Crop Contamination and Human Exposure to Per- and Polyfluoroalkyl Substances around a Fluorochemical Industrial Park in China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection
2.2. Standards and Reagents
2.3. Sample Extraction and Instrumental Analysis
2.4. Quality Assurance and Quality Control (QA/QC)
2.5. Statistical Analyses and Graphic Plotting
2.6. Dietary Intake Estimation
3. Results and Discussion
3.1. PFAS in Agricultural Soils
3.2. PFAS in Edible Parts of Crops
3.3. Spatial Distribution of PFAS around the FIP
3.4. Contamination of PFAS in Different Crop Species
3.5. Assessment of the Health Risks to the Local Population Associated with Exposure to PFAS
4. Conclusions and Environmental Implications
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Antonopoulou, M.; Spyrou, A.; Tzamaria, A.; Efthimiou, I.; Triantafyllidis, V. Current state of knowledge of environmental occurrence, toxic effects, and advanced treatment of PFOS and PFOA. Sci. Total Environ. 2024, 913, 169332. [Google Scholar] [CrossRef]
- Jarvis, A.L.; Justice, J.R.; Elias, M.C.; Schnitker, B.; Gallagher, K. Perfluorooctane Sulfonate in US Ambient Surface Waters: A Review of Occurrence in Aquatic Environments and Comparison to Global Concentrations. Environ. Toxicol. Chem. 2021, 40, 2425–2442. [Google Scholar] [CrossRef] [PubMed]
- Post, G.B.; Cohn, P.D.; Cooper, K.R. Perfluorooctanoic acid (PFOA), an emerging drinking water contaminant: A critical review of recent literature. Environ. Res. 2012, 116, 93–117. [Google Scholar] [CrossRef]
- Zhu, Q.; Qian, J.; Huang, S.; Li, Q.; Guo, L.; Zeng, J.; Zhang, W.; Cao, X.; Yang, J. Occurrence, distribution, and input pathways of per- and polyfluoroalkyl substances in soils near different sources in Shanghai. Environ. Pollut. 2022, 308, 119620. [Google Scholar] [CrossRef] [PubMed]
- Su, H.; Lu, Y.; Wang, P.; Shi, Y.; Li, Q.; Zhou, Y.; Johnson, A.C. Perfluoroalkyl acids (PFAAs) in indoor and outdoor dusts around a mega fluorochemical industrial park in China: Implications for human exposure. Environ. Int. 2016, 94, 667–673. [Google Scholar] [CrossRef]
- Bangma, J.; Eaves, L.A.; Oldenburg, K.; Reiner, J.L.; Manuck, T.; Fry, R.C. Identifying Risk Factors for Levels of Per- and Polyfluoroalkyl Substances (PFAS) in the Placenta in a High-Risk Pregnancy Cohort in North Carolina. Environ. Sci. Technol. 2020, 54, 8158–8166. [Google Scholar] [CrossRef] [PubMed]
- Chang, C.-J.; Barr, D.B.; Ryan, P.B.; Panuwet, P.; Smarr, M.M.; Liu, K.; Kannan, K.; Yakimavets, V.; Tan, Y.; Ly, V.; et al. Per- and polyfluoroalkyl substance (PFAS) exposure, maternal metabolomic perturbation, and fetal growth in African American women: A meet-in-the-middle approach. Environ. Int. 2022, 158, 106964. [Google Scholar] [CrossRef]
- Lindstrom, A.B.; Strynar, M.J.; Libelo, E.L. Polyfluorinated Compounds: Past, Present, and Future. Environ. Sci. Technol. 2011, 45, 7954–7961. [Google Scholar] [CrossRef]
- UNEP. Report of the Conference of the Parties to the Stockholm Convention on Persistent Organic Pollutants on the work of its ninth meeting. In Proceedings of the Ninth Meeting of the Conference of the Parties to the Stockholm Convention, Geneva, Switzerland, 29 April–10 May 2019. [Google Scholar]
