Developmental Toxicity of Fine Particulate Matter: Multifaceted Exploration from Epidemiological and Laboratory Perspectives
Abstract
:1. Introduction
Country | Contaminant | Exposure Period | Outcome | Supporting Statistics | References |
---|---|---|---|---|---|
China | PM2.5 | During the entire pregnancy | PROM | A substantial link between acute PM2.5 exposure (per interquartile range increase) and the likelihood of PROM (OR = 1.11; 95% CI: 1.03, 1.19 for PM2.5 on delivery day; OR = 1.10; 95% CI: 1.02, 1.18 for PM2.5 1 day before delivery) | Wang et al., 2022 [19] |
USA | PM2.5 | During the entire pregnancy | PTB | High levels of PM2.5 exposure were correlated with a 19% increase in PTB risk | Defranco et al., 2016 [20] |
China | PM2.5 and PM10 | During the entire pregnancy | PTB and near-term birth | Exposure to PM2.5 or PM10 throughout pregnancy increased the likelihood of PTB and near-term birth (HR: 1.09 [95% CI: 1.08, 1.10] for a 10 μg/m3 increase in PM2.5) | Li et al., 2018 [21] |
USA | PM2.5 and NO2 | During the entire pregnancy | Declined birth weights | For each 10 µg/m3 increase in PM2.5 exposure, birth weights underwent a decline of 18.4, 10.5, 29.7, and 48.4 g during the first, second, and third trimesters, or throughout the entire pregnancy, respectively | Savitz et al., 2014 [22] |
USA | PM2.5 | During the entire pregnancy | LBW | A mean concentration increase in PM2.5 exposure was linked to a 3.2% (95% CI = −1.0%, 6.3%) increase in the probability of LBW among term births | Kirwa et al., 2019 [23] |
Republic of Chile | PM2.5 and PM10 | Gestational exposure | LBW | PM2.5 exposure during the second trimester was associated with a higher likelihood of LBW (OR: 1.031; 95% CI: 1.004–1.059) | Rodríguez-Fernández et al., 2022 [24] |
USA | PM2.5, PM10, CO | During 3 months prior to conception and gestational weeks 3–8 | Orofacial defects, CP | The positive associations of PM2.5 with CP were most eminent from gestational weeks 3–5 | Zhu et al., 2015 [5] |
USA | PM2.5 and O3 | During early gestation (weeks 5–10 of gestation) | CP | Each 10 μg/m3 increase in PM2.5 concentration was accompanied by a 43% increase in the risk of developing CP | Zhou et al., 2017 [25] |
China | PM2.5 | Elementary school students aged 5–12 | Impaired respiratory health, increased airway inflammation, reduced lung function | Among all constituents of PM2.5, organic carbon, elemental carbon, NO3−, and NH4+ had the consistent and strongest associations with airway inflammation biomarkers and lung function parameters, followed by metallic elements | Wu et al., 2021 [26] |
Poland | PM2.5 | During the entire pregnancy | Increased susceptibility to respiratory infections in early childhood | The aOR for the occurrence of recurrent bronchopulmonary infections during the follow-up period significantly increased in a dose–response relationship with the prenatal PM2.5 level (OR = 2.44, 95% CI: 1.12–5.36) | Jedrychowski et al., 2013 [12] |
China | PM2.5 | During pregnancy and infancy | Asthma | The susceptible periods of developing asthma included gestational weeks 6–22 and 9–46 weeks following delivery | Jung et al., 2019 [27] |
USA | PM2.5 | During the entire pregnancy | Asthma | Boys with higher prenatal exposure during midgestation (16–25-week gestation) exhibited an increased incidence of developing asthma by the age of 6 years | Hsu et al., 2015 [28] |
USA | PM2.5 | During established morphogenic phases of prenatal lung development | Asthma | An increase in PM2.5 by 2 μg/m3 was found to have a connection with a 1.29-fold higher risk of developing asthma | Hazlehurst et al., 2021 [29] |
USA | PM2.5 | Potential | Repeated wheezing | Heightened prenatal exposure to PM2.5 during the later stages of pregnancy correlated with recurrent wheezing in early childhood | Chiu et al., 2022 [30] |
Israeli | CO, NO2, O3, SO2, PM10, PM2.5 | During weeks 3–8 of pregnancy | Multiple CHDs | Higher maternal exposure to PM10 was linked to an elevated likelihood of multiple CHDs (aOR 1.05, 95% CI: 1.01–1.10 for a 10 μg/m3 increment) | Agay-Shay et al., 2013 [31] |
China | PM10, PM2.5, NO2, CO, SO2 | During the entire pregnancy | CHDs | Markedly increasing the association of PM2.5 exposure during the second and third trimesters with the occurrence of CHDs, with aORs of 1.228 and 1.236 (95% CI: 1.141–1.322, 1.154–1.324 individually) for each 10 μg/m3 increase in PM2.5 level | Sun et al., 2022 [16] |
USA | Benzene and PM2.5 | During gestation | Selected heart defects | Exposure to elevated concentrations of PM2.5 was linked to a higher risk of developing specific heart defects, including truncus arteriosus, the coarctation of the aorta, and interrupted aortic arch | Tanner et al., 2015 [32] |
USA | PM2.5 | During pregnancy | Increased BP in children aged 3–9 years old | A 5 μg/m3 rise in PM2.5 during the third trimester was associated with a 3.49 percentile (95% CI: 0.71–6.26) elevation in child SBP or a 1.47 times (95% CI: 1.17–1.85) higher hazard of elevated BP | Zhang et al., 2018 [9] |
USA | PM2.5 and BC | Each trimester of pregnancy and within 2–90 days before birth | Elevated BP among newborns | Exposure to PM2.5 and BC during the late pregnancy stage was associated with elevated BP among newborns (e.g., 1.0 mmHg; 95% CI: 0.1, 1.8 for a 0.32 μg/m3 increase in mean 90-day residential BC) | Van Rossem et al., 2015 [33] |
Spain | PM2.5 and NO2 | Throughout the whole period of the pregnancies | Adverse impacts on memory and verbal abilities in boys | Boys being more susceptible between the ages of 4 and 6 years, particularly in areas associated with memory, verbal aptitude, and overall cognitive abilities | Lertxundi et al., 2019 [34] |
