Monitoring and Risk Assessment of Pesticide Residues in Fishery Products Using GC–MS/MS in South Korea
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Materials
2.2. Sampling Procedures and Sample Preparation
2.3. Residual Pesticides Analysis
2.4. Instruments and Analytical Conditions
2.5. Method Validation
2.6. Risk Assessment
2.7. Data Analysis
3. Results and Discussion
3.1. Method Validation
3.2. Monitoring Results of Pesticide Residues in Seafood
3.3. National MRL for Detected Pesticides and Analysis of Detection Causes
3.4. Health Risk of Fish Consumption
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Singh, J.; Bal, J.S.; Singh, S.; Mirza, A. Assessment of chemicals and growth regulators on fruit ripening and quality: A review. Plant Arch. 2018, 18, 1215–1222. [Google Scholar]
- Afful, S.; Anim, A.K.; Serfor-Armah, Y. Spectrum of organochlorine pesticide residues in fish samples from the Densu Basin. Res. J. Environ. Earth Sci. 2010, 2, 133–138. [Google Scholar]
- Ccanccapa, A.; Masiá, A.; Navarro-Ortega, A.; Picó, Y.; Barceló, D. Pesticides in the Ebro River basin: Occurrence and risk assessment. Environ. Pollut. 2016, 211, 414–424. [Google Scholar] [CrossRef] [PubMed]
- Hwang, I.S.; Oh, Y.J.; Kwon, H.Y.; Ro, J.H.; Kim, D.B.; Moon, B.C.; Oh, M.S.; Noh, H.H.; Park, S.W.; Choi, G.; et al. Monitoring of pesticide residues concerned in stream water. Korean J. Environ. Agric. 2019, 38, 173–184. [Google Scholar] [CrossRef]
- Albanis, T.A.; Hela, D.G.; Sakellarides, T.M.; Konstantinou, I.K. Monitoring of pesticide residues and their metabolites in surface and underground waters of Imathia (N. Greece) by means of solid-phase extraction disks and gas chromatography. J. Chromatogr. A 1998, 823, 59–71. [Google Scholar] [CrossRef] [PubMed]
- Meylan, W.M.; Howard, P.H.; Boethling, R.S.; Aronson, D.; Printup, H.; Gouchie, S. Improved method for estimating bioconcentration/bioaccumulation factor from octanol/water partition coefficient. Environ. Toxicol. Chem. Int. J. 1999, 18, 664–672. [Google Scholar] [CrossRef]
- Ministry of Food and Drug Safety. Korea Pesticides MRLs. 2024. Available online: http://www.foodsafetykorea.go.kr/residue/main.do (accessed on 24 January 2024).
- US EPA. Tolerances and Exemptions for Pesticide Chemical Residues in Food, 40 CFR Part 180. 2024. Available online: http://www.ecfr.gov/cgi-bin/text-idx?SID=c1754a948c8c16c40ba981f6c2b988e6&mc=true&node=pt40.24.180&rgn=div5#se40.24.180_1493 (accessed on 14 March 2024).
- Australian Government. Agricultural and Veterinary Chemicals Code (MRL Standard) Instrument 2022. Available online: https://www.legislation.gov.au/Details/F2022C00304 (accessed on 16 May 2022).
- European Commission. EU Pesticides Database. 2024. Available online: https://food.ec.europa.eu/plants/pesticides/eu-pesticides-database_en (accessed on 12 April 2024).
- Ministry of Health. Labour and Welfare: Maximum Residue Limits (MRLs) List of Agricultural Chemicals in Foods. 2024. Available online: https://db.ffcr.or.jp/front/ (accessed on 15 March 2024).
- Codex Alimentarius: Codex Pesticides Residues in Food Online Database. 2023. Available online: http://www.fao.org/fao-who-codexalimentarius/codex-texts/dbs/pestres/en/ (accessed on 1 November 2023).
- Korea Rural Economic Institute. 2021 Food Balance Sheet. 2022. Available online: https://library.krei.re.kr/pyxis-api/1/digital-files/31cb7e6e-d223-4798-821a-8baf98ea55e4 (accessed on 1 December 2022).
