Karwacka, A.; Kałużny, P.; Piskunowicz, M.; Dzielwirska, E.; Hanke, W. Exposure to pyrethroid pesticides and ovarian reserve. Environ. Int. 2020, 144, 106028. [Google Scholar] [CrossRef]
- Radwan, M.; Jurewicz, J.; Wielgomas, B.; Piskunowicz, M.; Sobala, W.; Radwan, P.; Jakubowski, L.; Hawula, W.; Hanke, W. The association between environmental exposure to pyrethroids and sperm aneuploidy. Chemosphere 2015, 128, 42–48. [Google Scholar] [CrossRef]
- Han, Y.; Xia, Y.; Han, J.; Zhou, J.; Wang, S.; Zhu, P.; Zhao, R.; Jin, N.; Song, L.; Wang, X. The relationship of 3-PBA pyrethroids metabolite and male reproductive hormones among non-occupational exposure males. Chemosphere 2008, 72, 785–790. [Google Scholar] [CrossRef]
- Meeker, J.D.; Barr, D.B.; Hauser, R. Pyrethroid insecticide metabolites are associated with serum hormone levels in adult men. Reprod. Toxicol. 2009, 27, 155–160. [Google Scholar] [CrossRef]
- Meeker, J.D.; Barr, D.B.; Hauser, R. Human semen quality and sperm DNA damage in relation to urinary metabolites of pyrethroid insecticides. Hum. Reprod. 2008, 23, 1932–1940. [Google Scholar] [CrossRef] [PubMed]
- Whitworth, K.W.; Baird, D.D.; Steiner, A.Z.; Bornman, R.M.; Travlos, G.S.; Wilson, R.E.; Longnecker, M.P. Antimüllerian hormone and lifestyle, reproductive, and environmental factors among women in rural South Africa. Epidemiology 2015, 26, 429. [Google Scholar] [CrossRef]
- Hu, Y.; Ji, L.; Zhang, Y.; Shi, R.; Han, W.; Tse, L.A.; Pan, R.; Wang, Y.; Ding, G.; Xu, J.; et al. Organophosphate and pyrethroid pesticide exposures measured before conception and associations with time to pregnancy in Chinese couples enrolled in the Shanghai birth cohort. Environ. Health Perspect. 2018, 126, 077001. [Google Scholar] [CrossRef] [PubMed]
- Chemicals, D.O.F.O. OECD Guideline for Testing of Chemicals; The Organisation for Economic Co-operation and Development: Paris, France, 2005; pp. 1–13. [Google Scholar]
- Spector, P.L. Regulations of pesticides by the environmental protection agency. Ecol. LQ 1975, 5, 233. [Google Scholar]
- Bittner, G.D.; Denison, M.S.; Yang, C.Z.; Stoner, M.A.; He, G. Chemicals having estrogenic activity can be released from some bisphenol a-free, hard and clear, thermoplastic resins. Environ. Health 2014, 13, 103. [Google Scholar] [CrossRef] [PubMed]
- Jäger, M.C.; Patt, M.; González-Ruiz, V.; Boccard, J.; Wey, T.; Winter, D.V.; Rudaz, S.; Odermatt, A. Extended steroid profiling in H295R cells provides deeper insight into chemical-induced disturbances of steroidogenesis: Exemplified by prochloraz and anabolic steroids. Mol. Cell. Endocrinol. 2023, 570, 111929. [Google Scholar] [CrossRef]
- Feng, Y.; Jiao, Z.; Shi, J.; Li, M.; Guo, Q.; Shao, B. Effects of bisphenol analogues on steroidogenic gene expression and hormone synthesis in H295R cells. Chemosphere 2016, 147, 9–19. [Google Scholar] [CrossRef]
- Zhang, Q.; Yu, S.; Chen, X.; Fu, L.; Dai, W.; Gu, S. Stereoisomeric selectivity in the endocrine-disrupting potential of cypermethrin using in vitro, in vivo, and in silico assays. J. Hazard. Mater. 2021, 414, 125389. [Google Scholar] [CrossRef]
- Sangha, G.K.; Kaur, K.; Khera, K.S. Cypermethrin induced pathological and biochemical changes in reproductive organs of female rats. J. Environ. Biol. 2013, 34, 99. [Google Scholar]
- Liu, J.; Yang, Y.; Yang, Y.; Zhang, Y.; Liu, W. Disrupting effects of bifenthrin on ovulatory gene expression and prostaglandin synthesis in rat ovarian granulosa cells. Toxicology 2011, 282, 47–55. [Google Scholar] [CrossRef] [PubMed]
- Andersen, H.R.; Vinggaard, A.M.; Rasmussen, T.H.; Gjermandsen, I.M.; Bonefeld-Jørgensen, E.C. Effects of currently used pesticides in assays for estrogenicity, androgenicity, and aromatase activity in vitro. Toxicol. Appl. Pharmacol. 2002, 179, 1–12. [Google Scholar] [CrossRef] [PubMed]