USA | PM2.5 | Entire pregnancy | ID | The risks of ID associated with having daily average PM2.5 concentrations over the current US NAAQS threshold (i.e., ≥12.0 μg/m3) during the preconception and first trimester windows were substantial; the odds ratios were 1.8 and 2.4, respectively | Grineski et al., 2023 [35] |
USA | PM2.5 | Prenatal | Slightly lower IQ in late childhood | A substantial correlation was observed between PM2.5 exposure in the later stages of pregnancy (months 5–7) and the IQ of children | Holm et al., 2023 [36] |
China | PM2.5 and PM10 | Prenatal and early postnatal exposures | Decreased MDI and PDI scores | Exposure to PM2.5 and PM10 in either of the two periods was linked to reduced scores of the MDI and PDI in the offspring | Wang et al., 2022 [14] |
China | PM2.5 | Prenatal | SDDs | PM2.5 exposure may elevate the risk of SDDs in both sexes (RR: 1.52, 95% CI: 1.19, 2.03, per 10 μg/m3 increase in PM2.5 exposure), particularly in problem-solving skills among girls (RR: 2.23, 95% CI: 1.22, 4.35) | Wang et al., 2021 [37] |
China | PM2.5 | Prenatal and postnatal | Decreased LDCDQ scores and increased risk of DCD | Exposure to PM2.5 was linked to diminished motor performance and a greater risk of DCD, with an aOR of 1.06 (95% CI: 1.01, 1.10) and 1.06 (95% CI: 1.01, 1.13) for every interquartile range elevation in PM2.5 exposure during the first 3 months and the initial 3 years, separately | Cai et al., 2023 [38] |
China | PM2.5 | During the prenatal and postnatal periods | Postponement in gross motor, fine motor, and personal–social development | Exposure during the second trimester of pregnancy was linked to an elevated probability of delayed neurodevelopment related to gross motor skills (aOR: 1.09 per 10 μg/m3 increase). The delayed development of fine motor skills was revealed to be involved with PM2.5 exposure in the second and third trimesters (aOR: 1.06) | Shih et al., 2023 [39] |
USA | PM2.5 | From 3 months before pregnancy until the child’s second birthday | ASD | A 50% rise in the risk of ASD when exposed to an average cumulative level of PM2.5 from 3 months before conception through the child’s second year (p = 0.046) | Talbott et al., 2015 [40] |
USA | PM2.5 and PM10 | From 9 months before pregnancy to 9 months after delivery | Greater odds of ASD | The relation between ASD and PM2.5 exposure was more pronounced in the final trimester (OR = 1.42 per IQR raise in PM2.5; 95% CI: 1.09, 1.86) | Raz et al., 2015 [41] |
USA | PM2.5, NO2, O3 | During pregnancy | ASD | The sensitive periods of PM2.5 exposure linked to ASD occurred early in pregnancy, demonstrating statistical significance over 1–27 weeks of gestation (cumulative HR = 1.14 [95% CI: 1.06, 1.23] per IQR [7.4 μg/m3] increase) | Rahman et al., 2022 [42] |
USA | Aircraft ultrafine particles | During pregnancy | ASD | A significant association was identified between the increased risk of ASD and maternal exposure to aircraft PM0.1 throughout pregnancy (HR: 1.02, [95% CI: 1.01–1.03] per interquartile range [IQR] = 0.02 μg/m3 rise) | Carter et al., 2023 [43] |
2. Materials and Methods
2.1. Search Strategy
2.2. Inclusion Criteria
2.3. Exclusion Criteria
3. Adverse Birth Outcomes Induced by PM2.5
3.1. Epidemiological Studies
3.1.1. Preterm Birth
3.1.2. Low Birth Weight and Reduced Fetal Growth
3.1.3. Facial Defects
3.2. Experimental Research
4. Adverse Effects of PM2.5 on Respiratory Development
4.1. Epidemiological Studies
4.2. Experimental Research
5. Cardiovascular Diseases Induced by PM2.5
5.1. Epidemiological Studies
5.1.1. Heart Defects
5.1.2. High Blood Pressure
5.2. Experimental Research
6. Neurodevelopmental Toxicity Caused by PM2.5
6.1. Epidemiological Studies
6.1.1. Developmental Delay and Developmental Coordination Disorder
6.1.2. Cognitive Impairment
6.1.3. Autism Spectrum Disorders
6.2. Experimental Research
6.2.1. Neural Damage and Brain Injury
6.2.2. Impaired Learning and Memory
6.2.3. ASD
6.2.4. Anxiety, Depression, and Fear
7. Mechanistic Considerations of PM2.5-Induced Developmental Toxicity
7.1. Transcriptional and Translational Regulation
7.2. Oxidative Stress and Inflammation Response
7.3. Epigenetic Regulation
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Feng, S.; Gao, D.; Liao, F.; Zhou, F.; Wang, X. The health effects of ambient PM2.5 and potential mechanisms. Ecotoxicol. Environ. Saf. 2016, 128, 67–74. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Zhou, R.; Zhang, J. Function of PM2.5 in the pathogenesis of lung cancer and chronic airway inflammatory diseases. Oncol. Lett. 2018, 15, 7506–7514. [Google Scholar] [CrossRef] [PubMed]
- Thiankhaw, K.; Chattipakorn, N.; Chattipakorn, S.C. PM2.5 exposure in association with AD-related neuropathology and cognitive outcomes. Environ. Pollut. 2022, 292, 118320. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zhong, Y.; Liao, J.; Wang, G. PM2.5-related cell death patterns. Int. J. Med. Sci. 2021, 18, 1024–1029. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Zhang, C.; Liu, D.; Grantz, K.L.; Wallace, M.; Mendola, P. Maternal ambient air pollution exposure preconception and during early gestation and offspring congenital orofacial defects. Environ. Res. 2015, 140, 714–720. [Google Scholar] [CrossRef] [PubMed]
- Teng, C.; Wang, Z.; Yan, B. Fine particle-induced birth defects: Impacts of size, payload, and beyond. Birth Defects Res. C Embryo Today 2016, 108, 196–206. [Google Scholar] [CrossRef] [PubMed]
- Goriainova, V.; Awada, C.; Opoku, F.; Zelikoff, J.T. Adverse effects of black carbon (BC) exposure during pregnancy on maternal and fetal health: A contemporary review. Toxics 2022, 10, 779. [Google Scholar] [CrossRef] [PubMed]