- Li, J.; He, J.; Niu, Z.; Zhang, Y. Legacy per- and polyfluoroalkyl substances (PFASs) and alternatives (short-chain analogues, F-53B, GenX and FC-98) in residential soils of China: Present implications of replacing legacy PFASs. Environ. Int. 2020, 135, 105419. [Google Scholar] [CrossRef]
- Glüge, J.; Scheringer, M.; Cousins, I.T.; DeWitt, J.C.; Goldenman, G.; Herzke, D.; Lohmann, R.; Ng, C.A.; Trier, X.; Wang, Z. An overview of the uses of per- and polyfluoroalkyl substances (PFAS). Environ. Sci. Process. Impacts 2020, 22, 2345–2373. [Google Scholar] [CrossRef]
- Heydebreck, F.; Tang, J.; Xie, Z.; Ebinghaus, R. Correction to Alternative and Legacy Perfluoroalkyl Substances: Differences between European and Chinese River/Estuary Systems. Environ. Sci. Technol. 2015, 49, 14742–14743. [Google Scholar] [CrossRef]
- Pan, Y.; Zhang, H.; Cui, Q.; Sheng, N.; Yeung, L.W.Y.; Guo, Y.; Sun, Y.; Dai, J. First Report on the Occurrence and Bioaccumulation of Hexafluoropropylene Oxide Trimer Acid: An Emerging Concern. Environ. Sci. Technol. 2017, 51, 9553–9560. [Google Scholar] [CrossRef] [PubMed]
- Pan, Y.; Zhang, H.; Cui, Q.; Sheng, N.; Yeung, L.W.Y.; Sun, Y.; Guo, Y.; Dai, J. Worldwide Distribution of Novel Perfluoroether Carboxylic and Sulfonic Acids in Surface Water. Environ. Sci. Technol. 2018, 52, 7621–7629. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Huang, J.; Yang, Y.; Hui, Y.; Ge, Y.; Larssen, T.; Yu, G.; Deng, S.; Wang, B.; Harman, C. First Report of a Chinese PFOS Alternative Overlooked for 30 Years: Its Toxicity, Persistence, and Presence in the Environment. Environ. Sci. Technol. 2013, 47, 10163–10170. [Google Scholar] [CrossRef]
- Lu, Y.; Liang, Y.; Zhou, Z.; Wang, Y.; Jiang, G. Possible Fluorinated Alternatives of PFOS and PFOA: Ready to Go? Environ. Sci. Technol. 2019, 53, 14091–14092. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Cousins, I.T.; Scheringer, M.; Hungerbuehler, K. Hazard assessment of fluorinated alternatives to long-chain perfluoroalkyl acids (PFAAs) and their precursors: Status quo, ongoing challenges and possible solutions. Environ. Int. 2015, 75, 172–179. [Google Scholar] [CrossRef]
- Gomis, M.I.; Vestergren, R.; Borg, D.; Cousins, I.T. Comparing the toxic potency in vivo of long-chain perfluoroalkyl acids and fluorinated alternatives. Environ. Int. 2018, 113, 1–9. [Google Scholar] [CrossRef]
- Bao, Y.; Deng, S.; Jiang, X.; Qu, Y.; He, Y.; Liu, L.; Chai, Q.; Mumtaz, M.; Huang, J.; Cagnetta, G.; et al. Degradation of PFOA Substitute: GenX (HFPO–DA Ammonium Salt): Oxidation with UV/Persulfate or Reduction with UV/Sulfite? Environ. Sci. Technol. 2018, 52, 11728–11734. [Google Scholar] [CrossRef]
- Deng, M.; Wu, Y.; Xu, C.; Jin, Y.; He, X.; Wan, J.; Yu, X.; Rao, H.; Tu, W. Multiple approaches to assess the effects of F-53B, a Chinese PFOS alternative, on thyroid endocrine disruption at environmentally relevant concentrations. Sci. Total Environ. 2018, 624, 215–224. [Google Scholar] [CrossRef]
- Jia, X.; Li, X.; Zhou, L.; Hui, Y.; Li, W.; Cai, Y.; Shi, Y. Variations of the Level, Profile, and Distribution of PFAS around POSF Manufacturing Facilities in China: An Overlooked Source of PFCA. Environ. Sci. Technol. 2023, 57, 5264–5274. [Google Scholar] [CrossRef]