- An, B.S.; Choi, K.C.; Kang, S.K.; Hwang, W.S.; Jeung, E.B. Novel Calbindin-D9k protein as a useful biomarker for environmental estrogenic compounds in the uterus of immature rats. Reprod. Toxicol. 2003, 17, 311–319. [Google Scholar] [CrossRef] [PubMed]
- Sun Kim, S.; Jun Kwack, S.; Da Lee, R.; Jo Lim, K.; Seek Rhee, G.; Hyun Seok, J.; Byung Ho, K.; Yong Hyuck, W.; Geun Shik, L.; Eui Bae, J.; et al. Assessment of estrogenic and androgenic activities of tetramethrin in vitro and in vivo assays. J. Toxicol. Environ. Health Part A 2005, 68, 2277–2289. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.S.; Lee, R.D.; Lim, K.J.; Kwack, S.J.; Rhee, G.S.; Seok, J.H.; Lee, G.S.; An, B.S.; Jeung, E.B.; Park, K.L. Potential estrogenic and antiandrogenic effects of permethrin in rats. J. Reprod. Dev. 2005, 51, 201–210. [Google Scholar] [CrossRef] [PubMed]
- Jin, M.; Li, L.; Xu, C.; Wen, Y.; Zhao, M. Estrogenic activities of two synthetic pyrethroids and their metabolites. J. Environ. Sci. 2010, 22, 290–296. [Google Scholar] [CrossRef]
- Pinto, P.I.; Estêvão, M.D.; Power, D.M. Effects of estrogens and estrogenic disrupting compounds on fish mineralized tissues. Mar. Drugs 2014, 12, 4474–4494. [Google Scholar] [CrossRef] [PubMed]
- Zubeldia-Brenner, L.; Roselli, C.E.; Recabarren, S.E.; Gonzalez Deniselle, M.C.; Lara, H.E. Developmental and functional effects of steroid hormones on the neuroendocrine axis and spinal cord. J. Neuroendocrinol. 2016, 28. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Bo, Y. Associations between pyrethroid exposure and serum sex steroid hormones in adults: Findings from a nationally representative sample. Chemosphere 2022, 300, 134591. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, R.; Banerjee, B.; Das, T.; Jana, K.; Choudhury, S.M. Antigonadal and endocrine-disrupting activities of lambda cyhalothrin in female rats and its attenuation by taurine. Toxicol. Ind. Health 2018, 34, 146–157. [Google Scholar] [CrossRef] [PubMed]
- Kim, I.Y.; Shin, J.H.; Kim, H.S.; Lee, S.J.; Kang, I.H.; Kim, T.S.; Moon, H.J.; Choi, K.S.; Moon, A.; Han, S.Y. Assessing estrogenic activity of pyrethroid insecticides using in vitro combination assays. J. Reprod. Dev. 2004, 50, 245–255. [Google Scholar] [CrossRef] [PubMed]
- Taylor, J.S.; Thomson, B.M.; Lang, C.N.; Sin FY, T.; Podivinsky, E. Estrogenic Pyrethroid Pesticides Regulate Expression of Estrogen Receptor Transcripts in Mouse Sertoli Cells Differently From 17β-Estradiol. J. Toxicol. Environ. Health Part A 2010, 73, 1075–1089. [Google Scholar] [CrossRef]
- Chen, H.; Xiao, J.; Hu, G.; Zhou, J.; Xiao, H.; Wang, X. Estrogenicity of organophosphorus and pyrethroid pesticides. J. Toxicol. Environ. Health Part A 2002, 65, 1419–1435. [Google Scholar] [CrossRef]
- Saito, K.; Tomigahara, Y.; Ohe, N.; Isobe, N.; Nakatsuka, I.; Kaneko, H. Lack of significant estrogenic or antiestrogenic activity of pyrethroid insecticides in three in vitro assays based on classic estrogen receptor α-mediated mechanisms. Toxicol. Sci. 2000, 57, 54–60. [Google Scholar] [CrossRef]
- Lemaire, G.; Mnif, W.; Mauvais, P.; Balaguer, P.; Rahmani, R. Activation of α-and β-estrogen receptors by persistent pesticides in reporter cell lines. Life Sci. 2006, 79, 1160–1169. [Google Scholar] [CrossRef]
- Ruff, M.; Gangloff, M.; Marie Wurtz, J.; Moras, D. Estrogen receptor transcription and transactivation Structure-function relationship in DNA-and ligand-binding domains of estrogen receptors. Breast Cancer Res. 2000, 2, 1–7. [Google Scholar] [CrossRef]