- Costa, L.G.; Cole, T.B.; Dao, K.; Chang, Y.C.; Garrick, J.M. Developmental impact of air pollution on brain function. Neurochem. Int. 2019, 131, 104580. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Mueller, N.T.; Wang, H.; Hong, X.; Appel, L.J.; Wang, X. Maternal exposure to ambient particulate matter ≤2.5 µm during pregnancy and the risk for high blood pressure in childhood. Hypertension 2018, 72, 194–201. [Google Scholar] [CrossRef] [PubMed]
- Gouveia, N.; Bremner, S.A.; Novaes, H.M. Association between ambient air pollution and birth weight in São paulo, Brazil. J. Epidemiol. Community Health 2004, 58, 11–17. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.A.; Pereira, L.A.; Nishioka, D.C.; Conceição, G.M.; Braga, A.L.; Saldiva, P.H. Air pollution and neonatal deaths in São paulo, Brazil. Braz. J. Med. Biol. Res. 2004, 37, 765–770. [Google Scholar] [CrossRef] [PubMed]
- Jedrychowski, W.A.; Perera, F.P.; Spengler, J.D.; Mroz, E.; Stigter, L.; Flak, E.; Majewska, R.; Klimaszewska-Rembiasz, M.; Jacek, R. Intrauterine exposure to fine particulate matter as a risk factor for increased susceptibility to acute broncho-pulmonary infections in early childhood. Int. J. Hyg. Environ. Health 2013, 216, 395–401. [Google Scholar] [CrossRef] [PubMed]
- Korten, I.; Ramsey, K.; Latzin, P. Air pollution during pregnancy and lung development in the child. Paediatr. Respir. Rev. 2017, 21, 38–46. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Zhang, H.; Li, J.; Liao, J.; Liu, J.; Hu, C.; Sun, X.; Zheng, T.; Xia, W.; Xu, S.; et al. Prenatal and early postnatal exposure to ambient particulate matter and early childhood neurodevelopment: A birth cohort study. Environ. Res. 2022, 210, 112946. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Liao, J.; Hu, C.; Bao, S.; Mahai, G.; Cao, Z.; Lin, C.; Xia, W.; Xu, S.; Li, Y. Preconceptional and the first trimester exposure to PM2.5 and offspring neurodevelopment at 24 months of age: Examining mediation by maternal thyroid hormones in a birth cohort study. Environ. Pollut. 2021, 284, 117133. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.; Wu, Q.; Wang, H.; Liu, J.; Shao, Y.; Xu, R.; Gong, T.; Peng, X.; Zhang, B. Maternal exposure to ambient air pollution and risk of congenital heart defects in Suzhou, China. Front. Public. Health 2022, 10, 1017644. [Google Scholar] [CrossRef] [PubMed]
- Iglesias-Vázquez, L.; Binter, A.C.; Canals, J.; Hernández-Martínez, C.; Voltas, N.; Ambròs, A.; Fernández-Barrés, S.; Pérez-Crespo, L.; Guxens, M.; Arija, V. Maternal exposure to air pollution during pregnancy and child’s cognitive, language, and motor function: Eclipses study. Environ. Res. 2022, 212, 113501. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Shi, J.; Ma, Y.; Yu, N.; Zheng, P.; Chen, Z.; Wang, T.; Jia, G. Association between air pollution and lipid profiles. Toxics 2023, 11, 894. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Yu, G.; Menon, R.; Zhong, N.; Qiao, C.; Cai, J.; Wang, W.; Zhang, H.; Liu, M.; Sun, K.; et al. Acute and chronic maternal exposure to fine particulate matter and prelabor rupture of the fetal membranes: A nation-wide survey in China. Environ. Int. 2022, 170, 107561. [Google Scholar] [CrossRef] [PubMed]
- DeFranco, E.; Moravec, W.; Xu, F.; Hall, E.; Hossain, M.; Haynes, E.N.; Muglia, L.; Chen, A. Exposure to airborne particulate matter during pregnancy is associated with preterm birth: A population-based cohort study. Environ. Health 2016, 15, 6. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Wang, Y.Y.; Guo, Y.; Zhou, H.; Wang, X.; Wang, Q.; Shen, H.; Zhang, Y.; Yan, D.; Zhang, Y.; et al. Effect of airborne particulate matter of 2.5 μm or less on preterm birth: A national birth cohort study in China. Environ. Int. 2018, 121, 1128–1136. [Google Scholar] [CrossRef] [PubMed]
- Savitz, D.A.; Bobb, J.F.; Carr, J.L.; Clougherty, J.E.; Dominici, F.; Elston, B.; Ito, K.; Ross, Z.; Yee, M.; Matte, T.D. Ambient fine particulate matter, nitrogen dioxide, and term birth weight in New York, New York. Am. J. Epidemiol. 2014, 179, 457–466. [Google Scholar] [CrossRef] [PubMed]
- Kirwa, K.; McConnell-Rios, R.; Manjourides, J.; Cordero, J.; Alshawabekeh, A.; Suh, H.H. Low birth weight and PM2.5 in Puerto rico. Environ. Epidemiol. 2019, 3, e058. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Fernández, A.; Ramos-Castillo, N.; Ruiz-De la Fuente, M.; Parra-Flores, J.; Maury-Sintjago, E. Association of prematurity and low birth weight with gestational exposure to PM2.5 and PM10 particulate matter in chileans newborns. Int. J. Environ. Res. Public. Health 2022, 19, 6133. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Gilboa, S.M.; Herdt, M.L.; Lupo, P.J.; Flanders, W.D.; Liu, Y.; Shin, M.; Canfield, M.A.; Kirby, R.S. Maternal exposure to ozone and PM2.5 and the prevalence of orofacial clefts in four U.S. States. Environ. Res. 2017, 153, 35–40. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Li, H.; Xu, D.; Li, H.; Chen, Z.; Cheng, Y.; Yin, G.; Niu, Y.; Liu, C.; Kan, H.; et al. Associations of fine particulate matter and its constituents with airway inflammation, lung function, and buccal mucosa microbiota in children. Sci. Total Environ. 2021, 773, 145619. [Google Scholar] [CrossRef] [PubMed]
- Jung, C.R.; Chen, W.T.; Tang, Y.H.; Hwang, B.F. Fine particulate matter exposure during pregnancy and infancy and incident asthma. J. Allergy Clin. Immunol. 2019, 143, 2254–2262. [Google Scholar] [CrossRef] [PubMed]