- Zhang, L.; Liu, J.; Hu, J.; Liu, C.; Guo, W.; Wang, Q.; Wang, H. The inventory of sources, environmental releases and risk assessment for perfluorooctane sulfonate in China. Environ. Pollut. 2012, 165, 193–198. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Xu, C.; Johnson, A.C.; Sun, X.; Ding, X.; Ding, D.; Liu, S.; Liang, X. Source apportionment and crop bioaccumulation of perfluoroalkyl acids and novel alternatives in an industrial-intensive region with fluorochemical production, China: Health implications for human exposure. J. Hazard. Mater. 2022, 423, 127019. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Lu, Y.; Song, X.; Jones, K.; Sweetman, A.J.; Johnson, A.C.; Zhang, M.; Lu, X.; Su, C. Multiple crop bioaccumulation and human exposure of perfluoroalkyl substances around a mega fluorochemical industrial park, China: Implication for planting optimization and food safety. Environ. Int. 2019, 127, 671–684. [Google Scholar] [CrossRef] [PubMed]
- Felizeter, S.; McLachlan, M.S.; De Voogt, P. Root Uptake and Translocation of Perfluorinated Alkyl Acids by Three Hydroponically Grown Crops. J. Agric. Food Chem. 2014, 62, 3334–3342. [Google Scholar] [CrossRef] [PubMed]
- Zhao, S.; Fang, S.; Zhu, L.; Liu, L.; Liu, Z.; Zhang, Y. Mutual impacts of wheat (Triticum aestivum L.) and earthworms (Eisenia fetida) on the bioavailability of perfluoroalkyl substances (PFASs) in soil. Environ. Pollut. 2014, 184, 495–501. [Google Scholar] [CrossRef] [PubMed]
- Lesmeister, L.; Lange, F.T.; Breuer, J.; Biegel-Engler, A.; Giese, E.; Scheurer, M. Extending the knowledge about PFAS bioaccumulation factors for agricultural plants—A review. Sci. Total Environ. 2021, 766, 142640. [Google Scholar] [CrossRef] [PubMed]
- Xiang, L.; Li, Y.-W.; Yu, P.-F.; Feng, N.-X.; Zhao, H.-M.; Li, H.; Cai, Q.-Y.; Mo, C.-H.; Li, Q.X. Food Safety Concerns: Crop Breeding as a Potential Strategy to Address Issues Associated with the Recently Lowered Reference Doses for Perfluorooctanoic Acid and Perfluorooctane Sulfonate. J. Agric. Food Chem. 2020, 68, 48–58. [Google Scholar] [CrossRef]
- Chen, L.; Dai, Y.; Zhou, C.; Huang, X.; Wang, S.; Yu, H.; Liu, Y.; Morel, J.L.; Lin, Q.; Qiu, R. Robust Matrix Effect-Free Method for Simultaneous Determination of Legacy and Emerging Per- and Polyfluoroalkyl Substances in Crop and Soil Matrices. J. Agric. Food Chem. 2020, 68, 8026–8039. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Sun, J.; Li, P. Exposure routes, bioaccumulation and toxic effects of per- and polyfluoroalkyl substances (PFASs) on plants: A critical review. Environ. Int. 2022, 158, 106891. [Google Scholar] [CrossRef]
- Duan, X. Highlights of the Chinese Exposure Factors Handbook (Adults); China Environmental Science Press: Beijing, China, 2014. [Google Scholar]
- Duan, X. Highlights of the Chinese Exposure Factors Handbook (Children); China Environmental Science Press: Beijing, China, 2016. [Google Scholar]
- NINH. Food Nurtrient Composition Database. Available online: https://www.chinanutri.cn/yyzyxxpt/sjzx/ (accessed on 29 January 2024).