- Baron, S.; Escande, A.; Alberola, G.; Bystricky, K.; Balaguer, P.; Richard-Foy, H. Estrogen receptor α and the activating protein-1 complex cooperate during insulin-like growth factor-I-induced transcriptional activation of the pS2/TFF1 gene. J. Biol. Chem. 2007, 282, 11732–11741. [Google Scholar] [CrossRef]
- Kim, J.; Petz, L.N.; Ziegler, Y.S.; Wood, J.R.; Potthoff, S.J.; Nardulli, A.M. Regulation of the estrogen-responsive pS2 gene in MCF-7 human breast cancer cells. J. Steroid Biochem. Mol. Biol. 2000, 74, 157–168. [Google Scholar] [CrossRef]
- Garey, J.; Wolff, M.S. Estrogenic and antiprogestagenic activities of pyrethroid insecticides. Biochem. Biophys. Res. Commun. 1998, 251, 855–859. [Google Scholar] [CrossRef]
- Miziak, P.; Baran, M.; Błaszczak, E.; Przybyszewska-Podstawka, A.; Kałafut, J.; Smok-Kalwat, J.; Dmoszynska-Graniczka, M.; Kielbus, M.; Stepulak, A. Estrogen Receptor Signaling in Breast Cancer. Cancers 2023, 15, 4689. [Google Scholar] [CrossRef] [PubMed]
- Brander, S.M.; He, G.; Smalling, K.L.; Denison, M.S.; Cherr, G.N. The in vivo estrogenic and in vitro anti-estrogenic activity of permethrin and bifenthrin. Environ. Toxicol. Chem. 2012, 31, 2848–2855. [Google Scholar] [CrossRef]
- Du, G.; Shen, O.; Sun, H.; Fei, J.; Lu, C.; Song, L.; Xia, Y.; Wang, S.; Wang, X. Assessing hormone receptor activities of pyrethroid insecticides and their metabolites in reporter gene assays. Toxicol. Sci. 2010, 116, 58–66. [Google Scholar] [CrossRef] [PubMed]
- Kojima, H.; Katsura, E.; Takeuchi, S.; Niiyama, K.; Kobayashi, K. Screening for estrogen and androgen receptor activities in 200 pesticides by in vitro reporter gene assays using Chinese hamster ovary cells. Environ. Health Perspect. 2004, 112, 524–531. [Google Scholar] [CrossRef] [PubMed]
- Victor, I.A.; Andem, A.B.; Archibong, I.A.; Iwok, E.O. Interplay between Cell Proliferation and Cellular Differentiation: A mutually exclusive paradigm. GSJ 2020, 8. [Google Scholar]
- Go, V.; Garey, J.; Wolff, M.S.; Pogo, B.G. Estrogenic potential of certain pyrethroid compounds in the MCF-7 human breast carcinoma cell line. Environ. Health Perspect. 1999, 107(3), 173–177. [Google Scholar] [CrossRef] [PubMed]
- Chen, R.; Li, A.; Zhu, T.; Li, C.; Liu, Q.; Chang, H.C.; Zhou, J. JWA—A novel environmental-responsive gene, involved in estrogen receptor-associated signal pathway in MCF-7 and MDA-MB-231 breast carcinoma cells. J. Toxicol. Environ. Health Part A 2005, 68, 445–456. [Google Scholar] [CrossRef]
- Kakko, I.; Toimela, T.; Tähti, H. Oestradiol potentiates the effects of certain pyrethroid compounds in the MCF7 human breast carcinoma cell line. Altern. Lab. Anim. 2004, 32, 383–390. [Google Scholar] [CrossRef]
- Yan, Y.; Long, T.W.; Niu, X.; Wang, J.F.; Li, S. MiR-96-5p is involved in permethrin-promoted proliferation and migration of breast cancer cells. Acta Biochim. Pol. 2023, 70, 561–566. [Google Scholar] [CrossRef]
- Zhao MeiRong, Z.M.; Zhang Ying, Z.Y.; Liu WeiPing, L.W.; Xu Chao, X.C.; Wang LuMei, W.L.; Gan, J.Y. Estrogenic activity of lambda-cyhalothrin in the MCF-7 human breast carcinoma cell line. Environ. Toxicol. Chem. Int. J. 2008, 27(5), 1194–1200. [Google Scholar] [CrossRef]
- Jiménez-Jiménez, S.; Casado, N.; García, M.Á.; Marina, M.L. Enantiomeric analysis of pyrethroids and organophosphorus insecticides. J. Chromatogr. A 2019, 1605, 360345. [Google Scholar] [CrossRef]
- Wang, L.; Liu, W.; Yang, C.; Pan, Z.; Gan, J.; Xu, C.; Zhao, M.; Schlenk, D. Enantioselectivity in estrogenic potential and uptake of bifenthrin. Environ. Sci. Technol. 2007, 41, 6124–6128. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Zhang, S.; Wang, T. How the mechanical microenvironment of stem cell growth affects their differentiation: A review. Stem Cell Res. Ther. 2022, 13, 415. [Google Scholar]