- Hsu, H.H.; Chiu, Y.H.; Coull, B.A.; Kloog, I.; Schwartz, J.; Lee, A.; Wright, R.O.; Wright, R.J. Prenatal particulate air pollution and asthma onset in urban children. Identifying sensitive windows and sex differences. Am. J. Respir. Crit. Care Med. 2015, 192, 1052–1059. [Google Scholar] [PubMed]
- Hazlehurst, M.F.; Carroll, K.N.; Loftus, C.T.; Szpiro, A.A.; Moore, P.E.; Kaufman, J.D.; Kirwa, K.; LeWinn, K.Z.; Bush, N.R.; Sathyanarayana, S.; et al. Maternal exposure to PM2.5 during pregnancy and asthma risk in early childhood: Consideration of phases of fetal lung development. Environ. Epidemiol. 2021, 5, e130. [Google Scholar] [CrossRef]
- Chiu, Y.M.; Carroll, K.N.; Coull, B.A.; Kannan, S.; Wilson, A.; Wright, R.J. Prenatal fine particulate matter, maternal micronutrient antioxidant intake, and early childhood repeated wheeze: Effect modification by race/ethnicity and sex. Antioxidants 2022, 11, 366. [Google Scholar] [CrossRef] [PubMed]
- Agay-Shay, K.; Friger, M.; Linn, S.; Peled, A.; Amitai, Y.; Peretz, C. Air pollution and congenital heart defects. Environ. Res. 2013, 124, 28–34. [Google Scholar] [CrossRef]
- Tanner, J.P.; Salemi, J.L.; Stuart, A.L.; Yu, H.; Jordan, M.M.; DuClos, C.; Cavicchia, P.; Correia, J.A.; Watkins, S.M.; Kirby, R.S. Associations between exposure to ambient benzene and PM2.5 during pregnancy and the risk of selected birth defects in offspring. Environ. Res. 2015, 142, 345–353. [Google Scholar] [CrossRef] [PubMed]
- van Rossem, L.; Rifas-Shiman, S.L.; Melly, S.J.; Kloog, I.; Luttmann-Gibson, H.; Zanobetti, A.; Coull, B.A.; Schwartz, J.D.; Mittleman, M.A.; Oken, E.; et al. Prenatal air pollution exposure and newborn blood pressure. Environ. Health Perspect. 2015, 123, 353–359. [Google Scholar] [CrossRef] [PubMed]
- Lertxundi, A.; Andiarena, A.; Martínez, M.D.; Ayerdi, M.; Murcia, M.; Estarlich, M.; Guxens, M.; Sunyer, J.; Julvez, J.; Ibarluzea, J. Prenatal exposure to PM2.5 and NO2 and sex-dependent infant cognitive and motor development. Environ. Res. 2019, 174, 114–121. [Google Scholar] [CrossRef] [PubMed]
- Grineski, S.; Alexander, C.; Renteria, R.; Collins, T.W.; Bilder, D.; VanDerslice, J.; Bakian, A. Trimester-specific ambient PM2.5 exposures and risk of intellectual disability in Utah. Environ. Res. 2023, 218, 115009. [Google Scholar] [CrossRef] [PubMed]
- Holm, S.M.; Balmes, J.R.; Gunier, R.B.; Kogut, K.; Harley, K.G.; Eskenazi, B. Cognitive development and prenatal air pollution exposure in the CHAMACOS cohort. Environ. Health Perspect. 2023, 131, 37007. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Zhao, Y.; Li, J.; Zhou, Y.; Luo, R.; Meng, X.; Zhang, Y. Prenatal exposure to ambient fine particulate matter and early childhood neurodevelopment: A population-based birth cohort study. Sci. Total Environ. 2021, 785, 147334. [Google Scholar] [CrossRef] [PubMed]
- Cai, J.; Shen, Y.; Meng, X.; Zhao, Y.; Niu, Y.; Chen, R.; Du, W.; Quan, G.; Barnett, A.L.; Jones, G.; et al. Association of developmental coordination disorder with early-life exposure to fine particulate matter in Chinese preschoolers. Innovation 2023, 4, 100347. [Google Scholar] [PubMed]
- Shih, P.; Chiang, T.L.; Wu, C.D.; Shu, B.C.; Lung, F.W.; Guo, Y.L. Air pollution during the perinatal period and neurodevelopment in children: A national population study in Taiwan. Dev. Med. Child. Neurol. 2023, 65, 783–791. [Google Scholar] [CrossRef] [PubMed]
- Talbott, E.O.; Arena, V.C.; Rager, J.R.; Clougherty, J.E.; Michanowicz, D.R.; Sharma, R.K.; Stacy, S.L. Fine particulate matter and the risk of autism spectrum disorder. Environ. Res. 2015, 140, 414–420. [Google Scholar] [CrossRef] [PubMed]
- Raz, R.; Roberts, A.L.; Lyall, K.; Hart, J.E.; Just, A.C.; Laden, F.; Weisskopf, M.G. Autism spectrum disorder and particulate matter air pollution before, during, and after pregnancy: A nested case-control analysis within the Nurses’ Health Study II cohort. Environ. Health Perspect. 2015, 123, 264–270. [Google Scholar] [CrossRef] [PubMed]
- Rahman, M.M.; Shu, Y.H.; Chow, T.; Lurmann, F.W.; Yu, X.; Martinez, M.P.; Carter, S.A.; Eckel, S.P.; Chen, J.C.; Chen, Z.; et al. Prenatal exposure to air pollution and autism spectrum disorder: Sensitive windows of exposure and sex differences. Environ. Health Perspect. 2022, 130, 17008. [Google Scholar] [CrossRef] [PubMed]
- Carter, S.A.; Rahman, M.M.; Lin, J.C.; Chow, T.; Yu, X.; Martinez, M.P.; Levitt, P.; Chen, Z.; Chen, J.C.; Eckel, S.P.; et al. Maternal exposure to aircraft emitted ultrafine particles during pregnancy and likelihood of ASD in children. Environ. Int. 2023, 178, 108061. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Wang, X.; Hu, Z.; Zhou, H.; Xu, Y.; Qiu, L.; Qin, X.; Zhang, Y.; Ying, Z. Programming of mouse obesity by maternal exposure to concentrated ambient fine particles. Part. Fibre Toxicol. 2017, 14, 20. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Peng, J.; Zhang, W.; Wu, Y.; Hu, R.; Chen, R.; Gu, W.; Zhang, L.; Qin, L.; Zhong, M.; et al. Ambient fine particulate matter exposure disrupts placental autophagy and fetal development in gestational mice. Ecotoxicol. Environ. Saf. 2022, 239, 113680. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Li, S.; Li, J.; Han, L.; He, Q.; Wang, R.; Wang, X.; Liu, K. Developmental toxicity induced by PM2.5 through endoplasmic reticulum stress and autophagy pathway in zebrafish embryos. Chemosphere 2018, 197, 611–621. [Google Scholar] [CrossRef] [PubMed]
- Jia, Z.L.; Zhu, C.Y.; Rajendran, R.S.; Xia, Q.; Liu, K.C.; Zhang, Y. Impact of airborne total suspended particles (TSP) and fine particulate matter (PM2.5)-induced developmental toxicity in zebrafish (Danio rerio) embryos. J. Appl. Toxicol. 2022, 42, 1585–1602. [Google Scholar] [CrossRef] [PubMed]