- Food and Agriculture Organization of the United Nations. 2023—With major processing by Our World in Data. Available online: https://ourworldindata.org/grapher/fish-and-saefood-consumption-per-capita (accessed on 18 July 2023).
- Lee, J.H.; Park, B.J.; Kim, J.K.; Kim, W.I.; Hong, S.M.; Im, G.J.; Hong, M.K. Risk assessment for aquatic organisms of pesticides detected in water phase of six major rivers in Korea. Korean J. Pestic. Sci. 2011, 15, 48–54. [Google Scholar]
- Choi, J.Y.; Yang, D.B.; Hong, G.H.; Kim, S.H.; Chung, C.S.; Kim, K.R.; Cho, K.D. Potential human risk assessment of PCBs and OCPs in edible fish collected from the offshore of Busan. J. Korean Soc. Environ. Eng. 2012, 34, 810–820. [Google Scholar] [CrossRef]
- Lim, S.J.; Oh, Y.T.; Yang, J.Y.; Ro, J.H.; Choi, G.H.; Ryu, S.H.; Moon, B.C.; Park, B.J. Development of multi-residue analysis and monitoring of persistent organic pollutants (POPs)-Used organochlorine pesticides in Korea. Korean J. Pestic. Sci. 2016, 20, 319–325. [Google Scholar] [CrossRef]
- Ministry of Environment. Persistent Organic Pollutants Environmental Monitoring. 2021. Available online: http://www.me.go.kr/home/web/policy_data/read.do?menuId=10276&seq=7732 (accessed on 1 June 2021).
- Lee, K.Y. Research Planning on a Comprehensive Management Network for Risk from Environmental Pollutants; Research Report; Seoul National University: Osong, Republic of Korea, 2014. [Google Scholar]
- US FDA. National Shellfish Sanitation Program (NSSP). Available online: https://www.fda.gov/food/federalstate-food-programs/national-shellfish-sanitation-program-nssp (accessed on 29 October 2020).
- National Oceanic and Atmospheric Administration (U.S. Department of Commerce). National Program Offices. Available online: https://www.fisheries.noaa.gov/contact-directory/national-program-offices (accessed on 1 April 2021).
- Ministry of Food and Drug Safety. Veterinary Drug Positive List System for livestock and Fisheries Products. 18 April 2022. Available online: https://www.mfds.go.kr/brd/m_220/view.do?seq=32852 (accessed on 18 April 2022).
- Ministry of Food and Drug Safety (MFDS). Food Code (N. 2021-54). 2022. Available online: https://www.mfds.go.kr/eng/brd/m_15/view.do?seq=72437&srchFr=&srchTo=&srchWord=&srchTp=&itm_seq_1=0&itm_seq_2=0&multi_itm_seq=0&company_cd=&company_nm=&page=1 (accessed on 7 June 2022).
- Lehotay, S.J. Determination of pesticide residues in foods by acetonitrile extraction and partitioning with magnesium sulfate: Collaborative study. J. AOAC Int. 2007, 90, 485–520. [Google Scholar] [CrossRef] [PubMed]
- Food and Drug Administration. Pesticide Analytical Manual. Vol1: Multi Residue Method, 3rd ed.; Food and Drug Administration: Washington, DC, USA, 1994. [Google Scholar]
- FAO; WHO. Codex Alimentarius Commission Procedural Manual, 28th ed.; Recised; FAO: Rome, Italy, 2023. [Google Scholar] [CrossRef]
- Lammerding, A.M.; Fazil, A. Hazard identification and exposure assessment for microbial food safety risk assessment. Int. J. Food Microbiol. 2000, 58, 147–157. [Google Scholar] [CrossRef] [PubMed]
- KNHANES (Korea National Health and Nutrition Examination Survey). 2021. Available online: https://knhanes.kdca.go.kr/knhanes/main.do (accessed on 29 July 2021).