- Nelson, C.M. Mechanical control of cell differentiation: Insights from the early embryo. Annu. Rev. Biomed. Eng. 2022, 24, 307–322. [Google Scholar] [CrossRef] [PubMed]
- Verma, J.; Rai, A.K.; Satija, N.K. Autophagy perturbation upon acute pyrethroid treatment impacts adipogenic commitment of mesenchymal stem cells. Pestic. Biochem. Physiol. 2023, 195, 105566. [Google Scholar] [CrossRef]
- He, B.; Wang, X.; Wei, L.; Kong, B.; Jin, Y.; Xie, X.; Fu, Z. β-Cypermethrin and its metabolite 3-phenoxybenzoic acid induce cytotoxicity and block granulocytic cell differentiation in HL-60 cells. Acta Biochim. Et Biophys. Sin. 2018, 50, 740–747. [Google Scholar] [CrossRef] [PubMed]
- EFSA Panel on Plant Protection Products and their Residues (PPR); Hernandez-Jerez, A.F.; Adriaanse, P.; Aldrich, A.; Berny, P.; Coja, T.; Duquesne, S.; Focks, A.; Millet, M.; Pelkonen, O.; et al. Development of adverse outcome pathways relevant for the identification of substances having endocrine disruption properties Uterine adenocarcinoma as adverse outcome. EFSA J. 2023, 21, e07744. [Google Scholar]
- Amir, S.; Shah ST, A.; Mamoulakis, C.; Docea, A.O.; Kalantzi, O.I.; Zachariou, A.; Calina, D.; Carvalho, F.; Sofikitis, N.; Makrigiannakis, A.; et al. Endocrine disruptors acting on estrogen and androgen pathways cause reproductive disorders through multiple mechanisms: A review. Int. J. Environ. Res. Public Health 2021, 18, 1464. [Google Scholar] [CrossRef]
- OECD. Test No. 440: Uterotrophic Bioassay in Rodents: A short-term screening test for oestrogenic properties. In OECD Guidelines for the Testing of Chemicals, Section 4; OECD Publishing: Paris, France, 2007. [Google Scholar] [CrossRef]
- Kunimatsu, T.; Yamada, T.; Ose, K.; Sunami, O.; Kamita, Y.; Okuno, Y.; Seki, T.; Nakatsuka, I. Lack of (anti-) androgenic or estrogenic effects of three pyrethroids (esfenvalerate, fenvalerate, and permethrin) in the Hershberger and uterotrophic assays. Regul. Toxicol. Pharmacol. 2002, 35, 227–237. [Google Scholar] [CrossRef]
- Arena, A.C.; Fernandez, C.D.; Porto, E.M.; Bissacot, D.Z.; Pereira, O.C.; Kempinas, W.G. Fenvalerate, a pyrethroid insecticide, adversely affects sperm production and storage in male rats. J. Toxicol. Environ. Health Part A 2008, 71, 1550–1558. [Google Scholar] [CrossRef]
- Guerra, M.T.; de Toledo, F.C.; Kempinas WD, G. In utero and lactational exposure to fenvalerate disrupts reproductive function in female rats. Reprod. Toxicol. 2011, 32, 298–303. [Google Scholar] [CrossRef] [PubMed]
- Andrade AJ, M.; Araújo, S.; Santana, G.M.; Ohi, M.; Dalsenter, P.R. Screening for in vivo (anti) estrogenic and (anti) androgenic activities of technical and formulated deltamethrin. Regul. Toxicol. Pharmacol. 2002, 35, 379–382. [Google Scholar] [CrossRef] [PubMed]
- Presibella, K.M.; Kita, D.H.; Carneiro, C.B.; Andrade, A.J.; Dalsenter, P.R. Reproductive evaluation of two pesticides combined (deltamethrin and endosulfan) in female rats. Reprod. Toxicol. 2005, 20, 95–101. [Google Scholar] [CrossRef] [PubMed]
- Tan, Y.; Wang, H.; Song, Y.; Yang, H.; Jia, X.; Li, N. Potential endocrine disrupting effects of bifenthrin in rats. Wei Sheng Yan Jiu J. Hyg. Res. 2012, 41, 399–404. [Google Scholar]
- Grewal, K.K.; Sandhu, G.S.; Kaur, R.; Brar, R.S.; Sandhu, H.S. Toxic impacts of cypermethrin on behavior and histology of certain tissues of albino rats. Toxicol. Int. 2010, 17, 94. [Google Scholar] [PubMed]
- Sangha, G.K.; Kaur, K.; Khera, K.S.; Singh, B. Toxicological effects of cypermethrin on female albino rats. Toxicol. Int. 2011, 18, 5. [Google Scholar] [CrossRef] [PubMed]
- Abou-Egla, M.O.; El-Sayyad, H.I.; Ibrahim, H.A.; El-Sabagh, A.M. Effects of fenvalerate and phosfolan-treatment on the histological picture of some organs of non-pregnant and pregnant rats and their newborn. J. KA. U. Sci. 1993, 5, 77–94. [Google Scholar] [CrossRef]