- Jedrychowski, W.A.; Perera, F.P.; Maugeri, U.; Mroz, E.; Klimaszewska-Rembiasz, M.; Flak, E.; Edwards, S.; Spengler, J.D. Effect of prenatal exposure to fine particulate matter on ventilatory lung function of preschool children of non-smoking mothers. Paediatr. Perinat. Epidemiol. 2010, 24, 492–501. [Google Scholar] [CrossRef] [PubMed]
- Johnson, N.M.; Hoffmann, A.R.; Behlen, J.C.; Lau, C.; Pendleton, D.; Harvey, N.; Shore, R.; Li, Y.; Chen, J.; Tian, Y.; et al. Air pollution and children’s health-a review of adverse effects associated with prenatal exposure from fine to ultrafine particulate matter. Environ. Health Prev. Med. 2021, 26, 72. [Google Scholar] [CrossRef] [PubMed]
- Kajekar, R. Environmental factors and developmental outcomes in the lung. Pharmacol. Ther. 2007, 114, 129–145. [Google Scholar] [CrossRef] [PubMed]
- Tang, W.; Huang, S.; Du, L.; Sun, W.; Yu, Z.; Zhou, Y.; Chen, J.; Li, X.; Li, X.; Yu, B.; et al. Expression of hmgb1 in maternal exposure to fine particulate air pollution induces lung injury in rat offspring assessed with micro-CT. Chem. Biol. Interact. 2018, 280, 64–69. [Google Scholar] [CrossRef] [PubMed]
- Tang, W.; Du, L.; Sun, W.; Yu, Z.; He, F.; Chen, J.; Li, X.; Li, X.; Yu, L.; Chen, D. Maternal exposure to fine particulate air pollution induces epithelial-to-mesenchymal transition resulting in postnatal pulmonary dysfunction mediated by transforming growth factor-β/smad3 signaling. Toxicol. Lett. 2017, 267, 11–20. [Google Scholar] [CrossRef] [PubMed]
- Dysart, M.M.; Galvis, B.R.; Russell, A.G.; Barker, T.H. Environmental particulate (PM2.5) augments stiffness-induced alveolar epithelial cell mechanoactivation of transforming growth factor beta. PLoS ONE 2014, 9, e106821. [Google Scholar] [CrossRef] [PubMed]
- Yue, H.; Ji, X.; Ku, T.; Li, G.; Sang, N. Sex difference in bronchopulmonary dysplasia of offspring in response to maternal PM2.5 exposure. J. Hazard. Mater. 2020, 389, 122033. [Google Scholar] [CrossRef] [PubMed]
- Jin, L.; Qiu, J.; Zhang, Y.; Qiu, W.; He, X.; Wang, Y.; Sun, Q.; Li, M.; Zhao, N.; Cui, H.; et al. Ambient air pollution and congenital heart defects in Lanzhou, China. Environ. Res. Lett. 2015, 10, 074005. [Google Scholar] [CrossRef] [PubMed]
- Padula, A.M.; Tager, I.B.; Carmichael, S.L.; Hammond, S.K.; Yang, W.; Lurmann, F.; Shaw, G.M. Ambient air pollution and traffic exposures and congenital heart defects in the San Joaquin Valley of California. Paediatr. Perinat. Epidemiol. 2013, 27, 329–339. [Google Scholar] [CrossRef] [PubMed]
- Tanwar, V.; Adelstein, J.M.; Grimmer, J.A.; Youtz, D.J.; Katapadi, A.; Sugar, B.P.; Falvo, M.J.; Baer, L.A.; Stanford, K.I.; Wold, L.E. Preconception exposure to fine particulate matter leads to cardiac dysfunction in adult male offspring. J. Am. Heart Assoc. 2018, 7, e010797. [Google Scholar] [CrossRef] [PubMed]
- Tanwar, V.; Gorr, M.W.; Velten, M.; Eichenseer, C.M.; Long, V.P., 3rd; Bonilla, I.M.; Shettigar, V.; Ziolo, M.T.; Davis, J.P.; Baine, S.H.; et al. In utero particulate matter exposure produces heart failure, electrical remodeling, and epigenetic changes at adulthood. J. Am. Heart Assoc. 2017, 6, e005796. [Google Scholar] [CrossRef] [PubMed]
- Tanwar, V.; Adelstein, J.M.; Grimmer, J.A.; Youtz, D.J.; Sugar, B.P.; Wold, L.E. PM2.5 exposure in utero contributes to neonatal cardiac dysfunction in mice. Environ. Pollut. 2017, 230, 116–124. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Zhao, Y.; Shi, J.; Zhao, C.; Xie, P.; Huang, W.; Yong, T.; Cai, Z. Effects of PM2.5 exposure in utero on heart injury, histone acetylation and GATA4 expression in offspring mice. Chemosphere 2020, 256, 127133. [Google Scholar] [CrossRef] [PubMed]
- Hamanaka, R.B.; Mutlu, G.M. Particulate matter air pollution: Effects on the cardiovascular system. Front. Endocrinol. 2018, 9, 680. [Google Scholar] [CrossRef] [PubMed]
- Weldy, C.S.; Liu, Y.; Liggitt, H.D.; Chin, M.T. In utero exposure to diesel exhaust air pollution promotes adverse intrauterine conditions, resulting in weight gain, altered blood pressure, and increased susceptibility to heart failure in adult mice. PLoS ONE 2014, 9, e88582. [Google Scholar] [CrossRef] [PubMed]
- Gorr, M.W.; Velten, M.; Nelin, T.D.; Youtz, D.J.; Sun, Q.; Wold, L.E. Early life exposure to air pollution induces adult cardiac dysfunction. Am. J. Physiol. Heart Circ. Physiol. 2014, 307, H1353–H1360. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Yao, Y.; Chen, Y.; Yue, C.; Chen, J.; Tong, J.; Jiang, Y.; Chen, T. Crosstalk between AHR and wnt/β-catenin signal pathways in the cardiac developmental toxicity of PM2.5 in zebrafish embryos. Toxicology 2016, 355–356, 31–38. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.; Jin, H.; Wang, H.; Yao, Y.; Aniagu, S.; Tong, J.; Jiang, Y. Aryl hydrocarbon receptor mediates the cardiac developmental toxicity of EOM from PM2.5 in P19 embryonic carcinoma cells. Chemosphere 2019, 216, 372–378. [Google Scholar] [CrossRef] [PubMed]
- Ren, F.; Ji, C.; Huang, Y.; Aniagu, S.; Jiang, Y.; Chen, T. AHR-mediated ROS production contributes to the cardiac developmental toxicity of PM2.5 in zebrafish embryos. Sci. Total Environ. 2020, 719, 135097. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Chen, J.; Jiang, Y.; Chen, T. Fine particulate matter induces heart defects via AHR/ROS-mediated endoplasmic reticulum stress. Chemosphere 2022, 307, 135962. [Google Scholar] [CrossRef] [PubMed]
- Meca-Lallana, V.; Gascón-Giménez, F.; Ginestal-López, R.C.; Higueras, Y.; Téllez-Lara, N.; Carreres-Polo, J.; Eichau-Madueño, S.; Romero-Imbroda, J.; Vidal-Jordana, Á.; Pérez-Miralles, F. Cognitive impairment in multiple sclerosis: Diagnosis and monitoring. Neurol. Sci. 2021, 42, 5183–5193. [Google Scholar] [CrossRef] [PubMed]