- Zhang, M.; Cai, D.; Zhang, L.; Zhang, Q.; Ding, P.; Chen, X.; Huang, C.; Hu, G.; Li, T. Polybrominated diphenyl ethers in aquatic products of Guangzhou city, South China: Accumulation, distribution and health risk. Hyg. Environ. Health Adv. 2024, 9, 100085. [Google Scholar] [CrossRef]
- MDH. Toxicological summary for: Perfluorobutanoate. Available online: https://www.health.mn.gov/communities/environment/risk/docs/guidance/air/pfba.pdf (accessed on 29 January 2024).
- Sun, Q.; Bi, R.; Wang, T.; Su, C.; Chen, Z.; Diao, J.; Zheng, Z.; Liu, W. Are there risks induced by novel and legacy poly- and perfluoroalkyl substances in coastal aquaculture base in South China? Sci. Total Environ. 2021, 779, 146539. [Google Scholar] [CrossRef] [PubMed]
- EPA. Human Health Toxicity Assessments for GenX Chemicals. Available online: https://www.epa.gov/chemical-research/human-health-toxicity-assessments-genx-chemicals (accessed on 14 March 2024).
- EPA. Technical Fact Sheet—Perfluorooctane Sulfonate (PFOS) and Perfluorooctanoic Acid (PFOA). Available online: https://19january2021snapshot.epa.gov/fedfac/technical-fact-sheet-perfluorooctane-sulfonate-pfos-and-perfluorooctanoic-acid-pfoa-0_.html (accessed on 14 March 2024).
- UNEP. The New POPs under the Stockholm Convention. Available online: https://www.pops.int/ (accessed on 29 January 2024).
- Liu, G.; Usman, M.; Luo, T.; Biard, P.-F.; Lin, K.; Greenwell, H.C.; Hanna, K. Retention and transport of PFOA and its fluorinated substitute, GenX, through water-saturated soil columns. Environ. Pollut. 2023, 337, 122530. [Google Scholar] [CrossRef] [PubMed]
- Dalahmeh, S.; Tirgani, S.; Komakech, A.J.; Niwagaba, C.B.; Ahrens, L. Per- and polyfluoroalkyl substances (PFASs) in water, soil and plants in wetlands and agricultural areas in Kampala, Uganda. Sci. Total Environ. 2018, 631–632, 660–667. [Google Scholar] [CrossRef] [PubMed]
- Song, D.; Qiao, B.; Yao, Y.; Zhao, L.; Wang, X.; Chen, H.; Zhu, L.; Sun, H. Target and nontarget analysis of per- and polyfluoroalkyl substances in surface water, groundwater and sediments of three typical fluorochemical industrial parks in China. J. Hazard. Mater. 2023, 460, 132411. [Google Scholar] [CrossRef]
- Adu, O.; Ma, X.; Sharma, V.K. Bioavailability, phytotoxicity and plant uptake of per-and polyfluoroalkyl substances (PFAS): A review. J. Hazard. Mater. 2023, 447, 130805. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Sun, H.; Wang, Q.; Chen, H.; Yao, Y.; Zhao, Z.; Alder, A.C. Uptake mechanisms of perfluoroalkyl acids with different carbon chain lengths (C2–C8) by wheat (Triticum acstivnm L.). Sci. Total Environ. 2019, 654, 19–27. [Google Scholar] [CrossRef] [PubMed]
- Picó, Y.; Campo, J.; Alfarhan, A.H.; El-Sheikh, M.A.; Barceló, D. A reconnaissance study of pharmaceuticals, pesticides, perfluoroalkyl substances and organophosphorus flame retardants in the aquatic environment, wild plants and vegetables of two Saudi Arabia urban areas: Environmental and human health risk assessment. Sci. Total Environ. 2021, 776, 145843. [Google Scholar] [CrossRef] [PubMed]