- He, J.; Chen, J.; Liu, R.; Song, L.; Chang, H.C.; Wang, X. Fenvalerate-induced alterations in calcium homeostasis in rat ovary. Biomed. Environ. Sci. 2006, 19, 15. [Google Scholar]
- Lemos AJ, J.M.; Wanderley-Teixeira, V.; Teixeira, Á.A.C.; Fernanda das Chagas, A.S.; Oliveira, J.V.; de Siqueira, H.Á.A. Response of blastocyst–endometrium interactions in albino rats to sublethal doses of biological and synthetic insecticides. Food Chem. Toxicol. 2011, 49, 2541–2547. [Google Scholar] [CrossRef]
- Lemos AJ, J.; Siqueira, H.A.; Wanderley-Teixeira, V.; Maia, F.C.; Teixeira, Á.A.; Silva, E.J.; Oliveira, J.V. Effect of sub-lethal doses of Bacillus thuringiensis subsp. Aizawai and deltamethrin with regard to fertility and organ toxicity in pregnant albino rats. Exp. Toxicol. Pathol. 2013, 65, 489–495. [Google Scholar] [CrossRef]
- Ali, P.M.; Farzaneh, R. The effect of vitamin C as antioxidant on the toxic effects due to deltamethrin pesticide on morphometric and histopathological parameters of ovary in the rats. Biosci. Biotechnol. Res. Asia 2014, 11, 959–964. [Google Scholar] [CrossRef]
- Andrade, A.J.; Araújo, S.; Santana, G.M.; Ohi, M.; Dalsenter, P.R. Reproductive effects of deltamethrin on male offspring of rats exposed during pregnancy and lactation. Regul. Toxicol. Pharmacol. 2002, 36, 310–317. [Google Scholar] [CrossRef] [PubMed]
- Yamada, T.; Ueda, S.; Yoshioka, K.; Kawamura, S.; Seki, T.; Okuno, Y.; Mikami, N. Lack of estrogenic or (anti-) androgenic effects of d-phenothrin in the uterotrophic and Hershberger assays. Toxicology 2003, 186, 227–239. [Google Scholar] [CrossRef] [PubMed]
Classification | Pyrethroids | Structure | Molecular Formula | IUPAC Name | Cas no. | Molecular Weight (g/mol) |
---|---|---|---|---|---|---|
Type I | Allethrin | C19H26O3 | Cyclopropanecarboxylic acid, 2,2-dimethyl-3-(2-methyl-1-propenyl)-, 2-methyl-4-oxo-3-(2-propenyl)-2-cyclopenten-1-yl ester | 584-79-2 | 302. 4 | |
Bifenthrin | C23H22ClF3O2 | (2-methyl-3-phenylphenyl)methyl (1R,3R)-3-[(Z)-2-chloro-3,3,3-trifluoroprop-1-enyl]-2,2-dimethylcyclopropane-1-carboxylate | 82657-04-3 | 422.9 | ||
Permethrin | C21Cl2H20O3 | (3-phenoxyphenyl)methyl 3-(2,2-dichloroethenyl)-2,2-dimethylcyclopropane-1-carboxylate | 52645-53-1 | 391.3 | ||
Phenothrin/Sumithrin | C23H26O3 | (3-phenoxyphenyl)methyl 2,2-dimethyl-3-(2-methylprop-1-enyl)cyclopropane-1-carboxylate | 26002-80-2 | 350.4 | ||
Resmethrin | C22H26O3 | (5-benzylfuran-3-yl)methyl 2,2-dimethyl-3-(2-methylprop-1-enyl)cyclopropane-1-carboxylate | 10453-86-8 | 338.4 | ||
Tefluthrin | C17H14ClF7O2 | rac-(2,3,5,6-Tetrafluoro-4-methylphenyl)methyl (1R,3R)-2,2-dimethyl-3-[(1Z)-2-chloro-3,3,3-trifluoroprop-1-en-1-yl]cyclopropane-1-carboxylate | 79538-32-2 | 418.74 | ||
Tetramethrin | C19H25NO4 | (1,3-Dioxo-4,5,6,7-tetrahydroisoindol-2-yl)methyl 2,2-dimethyl-3-(2-methylprop-1-enyl)cyclopropane-1-carboxylate | 7696-12-0 | 331.406 | ||
Metofluthrin | C18H20F4O3 | 2,3,5,6-Tetrafluoro-4-(methoxymethyl)benzyl 2,2-dimethyl-3-(prop-1-en-1-yl)cyclopropane carboxylate | 240494-70-6 | 360.349 | ||
Transfluthrin | C15H12Cl2F4O2 | (2,3,5,6-Tetrafluorophenyl)methyl (1R,3S)-3-(2,2-dichloroethen-1-yl)-2,2-dimethylcyclopropane-1-carboxylate | 118712-89-3 | 371.15 | ||
Prallethrin | C19H24O3 | 2-methyl-4-oxo-3-prop-2-yn-1-ylcyclopent-2-en-1-yl-2,2-dimethyl-3-(2-methylprop-1-en-1-yl)cyclopropanecarboxylate | 23031-39-9 | 300.40 | ||
Type II | Cypermethrin | C22H19Cl2NO3 | [Cyano-(3-phenoxyphenyl)methyl]3-(2,2-dichloroethenyl)-2,2-dimethylcyclopropane-1-carboxylate | 52315-07-8 | 416.30 | |