- McGuinn, L.A.; Wiggins, L.D.; Volk, H.E.; Di, Q.; Moody, E.J.; Kasten, E.; Schwartz, J.; Wright, R.O.; Schieve, L.A.; Windham, G.C.; et al. Pre- and postnatal fine particulate matter exposure and childhood cognitive and adaptive function. Int. J. Environ. Res. Public. Health 2022, 19, 3748. [Google Scholar] [CrossRef] [PubMed]
- Ning, X.; Li, B.; Ku, T.; Guo, L.; Li, G.; Sang, N. Comprehensive hippocampal metabolite responses to PM2.5 in young mice. Ecotoxicol. Environ. Saf. 2018, 165, 36–43. [Google Scholar] [CrossRef] [PubMed]
- Klocke, C.; Allen, J.L.; Sobolewski, M.; Mayer-Pröschel, M.; Blum, J.L.; Lauterstein, D.; Zelikoff, J.T.; Cory-Slechta, D.A. Neuropathological consequences of gestational exposure to concentrated ambient fine and ultrafine particles in the mouse. Toxicol. Sci. 2017, 156, 492–508. [Google Scholar] [CrossRef] [PubMed]
- Hou, Y.; Yan, W.; Li, G.; Sang, N. Transcriptome sequencing analysis reveals a potential role of lncrna NONMMUT058932.2 and NONMMUT029203.2 in abnormal myelin development of male offspring following prenatal PM2.5 exposure. Sci. Total Environ. 2023, 895, 165004. [Google Scholar] [CrossRef] [PubMed]
- Hou, Y.; Wei, W.; Li, G.; Sang, N. Prenatal PM2.5 exposure contributes to neuronal tau lesion in male offspring mice through mitochondrial dysfunction-mediated insulin resistance. Ecotoxicol. Environ. Saf. 2022, 246, 114151. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Li, B.; Sang, N. Particulate matter (PM2.5) exposure season-dependently induces neuronal apoptosis and synaptic injuries. J. Environ. Sci. 2017, 54, 336–345. [Google Scholar] [CrossRef] [PubMed]
- Allen, J.L.; Liu, X.; Weston, D.; Prince, L.; Oberdörster, G.; Finkelstein, J.N.; Johnston, C.J.; Cory-Slechta, D.A. Developmental exposure to concentrated ambient ultrafine particulate matter air pollution in mice results in persistent and sex-dependent behavioral neurotoxicity and glial activation. Toxicol. Sci. 2014, 140, 160–178. [Google Scholar] [CrossRef] [PubMed]
- Hou, Y.; Yan, W.; Guo, L.; Li, G.; Sang, N. Prenatal PM2.5 exposure impairs spatial learning and memory in male mice offspring: From transcriptional regulation to neuronal morphogenesis. Part. Fibre Toxicol. 2023, 20, 13. [Google Scholar] [CrossRef] [PubMed]
- Nephew, B.C.; Nemeth, A.; Hudda, N.; Beamer, G.; Mann, P.; Petitto, J.; Cali, R.; Febo, M.; Kulkarni, P.; Poirier, G.; et al. Traffic-related particulate matter affects behavior, inflammation, and neural integrity in a developmental rodent model. Environ. Res. 2020, 183, 109242. [Google Scholar] [CrossRef] [PubMed]
- Church, J.S.; Tijerina, P.B.; Emerson, F.J.; Coburn, M.A.; Blum, J.L.; Zelikoff, J.T.; Schwartzer, J.J. Perinatal exposure to concentrated ambient particulates results in autism-like behavioral deficits in adult mice. Neurotoxicology 2018, 65, 231–240. [Google Scholar] [CrossRef] [PubMed]
- Allen, J.L.; Oberdorster, G.; Morris-Schaffer, K.; Wong, C.; Klocke, C.; Sobolewski, M.; Conrad, K.; Mayer-Proschel, M.; Cory-Slechta, D.A. Developmental neurotoxicity of inhaled ambient ultrafine particle air pollution: Parallels with neuropathological and behavioral features of autism and other neurodevelopmental disorders. Neurotoxicology 2017, 59, 140–154. [Google Scholar] [CrossRef] [PubMed]
- Di Domenico, M.; Benevenuto, S.G.M.; Tomasini, P.P.; Yariwake, V.Y.; de Oliveira Alves, N.; Rahmeier, F.L.; da Cruz Fernandes, M.; Moura, D.J.; Nascimento Saldiva, P.H.; Veras, M.M. Concentrated ambient fine particulate matter (PM2.5) exposure induce brain damage in pre and postnatal exposed mice. Neurotoxicology 2020, 79, 127–141. [Google Scholar] [CrossRef]
- Davis, D.A.; Bortolato, M.; Godar, S.C.; Sander, T.K.; Iwata, N.; Pakbin, P.; Shih, J.C.; Berhane, K.; McConnell, R.; Sioutas, C.; et al. Prenatal exposure to urban air nanoparticles in mice causes altered neuronal differentiation and depression-like responses. PLoS ONE 2013, 8, e64128. [Google Scholar] [CrossRef] [PubMed]
- Rahman, F.; Coull, B.A.; Carroll, K.N.; Wilson, A.; Just, A.C.; Kloog, I.; Zhang, X.; Wright, R.J.; Chiu, Y.M. Prenatal PM2.5 exposure and infant temperament at age 6 months: Sensitive windows and sex-specific associations. Environ. Res. 2022, 206, 112583. [Google Scholar] [CrossRef] [PubMed]
- Yuan, X.; Wang, Y.; Li, L.; Zhou, W.; Tian, D.; Lu, C.; Yu, S.; Zhao, J.; Peng, S. PM2.5 induces embryonic growth retardation: Potential involvement of ROS-MAPKs-apoptosis and G0/G1 arrest pathways. Environ. Toxicol. 2016, 31, 2028–2044. [Google Scholar] [CrossRef] [PubMed]
- Cui, J.; Fu, Y.; Lu, R.; Bi, Y.; Zhang, L.; Zhang, C.; Aschner, M.; Li, X.; Chen, R. Metabolomics analysis explores the rescue to neurobehavioral disorder induced by maternal PM2.5 exposure in mice. Ecotoxicol. Environ. Saf. 2019, 169, 687–695. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Zhang, M.; Zou, H.; Aniagu, S.; Jiang, Y.; Chen, T. PM2.5 induces mitochondrial dysfunction via AHR-mediated CYP1A1 overexpression during zebrafish heart development. Toxicology 2023, 487, 153466. [Google Scholar] [CrossRef] [PubMed]
- Allen, J.L.; Liu, X.; Pelkowski, S.; Palmer, B.; Conrad, K.; Oberdörster, G.; Weston, D.; Mayer-Pröschel, M.; Cory-Slechta, D.A. Early postnatal exposure to ultrafine particulate matter air pollution: Persistent ventriculomegaly, neurochemical disruption, and glial activation preferentially in male mice. Environ. Health Perspect. 2014, 122, 939–945. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Liu, T.; Wang, J.; Chen, T.; Jiang, Y. Genome-wide profiling of transcriptome and DNA methylome in human embryonic stem cells exposed to extractable organic matter from PM2.5. Toxics 2023, 11, 840. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Li, J.; Ren, F.; Ji, C.; Aniagu, S.; Chen, T. PM2.5-induced extensive DNA methylation changes in the heart of zebrafish embryos and the protective effect of folic acid. Environ. Pollut. 2019, 255, 113331. [Google Scholar] [CrossRef] [PubMed]