- Hu, W.; Zhang, M.-Y.; Liu, L.-Y.; Zhang, Z.-F.; Guo, Y. Perfluoroalkyl and polyfluoroalkyl substances (PFASs) crossing the blood-cerebrospinal fluid barrier: Their occurrence in human cerebrospinal fluid. J. Hazard. Mater. 2023, 442, 130003. [Google Scholar] [CrossRef]
- Zhao, S.; Liang, T.; Zhu, L.; Yang, L.; Liu, T.; Fu, J.; Wang, B.; Zhan, J.; Liu, L. Fate of 6:2 fluorotelomer sulfonic acid in pumpkin (Cucurbita maxima L.) based on hydroponic culture: Uptake, translocation and biotransformation. Environ. Pollut. 2019, 252, 804–812. [Google Scholar] [CrossRef]
- Hamid, H.; Li, L.Y.; Grace, J.R. Effect of substrate concentrations on aerobic biotransformation of 6:2 fluorotelomer sulfonate (6:2 FTS) in landfill leachate. Chemosphere 2020, 261, 128108. [Google Scholar] [CrossRef]
- Baduel, C.; Paxman, C.J.; Mueller, J.F. Perfluoroalkyl substances in a firefighting training ground (FTG), distribution and potential future release. J. Hazard. Mater. 2015, 296, 46–53. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Jiao, X.-C.; Gai, N.; Li, X.-J.; Wang, X.-C.; Lu, G.-H.; Piao, H.-T.; Rao, Z.; Yang, Y.-L. Perfluorinated compounds in soil, surface water, and groundwater from rural areas in eastern China. Environ. Pollut. 2016, 211, 124–131. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhou, Z.; Lian, Y.; Sun, X.; Wu, Y.; Qiao, L.; Wang, M. Source, transportation, bioaccumulation, distribution and food risk assessment of perfluorinated alkyl substances in vegetables: A review. Food Chem. 2021, 349, 129137. [Google Scholar] [CrossRef] [PubMed]
- Che, J.; Xu, C.; Song, X.; Ding, X.; Ali, M.; Chen, H. Bioaccumulation of PFASs in cabbage collected near a landfill site in China: Laboratory and field investigations. Sci. Total Environ. 2024, 906, 167578. [Google Scholar] [CrossRef] [PubMed]
- Blaine, A.C.; Rich, C.D.; Hundal, L.S.; Lau, C.; Mills, M.A.; Harris, K.M.; Higgins, C.P. Uptake of Perfluoroalkyl Acids into Edible Crops via Land Applied Biosolids: Field and Greenhouse Studies. Environ. Sci. Technol. 2013, 47, 14062–14069. [Google Scholar] [CrossRef] [PubMed]
- Wen, B.; Wu, Y.; Zhang, H.; Liu, Y.; Hu, X.; Huang, H.; Zhang, S. The roles of protein and lipid in the accumulation and distribution of perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) in plants grown in biosolids-amended soils. Environ. Pollut. 2016, 216, 682–688. [Google Scholar] [CrossRef] [PubMed]
- Aasen, R.; Eggen, T.; Sørheim, R.; Hartnik, T.; Næs, K.; Forfang, I.; Amundsen, C.E. Screening of Polyfluorinated Organic Compounds at Four Fire Training Facilities in Norway; Statens Forurensningstilsyn: Oslo, Norway, 2008. [Google Scholar]