Deltamethrin | C22H19Br2NO3 | (S)-Cyano(3-phenoxyphenyl)methyl (1R,3R)-3-(2,2-dibromoethen-1-yl)-2,2-dimethylcyclopropane-1-carboxylate | 52918-63-5 | 505.206 | ||
Fenvalerate/ Esfenvalerate | C25H22ClNO3 | (RS)-alpha-Cyano-3-phenoxybenzyl (RS)-2-(4-chlorophenyl)-3-methylbutyrate | 51630-58-1 | 419.91 | ||
Cyfluthrin | C22H18Cl2FNO3 | (R)-Cyano(4-fluoro-3-phenoxyphenyl)methyl (1R,3R)-3-(2,2-dichloroethen-1-yl)-2,2-dimethylcyclopropane-1-carboxylate | 68359-37-5 | 434.29 | ||
Cyhalothrin | C23H19ClF3NO3 | [cyano-(3-phenoxyphenyl)methyl] 3-[(Z)-2-chloro-3,3,3-trifluoroprop-1-enyl]-2,2-dimethylcyclopropane-1-carboxylate | 91465-08-6 | 449.85 | ||
Fenpropathrin | C22H23NO3 | [Cyano-(3-phenoxyphenyl)methyl] 2,2,3,3-tetramethylcyclopropane-1-carboxylate | 39515-41-8 | 349.430 | ||
Flucythrinate | C26H23F2NO4 | Cyano(3-phenoxyphenyl)methyl 2-[4-(difluoromethoxy)phenyl]-3-methylbutanoate | 70124-77-5 | 451.470 | ||
Fluvalinate | C26H22ClF3N2O3 | [Cyano-(3-phenoxyphenyl)methyl] 2-[2-chloro-4-(trifluoromethyl)anilino]-3-methylbutanoate | 69409-94-5 | 502.92 | ||
Tralomethrin | C22H19Br4NO3 | (1R,3S)-2,2-Dimethyl-3-(1,2,2,2-tetrabromoethyl)-1-cyclopropanecarboxylic acid [(S)-cyano-[3-(phenoxy)phenyl]methyl] ester | 66841-25-6 | 665.014 | ||
Flumethrin | C28H22Cl2FNO3 | Cyano(4-fluoro-3-phenoxyphenyl)methyl 3-[2-chloro-2-(4-chlorophenyl)vinyl]-2,2-dimethylcyclopropanecarboxylate | 69770-45-2 | 510.39 | ||
Imiprothrin | C17H22N2O4 | [2,5-Dioxo-3-(prop-2-yn-1-yl)imidazolidin-1-yl]methyl 2,2-dimethyl-3-(2-methylprop-1-en-1-yl)cyclopropane-1-carboxylate | 72963-72-5 | 318.373 | ||
Flucythrinate | C26H23F2NO4 | Cyano(3-phenoxyphenyl)methyl 2-[4-(difluoromethoxy)phenyl]-3-methylbutanoate | 70124-77-5 | 451.470 | ||
Cycloprothrin | C26H21Cl2NO4 | [cyano-(3-phenoxyphenyl)methyl] 2,2-dichloro-1-(4-ethoxyphenyl)cyclopropane-1-carboxylate | 63935-38-6 | 482.4 | ||
Others | Etofenprox | C25H28O3 | 1-{[2-(4-Ethoxyphenyl)-2-methylpropoxy]methyl}-3-phenoxybenzene | 80844-07-1 | 376.496 |
In vitro markers | |||||||
References | Pyrethroids | Targets | Samples | Dosages | Treatment Days | Transcriptional Changes of Biomarkers | |
Gene | Protein | Upregulated (↑) or Downregulated (↓) | |||||
[37] | Sumithrin or d-Phenothrin | pS2 | - | MCF7 cells | 10−5–10−12 M | 3 | pS2 (↑), ERα (↑), ERβ (↓) |
bioallethrine, cypermethrin, deltamethrin, fenvalerate, permethrin, and tetramethrin | No significant changes | ||||||
[32] | Cypermethrin Permethrin | pS2 ERα | - | MCF-7 | 10−5–10−9 M | 2 | pS2 (↑), ERα (↑) |
[25] | α-cypermethrin, β-cypermethrin | 3-βHSD, 17-βHSD, CYP19, STAR, and CYP11B2 | - | H295R | 10−5–10−7 M | 2 | 3-βHSD (↓), 17-βHSD (↑), CYP19 (↑), STAR (↑) CYP11B2 (↑) |
θ-cypermethrin | 3-βHSD (↓) | ||||||
In vivo markers | |||||||
References | Pyrethroids | Targets | Samples | Dosages | Treatment days | Transcriptional changes of biomarkers | |
Gene | Protein | Upregulated (↑) or Downregulated (↓) | |||||
[27] | Bifenthrin | P450scc, StAR, PR, AREG, TGF-β1, C/EBP β, RUNX1, p21, cyclin E1, CYP19a1,SULT1E1, PTGS2, PGE2 | - | rat ovarian granulosa cells | 10−6–10−8 M | 6 hrs after treatment with hCG (1 IU/mL) | PTGS2 (↓), PR (↓), SULT1E1 (↓), PGE2 (↓), P450scc (↓), StAR (↓) AREG (↓), TGF-β1 (↓) C/EBP β (↓), RUNX1 (↓) p21 (↓), cyclin E1 (↓), CYP19a1 (↓) |
[30] | Tetramethrin | CaBP-9k | ERα, ERβ | uterus of immature rats | 5–800 mg/kg S.C. | 3 | CaBP-9k (↓), ERα (↓) ERβ (no significant change) |
[31] | Permethrin | CaBP-9k | - | uterus of immature rats | 10 to 800 mg/kg S.C. | 3 | CaBP-9k (↑) |
[37] | Sumithrin Tetramethrin | ERα, ERβ, and CaBP-9k | - | Female SD rat uteri | 5–800 mg/kg/day S.C. | 3 | ERα (↑), ERβ (↑), CaBP-9k (↓) |