- Ji, C.; Tao, Y.; Li, X.; Wang, J.; Chen, J.; Aniagu, S.; Jiang, Y.; Chen, T. AHR-mediated m6a RNA methylation contributes to PM2.5-induced cardiac malformations in zebrafish larvae. J. Hazard. Mater. 2023, 457, 131749. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Tang, Y.; Song, X.; Lazar, L.; Li, Z.; Zhao, J. Impact of ambient PM2.5 on adverse birth outcome and potential molecular mechanism. Ecotoxicol. Environ. Saf. 2019, 169, 248–254. [Google Scholar] [CrossRef] [PubMed]
- MohanKumar, S.M.; Campbell, A.; Block, M.; Veronesi, B. Particulate matter, oxidative stress and neurotoxicity. Neurotoxicology 2008, 29, 479–488. [Google Scholar] [CrossRef] [PubMed]
- Dai, J.; Sun, C.; Yao, Z.; Chen, W.; Yu, L.; Long, M. Exposure to concentrated ambient fine particulate matter disrupts vascular endothelial cell barrier function via the IL-6/HIF-1α signaling pathway. FEBS Open Bio 2016, 6, 720–728. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Wang, L.; Moreno-Vinasco, L.; Lang, G.D.; Siegler, J.H.; Mathew, B.; Usatyuk, P.V.; Samet, J.M.; Geyh, A.S.; Breysse, P.N.; et al. Particulate matter air pollution disrupts endothelial cell barrier via calpain-mediated tight junction protein degradation. Part. Fibre Toxicol. 2012, 9, 35. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Deng, F.; Guo, X.; Lv, P.; Zhong, M.; Liu, C.; Wang, A.; Tzan, K.; Jiang, S.Y.; Lippmann, M.; et al. Association of systemic inflammation with marked changes in particulate air pollution in beijing in 2008. Toxicol. Lett 2012, 212, 147–156. [Google Scholar] [CrossRef] [PubMed]
- Maher, B.A.; Ahmed, I.A.; Karloukovski, V.; MacLaren, D.A.; Foulds, P.G.; Allsop, D.; Mann, D.M.; Torres-Jardón, R.; Calderon-Garciduenas, L. Magnetite pollution nanoparticles in the human brain. Proc. Natl. Acad. Sci. USA 2016, 113, 10797–10801. [Google Scholar] [CrossRef] [PubMed]
- Gillespie, P.; Tajuba, J.; Lippmann, M.; Chen, L.C.; Veronesi, B. Particulate matter neurotoxicity in culture is size-dependent. Neurotoxicology 2013, 36, 112–117. [Google Scholar] [CrossRef] [PubMed]
- Block, M.L.; Calderón-Garcidueñas, L. Air pollution: Mechanisms of neuroinflammation and CNS disease. Trends Neurosci. 2009, 32, 506–516. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Xiong, L.; Tang, M. Toxicity of inhaled particulate matter on the central nervous system: Neuroinflammation, neuropsychological effects and neurodegenerative disease. J. Appl. Toxicol. 2017, 37, 644–667. [Google Scholar] [CrossRef] [PubMed]
- Harry, G.J.; Kraft, A.D. Microglia in the developing brain: A potential target with lifetime effects. Neurotoxicology 2012, 33, 191–206. [Google Scholar] [CrossRef] [PubMed]
- Baburamani, A.A.; Supramaniam, V.G.; Hagberg, H.; Mallard, C. Microglia toxicity in preterm brain injury. Reprod. Toxicol. 2014, 48, 106–112. [Google Scholar] [CrossRef] [PubMed]
- Chew, L.J.; Fusar-Poli, P.; Schmitz, T. Oligodendroglial alterations and the role of microglia in white matter injury: Relevance to schizophrenia. Dev. Neurosci. 2013, 35, 102–129. [Google Scholar] [CrossRef] [PubMed]
- El Waly, B.; Macchi, M.; Cayre, M.; Durbec, P. Oligodendrogenesis in the normal and pathological central nervous system. Front. Neurosci. 2014, 8, 145. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.B.; Shen, Y.; Plane, J.M.; Deng, W. Vulnerability of premyelinating oligodendrocytes to white-matter damage in neonatal brain injury. Neurosci. Bull. 2013, 29, 229–238. [Google Scholar] [CrossRef] [PubMed]
- Cavalli, G.; Heard, E. Advances in epigenetics link genetics to the environment and disease. Nature 2019, 571, 489–499. [Google Scholar] [CrossRef] [PubMed]
- Dong, W.; Matsumura, F.; Kullman, S.W. TCDD induced pericardial edema and relative COX-2 expression in medaka (Oryzias Latipes) embryos. Toxicol. Sci. 2010, 118, 213–223. [Google Scholar] [CrossRef] [PubMed]
- Neven, K.Y.; Saenen, N.D.; Tarantini, L.; Janssen, B.G.; Lefebvre, W.; Vanpoucke, C.; Bollati, V.; Nawrot, T.S. Placental promoter methylation of DNA repair genes and prenatal exposure to particulate air pollution: An environage cohort study. Lancet Planet. Health 2018, 2, e174–e183. [Google Scholar] [CrossRef] [PubMed]
Experimental Animals/Cells | Study Design | Biological Response | Molecular Mechanism | References |
---|---|---|---|---|
Mice fetal | Pregnant mice were randomized into concentrated PM2.5 group and FA group | Reduced fetal weight, crown–rump length, placental disorder and IUGR | AMPK/mTOR pathway | Li et al., 2022 [45] |
SD rat offspring embryos | PM2.5 was added at 6.25–200 μg/mL | Impaired embryonic growth, decreased yolk sac size, crown–rump length, head length, and somite count | ROS-MAPKs-apoptosis/cell cycle arrest pathways | Yuan et al., 2016 [83] |
Zebrafish embryos/larvae | Exposed to 25, 50, 100, 200, and 400 μg/mL of PM2.5 and TSP from 24 to 120 hpf | Elevated mortality rate, malformations, reduced development of cardiovasculature and neurovasculature | ERS and Wnt signaling | Jia et al., 2022 [47] |
Male mice offspring | Pregnant mice were orally given PM2.5 suspension (3 mg/kg/2 days) until the birth of decedents | Impaired myelin ultrastructure on PNDs 14 and 21 | lncRNAs–Ctcf signaling pathway | Hou et al., 2023 [72] |