- Zhang, H.; Vestergren, R.; Wang, T.; Yu, J.; Jiang, G.; Herzke, D. Geographical Differences in Dietary Exposure to Perfluoroalkyl Acids between Manufacturing and Application Regions in China. Environ. Sci. Technol. 2017, 51, 5747–5755. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Sun, H.W.; Wu, Q.; Zhang, X.Z.; Yun, S.H.; Kannan, K. Perfluorochemicals in Meat, Eggs and Indoor Dust in China: Assessment of Sources and Pathways of Human Exposure to Perfluorochemicals. Environ. Sci. Technol. 2010, 44, 3572–3579. [Google Scholar] [CrossRef]
- EFSA Panel on Contaminants in the Food Chain (EFSA CONTAM Panel); Schrenk, D.; Bignami, M.; Bodin, L.; Chipman, J.K.; del Mazo, J.; Grasl-Kraupp, B.; Hogstrand, C.; Hoogenboom, L.; Leblanc, J.-C.; et al. Risk to human health related to the presence of perfluoroalkyl substances in food. EFSA J. 2020, 18, e06223. [Google Scholar] [CrossRef]
EDIs | EDI (Cucurbitaceae) | EDI (Leguminosae) | ||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Age | 2–5 y | 6–17 y | >18 y | 2–5 y | 6–17 y | >18 y | ||||||||||||||||||||||||
Area | U | R | U | R | U | R | U | R | U | R | U | R | ||||||||||||||||||
PFBA | 3.05 | 2.71 | 1.79 | 1.85 | 1.65 | 1.76 | 50.11 | 44.57 | 29.42 | 30.42 | 27.18 | 28.92 | ||||||||||||||||||
PFHxA | ND | ND | ND | ND | ND | ND | 0.07 | 0.06 | 0.04 | 0.04 | 0.04 | 0.04 | ||||||||||||||||||
PFOA | 0.04 | 0.03 | 0.02 | 0.02 | 0.02 | 0.02 | ND | ND | ND | ND | ND | ND | ||||||||||||||||||
PFBS | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | ||||||||||||||||||
PFHxS | 0.13 | 0.11 | 0.07 | 0.08 | 0.07 | 0.07 | 0.09 | 0.08 | 0.05 | 0.06 | 0.05 | 0.05 | ||||||||||||||||||
PFNS | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | ||||||||||||||||||
N-MeFOSAA | 2.08 | 1.85 | 1.22 | 1.26 | 1.13 | 1.20 | 5.02 | 4.47 | 2.95 | 3.05 | 2.73 | 2.90 | ||||||||||||||||||
N-EtFOSAA | 0.15 | 0.14 | 0.09 | 0.09 | 0.08 | 0.09 | 0.02 | 0.02 | 0.01 | 0.01 | 0.01 | 0.01 | ||||||||||||||||||
8:2 Cl-PFESA | ND | ND | ND | ND | ND | ND | 0.13 | 0.12 | 0.08 | 0.08 | 0.07 | 0.08 | ||||||||||||||||||
8Cl-PFOS | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | ||||||||||||||||||
HFPO-DA | 0.02 | 0.02 | 0.01 | 0.01 | 0.01 | 0.01 | 0.04 | 0.04 | 0.02 | 0.03 | 0.02 | 0.02 | ||||||||||||||||||
HFPO-TA | 0.41 | 0.36 | 0.24 | 0.25 | 0.22 | 0.23 | 0.44 | 0.39 | 0.26 | 0.27 | 0.24 | 0.26 | ||||||||||||||||||
HFPO-TeA | ND | ND | ND | ND | ND | ND | 0.23 | 0.21 | 0.14 | 0.14 | 0.13 | 0.13 | ||||||||||||||||||
4:2 FTS | ND | ND | ND | ND | ND | ND | 1.08 | 0.96 | 0.64 | 0.66 | 0.59 | 0.62 | ||||||||||||||||||
6:2 FTS | ND | ND | ND | ND | ND | ND | 1.74 | 1.55 | 1.02 | 1.05 | 0.94 | 1.00 | ||||||||||||||||||
EDIs | EDI (Leafy Vegetables) | EDI (Solanaceae) | EDI (Gramineae) | |||||||||||||||||||||||||||
Age | 2–5 y | 6–17 y | >18 y | 2–5 y | 6–17 y | >18 y | 2–5 y | 6–17 y | >18 y | |||||||||||||||||||||
Area | U | R | U | R | U | R | U | R | U | R | U | R | U | R | U | R | U | R | ||||||||||||
PFBA | 27.33 | 24.32 | 16.05 | 16.59 | 14.82 | 15.78 | 35.32 | 31.42 | 20.74 | 21.44 | 19.15 | 20.38 | 11.66 | 9.79 | 10.02 | 6.68 | 5.15 | 6.35 | ||||||||||||