[27] | Bifenthrin | P450scc, StAR, PR, AREG, TGF-β1, C/EBP β, RUNX1, p21, cyclin E1, CYP19a1, SULT1E1, PTGS2 | - | gonadotropin-primed immature female rats | 0.5–5 mg/kg I.P. | 24 | PTGS2 (↓), PR (↓), SULT1E1 (↓), PGE2 (↓), P450scc (↓), StAR (↓), AREG (↓), TGF-β1 (↓), C/EBP β (↓), RUNX1 (↓), p21 (↓), cyclin E1 (↓), CYP19a1 (↓) |
[26] | Cypermethrin | Lactate dehydrogenase (LDH), 3-βHSD | Rat ovary | 50 mg/kg, P.O. | 14 | LDH (↓), 3-βHSD (↓) |
References | Method | Pyrethroids | Agonistic | |
---|---|---|---|---|
Doses (M) | IC50 (μM) | |||
[40] | Fluorescence polarization method | d-trans-allethrin, cypermethrin, empenthrin, fenvalerate, imiprothrin, permethrin, d-phenothrin, and prallethrin | 10−5 to 10−8 | N |
[39] | Competitive receptor binding using 3,6,7-[3H] estradiol with varying concentrations of radio-inert competitor | Permethrin | - | |
Bioallethrin | - | |||
10−4 to 10−12 | ||||
Fenvalerate | 479 | |||
Cypermethrin | 562 | |||
Permethrin, Deltamethrin | <67% of IC50 | |||
[37] | Radiolabeled estrogen [3H]estradiol | Sumithrin, BioAllethirn, Cypermethrin, Deltamethrin, Fenvalerate, Permethrin, Tetramethrin, | 10−4 to 10−14 | - |
Reference | Pyrethroids | Cell Type | Agonistic | Antagonistic | |||
---|---|---|---|---|---|---|---|
RPCmax (%) | PC20 (M) | EC50 (M) | PC20 (M) | EC50 (M) | |||
[40] | Cypermethrin, | Hela | N | - | - | - | |
Empenthrin | |||||||
Permethrin, Prallethrin | |||||||
Fenvalerate, Allethrin | |||||||
Imiprothrin, d-phenothrin | |||||||
[49] | Fenvalerate | CHO-K1 | 50 | 3.70 × 10−6 | - | ||
Flucythrinate | 31 | 5.70 × 10−6 | - | ||||
Cyfluthrin | 45 | 5.90 × 10−6 | - | 10−10 | - | ||
Cypermethrin | 28 | 8.10 × 10−6 | - | 10−10 | - | ||
Permethrin | 24 | 8.40 × 10−6 | - | ||||
Deltamethrin | - | - | - | ||||
Cyhalothrin | - | - | - | ||||
[48] | CV-1 | ||||||
Cypermethrin | - | 4.14 × 10−6 | - | N | - | ||
Deltamethrin | - | - | - | N | - | ||
Permethrin | - | 8.10 × 10−7 | - | >10−5 | - | ||
Tetramethrin | - | - | - | N | - | ||
Cyhalothrin | - | 3.34 × 10−8 | - | N | - | ||
Cyfluthrin | - | - | - | 1.36 × 10−6 | - | ||
Fenvalerate | - | 1.80 × 10−6 | - | N | - | ||
Cycloprothrin | - | N | - | 2.30 × 10−8 | - | ||
Etofenprox | - | N | - | 3.50 × 10−8 | - | ||
[41] | Cypermethrin | Hela | 11.4 | - | - | - | |
Fenvalerate | 55 | - | 2.7 × 10−6 | ||||
Permethrin | 13 | - | - | ||||
[28] | Deltamethrin | MCF-7 (BUS) | N | - | - | - | |
[47] | Permethrin | BG-1 | N | - | - | - | |
Bifenthrin | 60 | N | - | ||||
[37] | Cypermethrin (pure) | Mouse Sertoli cells | 0.001 | - | |||
Permethrin | - | - | 9.30 × 10−6 | ||||
Alpha | 1.00 × 10−5 | ||||||
cypermethrin | |||||||
Bifenthrin | |||||||
Deltamethrin | N | ||||||
Cyfluthrin | - | - | |||||
Taufluvalinate | |||||||
[45] | Fenvalerate | Ishikawa Var-1 Endometrial cancer cells | - | - | - | ||
Sumithrin | 10−5 | ||||||
d-trans allethrin | 10−5 | ||||||
permethrin |
References | Pyrethroids | Concentration (M) | LOEL, M |
---|---|---|---|
[51] | Sumithrin, Fenvalerate, d-trans Allethrin Permethrin | 10−4–10−9 | 10−5 |
10−4 | |||
10−5 | |||
[28] | Deltamethrin | - | N |
[39] | Fenvalerate | 10−6–10−11 | 10−6 |
Permethrin | 10−7 | ||
Cypermethrin | 10−8 | ||
Deltamethrin | 10−6 | ||
[53] | Permethrin | 10−4–10−6 | 10−7 |
Cypermethrin | 10−7 | ||
[37] | Sumithrin | 10−5–10−7 | 10−5 |
[57] | 1S-cis-bifenthrin, 1R-cis-bifenthrin | 10−5–10−7 | N |
[32] | Permethrin, β-cypermethrin Metabolites (3-PBAlc, 3-PBAld, 3-PBAcid) | 10−5–10−9 | 10−9 |
[55] | Lambda-cyhalothrin | 10−5–10−13 | 10−7 |
[52] | Fenvalerate | 10−4–10−8 | 10−8 |
[54] | Permethrin | 10−4–10−7 | 10−7 |
References | Pyrethroids | Species | Routes | Treatment Days | Dosage (mg/kg) | LOEL (mg/kg) | Results |
---|---|---|---|---|---|---|---|
[71] | Cypermethrin | Albino rats | PO | 30 | 5, 20 | - | - |
[72] | Albino rats | PO | 28 | 50 | 50 | P | |