Primary cortical neuron | Treated with the PM2.5 samples at different concentration | Neuronal apoptosis and synaptic injuries | Suppression of phosphorylated ERK1/2 and CREB, activated caspase-3 | Chen et al., 2017 [74] |
Murine offspring | Pregnant ICR mice were exposed daily to PM2.5 (0.4 mg/m3) or FA, separately (for 14 consecutive days) | Locomotor hyperactivities | The excessive activity of the dopamine pathway inhibited the glycine pathway | Cui et al., 2019 [84] |
Neonatal mice (14 days old) | Pregnant FVB female mice were exposed either to FA or PM2.5 at an average concentration of 91.78 μg/m3 for 6 h/day, 5 days/week throughout the gestation period (20 days) | Functional cardiac changes that were evident during the very early (14 days) stages of adolescence | Altered Ca2+ handling protein expression | Tanwar et al., 2017 [59] |
Pups mice PND1 and 28 | Timed pregnant SD rats were treated with PM2.5 (0.1, 0.5, 2.5, or 7.5 mg/kg) once every 3 days from day 0 to 18 of pregnancy | Significant decreases in lung volume parameters, compliance, and airflow during expiration on PND28, interstitial proliferation in lung histology | TGF-β/Smad3 pathway | Tang et al., 2017 [52] |
Juvenile male rats | Gestational and early-life exposure to traffic-related PM (PM2.5 was 200 μg/m3) for 5 h/day, 5 days/week for 6 weeks | Decreased social behavior, increased anxiety, impaired cognition, disrupted neural integrity | Decreased levels of inflammatory and growth factors | Nephew et al., 2020 [77] |
Mice offspring | Timed pregnant SD rats were treated with PM2.5 (0.1, 0.5, 2.5, or 7.5 mg/kg) once every 3 days from day 0 to 18 of pregnancy | Fetal lung injury, lung inflammation | Promoted IL-1, IL-6, and TNF-α secretion | Tang et al., 2018 [51] |
Zebrafish embryo | Exposed to EOM concentration at 5 mg/L abstracted from PM2.5 | Mitochondrial dysfunction, apoptosis and heart defects | CYP1A1 overexpression and accumulation of mtROS | Chen et al., 2023 [85] |
Adult mice offspring | Male and female FVB mice were exposed to either FA or PM2.5 at an average concentration of 38.58 μg/m3 for 6 h/day, 5 days/week for 3 months | Cardiac dysfunction | Altered Ca2+ regulatory proteins, increased oxidative stress markers, inflammatory and fibrogenic mediators | Tanwar et al., 2018 [57] |
Zebrafish embryos | Exposed to EOM abstracted from PM2.5 at different concentrations at 3 hpf in the absence or presence of CH (0.5 μM) or CHIR (1 μM) | Heart defects | Activation of AHR, repressed Wnt/β-catenin signaling | Zhang et al., 2016 [64] |
Zebrafish embryos | Exposed to EOM (5 mg/L) in the absence or presence of CH (0.05 µM) or NAC (0.25 µM) from 3 hpf until 72 hpf | DNA damage and apoptosis, cardiac developmental toxicity | Oxidative stress | Ren et al., 2020 [66] |
Zebrafish embryos | Treated with EOM (5 mg/L) in the absence or presence of 4-PBA (5 mM), CH (0.05 mM) or NAC (0.25 mM) from 2 to 72 hpf | Apoptosis, heart defects | ER stress and Wnt signaling inhibition | Zhang et al., 2022 [67] |
Mice | Exposed in the postnatal period from PNDs 4–7 and 10–13, with adult re-exposure at PNDs 57–59 | Long-term impairment in learning/short-term memory, impulsivity-linked behavior and motor function | Persistent glial activation, more inflammatory cytokines including IL-6, TNF-α | Allen et al., 2014 [75] |
Mice | Exposed to concentrated ambient UFP from PND 4–7 and 10–13 | Repetitive and impulsive behaviors, reductions in the size of the CC and associated hypomyelination | Inflammation/microglial activation, elevated glutamate and excitatory/inhibitory imbalance, increased amygdala astrocytic activation | Allen et al., 2017 [79] |
Mice | Exposed to ultrafine CAPs or FA on PNDs 4–7 and 10–13 | Lateral ventricle dilation | Neuroinflammatory response, alterations in cytokines and neurotransmitters | Allen et al., 2014 [86] |
Zebrafish embryos | Exposed to EOM extracted from PM2.5 (5 mg/L) in the absence or presence of FA (0.05 μM) from 3 hpf | Heart defects | Decreased SAM/SAH ratio, altered expression of genes related to DNA methylation | Jiang et al., 2019 [87] |
hESCs line H1 | Treated with EOM from PM2.5 concentrations exceeding 100 μg/mL | Abnormal embryonic development, decrease in vitality | Interference with DNA methylation and mRNA expression | Wang et al., 2023 [88] |
Zebrafish embryos | Treated with EOM concentrations of 5 mg/L | Apoptosis and cardiac malformations | Decreased global m6A RNA methylation levels | Ji et al., 2023 [89] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yan, R.; Ma, D.; Liu, Y.; Wang, R.; Fan, L.; Yan, Q.; Chen, C.; Wang, W.; Ren, Z.; Ku, T.; et al. Developmental Toxicity of Fine Particulate Matter: Multifaceted Exploration from Epidemiological and Laboratory Perspectives. Toxics 2024, 12, 274. https://doi.org/10.3390/toxics12040274
Yan R, Ma D, Liu Y, Wang R, Fan L, Yan Q, Chen C, Wang W, Ren Z, Ku T, et al. Developmental Toxicity of Fine Particulate Matter: Multifaceted Exploration from Epidemiological and Laboratory Perspectives. Toxics. 2024; 12(4):274. https://doi.org/10.3390/toxics12040274
Chicago/Turabian StyleYan, Ruifeng, Danni Ma, Yutong Liu, Rui Wang, Lifan Fan, Qiqi Yan, Chen Chen, Wenhao Wang, Zhihua Ren, Tingting Ku, and et al. 2024. "Developmental Toxicity of Fine Particulate Matter: Multifaceted Exploration from Epidemiological and Laboratory Perspectives" Toxics 12, no. 4: 274. https://doi.org/10.3390/toxics12040274
APA StyleYan, R., Ma, D., Liu, Y., Wang, R., Fan, L., Yan, Q., Chen, C., Wang, W., Ren, Z., Ku, T., Ning, X., & Sang, N. (2024). Developmental Toxicity of Fine Particulate Matter: Multifaceted Exploration from Epidemiological and Laboratory Perspectives. Toxics, 12(4), 274. https://doi.org/10.3390/toxics12040274