PFHxA | 0.88 | 0.78 | 0.52 | 0.53 | 0.48 | 0.51 | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | ||||||||||||
PFOA | 0.69 | 0.61 | 0.40 | 0.42 | 0.37 | 0.40 | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | ||||||||||||
PFBS | 0.10 | 0.09 | 0.06 | 0.06 | 0.05 | 0.06 | 4.83 | 4.29 | 2.83 | 2.93 | 2.62 | 2.79 | ND | ND | ND | ND | ND | ND | ||||||||||||
PFHxS | 0.04 | 0.04 | 0.02 | 0.02 | 0.02 | 0.02 | 0.28 | 0.25 | 0.16 | 0.17 | 0.15 | 0.16 | 2.19 | 1.84 | 1.88 | 1.25 | 0.97 | 1.19 | ||||||||||||
PFNS | 0.26 | 0.23 | 0.15 | 0.16 | 0.14 | 0.15 | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | ||||||||||||
N-MeFOSAA | 2.47 | 2.19 | 1.45 | 1.50 | 1.34 | 1.42 | 2.66 | 2.36 | 1.56 | 1.61 | 1.44 | 1.53 | 20.05 | 16.84 | 17.24 | 11.49 | 8.86 | 10.93 | ||||||||||||
N-EtFOSAA | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | 1.98 | 1.67 | 1.71 | 1.14 | 0.88 | 1.08 | ||||||||||||
8:2 Cl-PFESA | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | ||||||||||||
8Cl-PFOS | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.04 | 0.04 | 0.02 | 0.02 | 0.02 | 0.02 | ND | ND | ND | ND | ND | ND | ||||||||||||
HFPO-DA | 0.12 | 0.10 | 0.07 | 0.07 | 0.06 | 0.07 | 0.04 | 0.03 | 0.02 | 0.02 | 0.02 | 0.02 | ND | ND | ND | ND | ND | ND | ||||||||||||
HFPO-TA | 0.68 | 0.61 | 0.40 | 0.41 | 0.37 | 0.39 | 0.74 | 0.66 | 0.44 | 0.45 | 0.40 | 0.43 | ND | ND | ND | ND | ND | ND | ||||||||||||
HFPO-TeA | 0.10 | 0.09 | 0.06 | 0.06 | 0.05 | 0.06 | 0.15 | 0.13 | 0.09 | 0.09 | 0.08 | 0.08 | ND | ND | ND | ND | ND | ND | ||||||||||||
4:2 FTS | 1.55 | 1.38 | 0.91 | 0.94 | 0.84 | 0.90 | 1.29 | 1.15 | 0.76 | 0.79 | 0.70 | 0.75 | ND | ND | ND | ND | ND | ND | ||||||||||||
6:2 FTS | 3.25 | 2.89 | 1.91 | 1.97 | 1.76 | 1.87 | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, K.; Huang, J.; Zhang, Y.; Wu, X.; Cai, D.; Hu, G.; Li, Y.; Ni, Z.; Lin, Q.; Wang, S.; et al. Crop Contamination and Human Exposure to Per- and Polyfluoroalkyl Substances around a Fluorochemical Industrial Park in China. Toxics 2024, 12, 269. https://doi.org/10.3390/toxics12040269
Xu K, Huang J, Zhang Y, Wu X, Cai D, Hu G, Li Y, Ni Z, Lin Q, Wang S, et al. Crop Contamination and Human Exposure to Per- and Polyfluoroalkyl Substances around a Fluorochemical Industrial Park in China. Toxics. 2024; 12(4):269. https://doi.org/10.3390/toxics12040269
Chicago/Turabian StyleXu, Kairan, Jian Huang, Yufeng Zhang, Xilong Wu, Dan Cai, Guocheng Hu, Yu Li, Zhuobiao Ni, Qingqi Lin, Shizhong Wang, and et al. 2024. "Crop Contamination and Human Exposure to Per- and Polyfluoroalkyl Substances around a Fluorochemical Industrial Park in China" Toxics 12, no. 4: 269. https://doi.org/10.3390/toxics12040269
APA StyleXu, K., Huang, J., Zhang, Y., Wu, X., Cai, D., Hu, G., Li, Y., Ni, Z., Lin, Q., Wang, S., & Qiu, R. (2024). Crop Contamination and Human Exposure to Per- and Polyfluoroalkyl Substances around a Fluorochemical Industrial Park in China. Toxics, 12(4), 269. https://doi.org/10.3390/toxics12040269