[73] | Fenvalerate | Non/Pregnant rats | PO | 120 | 40 and 40: 80 | - | N |
[74] | SD rats | PO | 28 | 1.91, 9.55, 31.80 | - | N | |
[67] | Pregnant wistar rats | PO | GD 12 to PND 12 | 40 | - | N | |
[66] | IMT female rats | PO | 3 | 0.4, 4, 8, 40 | - | N | |
[65] | OVX female rats | PO | 3 | 20, 40, 80 | - | N | |
[75] | Deltamethrin | Albino pregnant rats | PO | Until GD 7 | 1, 2, 4 | - | N |
[76] | Albino pregnant rats | PO | 7 | 1, 2, 4 | - | - | |
[77] | Wistar rats | I.P. | 14 | 2.5, 5, 10 | - | - | |
[68] | Pregnant Wistar rats | PO | 21 | 1, 2 | - | - | |
[78] | IMT female rats | PO | 3 | 2, 4 | N | - | |
[65] | Esfenvalerate | OVX female rats | PO | 3 | 5, 10, 20 | N | - |
[65] | Permethrin | OVX female rats | PO | 3 | 37.5, 75, 150 | N | - |
[31] | IMT female rats | S.C. | 10, 50, 100, 200, 800 | 800 | P | ||
[70] | Bifenthrin | SD rats | PO | 3 | 1.47, 4.41, 13.23 | 13.23 | P |
[30] | Tetrametrin | IMT female rats | S.C. | 3 | 5, 10, 50, 100, 200, 800 | 5 | P |
[36] | Lambda cyhalothrin | Wistar rats | PO | 14 | 6.3, 11.33 | 6.3 | P |
[79] | d-Phenothrin | IMT female rats | PO | 3 | 100, 300, 1000 | - | N |
Data-Rich | |||||
Pyrethroids | MIE | KIE | Adverse Outcome | ||
Hormones/Enzymes | ERαReceptor Binding (IC50, μM) | ER Transcription (PC20, M) | MCF-7 Cell Proliferation (LOEL, M) | Uterotrophic Activity (LOEL; mg/kg) | |
Cypermethrin | Upregulated pS2 gene and aromatase | 562 | 8.1 × 10−6 | 10−7–10−8 | 50 |
Permethrin | - | N | N | N | 800 |
Lambda cyhalothrin | Changes in Steroidogenesis | No data | 3.34 × 10−8 * | 10−7 | 6.3 |
Tetramethrin | Downregulation of CaBP-9k and ERα | N | N * | N | 5 |
Sumithrin/ d-phenothrin | Downregulation of ERα | N | N | 10−5 | No effects |
Deltamethrin | - | < 67% | 10−10 (antagonistic) | 10−6 | No effects |
N | N | 10−6 (Partial agonistic) | |||
- | N | 10−6 (Antagonistic) | |||
Fenvalerate | - | 479 | 0.27 μM (PC50) * | 10−5–10−6 | No effects |
Data-Poor | |||||
Pyrethroids | MIE | KIE | Adverse Outcome | ||
Hormones/Enzymes | ERαReceptor Binding (IC50, μM) | ER Transcription (PC20, M) | MCF-7 Cell Proliferation (LOEL, M) | Uterotrophic Activity (LOEL; mg/kg) | |
Bifenthrin | - | - | - | N | 13.23 |
Esfenvalerate | Inhibition of LH | - | - | - | N |
Bioallethrin | - | N | - | N | - |
Allethrin | - | - | N | 10−4 | - |
Prallethrin | - | - | N | - | - |
Imiprothrin | - | - | N | - | - |
Flucythrinate | - | - | 5.7 × 10−6 | - | - |
Cyfluthrin | - | - | 5.9 × 10−6 | - | - |
Cycloprothrin | - | - | N | - | - |
Empenthrin | - | - | N | - | - |
Etofenprox | - | - | 3.50 × 10−8 (antagonistic) | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ortiz, D.M.D.; Park, J.; Lee, H.; Park, K. Integrated Assessment for the Estrogenic Effects of Pyrethroid Compounds: Defining the Molecular Initiating Events and Key Events for the Adverse Outcome Pathway. Toxics 2024, 12, 218. https://doi.org/10.3390/toxics12030218
Ortiz DMD, Park J, Lee H, Park K. Integrated Assessment for the Estrogenic Effects of Pyrethroid Compounds: Defining the Molecular Initiating Events and Key Events for the Adverse Outcome Pathway. Toxics. 2024; 12(3):218. https://doi.org/10.3390/toxics12030218
Chicago/Turabian StyleOrtiz, Darlene Mae D., Juyoung Park, Handule Lee, and Kwangsik Park. 2024. "Integrated Assessment for the Estrogenic Effects of Pyrethroid Compounds: Defining the Molecular Initiating Events and Key Events for the Adverse Outcome Pathway" Toxics 12, no. 3: 218. https://doi.org/10.3390/toxics12030218
APA StyleOrtiz, D. M. D., Park, J., Lee, H., & Park, K. (2024). Integrated Assessment for the Estrogenic Effects of Pyrethroid Compounds: Defining the Molecular Initiating Events and Key Events for the Adverse Outcome Pathway. Toxics, 12(3), 218. https://doi.org/10.3390/toxics12030218