- Warren, N.; Allan, I.J.; Carter, J.E.; House, W.A.; Parker, A. Pesticides and other micro-organic contaminants in freshwater sedimentary environments—A review. Appl. Geochem. 2003, 18, 159–194. [Google Scholar] [CrossRef]
- Choi, J.Y.; Lee, S.G.; Bang, J.H.; Yang, D.B.; Hong, G.H.; Shin, K.H. On the distribution of PCBs and organochlorine pesticides in fish and sediment of the Asan Bay. Ocean Polar Res. 2011, 33, 45–53. [Google Scholar] [CrossRef]
- Pesticide Residues in Food, 2016–2020, Department for Environment, Food and Rural Affairs. United Kingdom. 2021. Available online: https://www.data.gov.uk/dataset/5d5028ef-9918-4ab7-8755-81f3ad06f308/pesticide-residues-in-food (accessed on 29 July 2021).
- Reilly, T.J.; Smalling, K.L.; Orlando, J.L.; Kuivila, K.M. Occurrence of boscalid and other selected fungicides in surface water and groundwater in three targeted use areas in the United States. Chemosphere 2012, 89, 228–234. [Google Scholar] [CrossRef] [PubMed]
- USGS. Fungicides from Areas of Intense Use Detected in Streams and Groundwater; US Geol Survey: Washington, DC, USA, 2016; Environmental Health–Toxic Substances. Science Features. Available online: https://www.usgs.gov/ (accessed on 13 May 2016).
- Ministry of Food and Drug safety (MFDS). Preliminary Planning Research on the Safety Management of Pesticide Residues in Fishery Products. 2022. Available online: https://scienceon.kisti.re.kr/commons/util/originalView.do?cn=TRKO202300003848&dbt=TRKO&rn=&keyword=Preliminary%20planning%20research%20on%20the%20safety%20management%20of%20pesticide%20residues%20in%20Fishery%20products (accessed on 6 June 2022).
- Korea Crop Protection Association: Crop Protection Agent Guidelines. 2022. Available online: http://www.koreacpa.org/korea/bbs/board.php?bo_table=3_3 (accessed on 30 April 2022).
- Kallenborn, R.; Burkow, I.C.; Schlabach, M.; Jørgensen, E.H. PCB and pesticide distribution in cod (Gadus morhua), sea trout (Salmo trutta) and Arctic charr (Salvelinus alpinus) from the Norwegian Arctic. Organohalogen Compd. 1997, 32, 252–256. [Google Scholar]
- National Institute of Agricultural Sciences. Assessment on Pesticidal Pollution of Water Systems Combined with Fate Prediction and Pesticide-Residue Monitoring. 2015. Available online: https://doi.org/10.23000/TRKO201500010381 (accessed on 21 February 2015).
- MFDS. Common Guidelines for Risk Assessment of Human Applications. 2019. Available online: https://www.mfds.go.kr (accessed on 21 July 2020).
- Joint FAO/WHO Expert Committee on Food Additives (JECFA). Procedures for Recommending Maximum Residue Limits: Residues of Veterinary Drugs in Food; JECFA: Rome, Italy, 2000. [Google Scholar]
- Hasan, G.A.; Das, A.K.; Satter, M.A. Multi residue analysis of organochlorine pesticides in fish, milk, egg and their feed by GC-MS/MS and their impact assessment on consumers health in Bangladesh. NFS J. 2022, 27, 28–35. [Google Scholar] [CrossRef]
- Kim, M.; Cho, M.; An, S.E.; Im, M.H. Reduction effects of isoprothiolane during rice washing and cooking. Korean J. Food Preserv. 2023, 30, 472–482. [Google Scholar] [CrossRef]
Pesticide | Retention Time (min) | Precursor Ion (m/z) | Product Ion (m/z) | Collision Energy (eV) |
---|---|---|---|---|
2,4′-DDD | 11.856 | 237 | 165 | 35 |
235 | 165 | 35 | ||
2,4′-DDE | 10.907 | 248 | 176 | 45 |
246 | 176 | 45 | ||
2,4′-DDT | 11.962 | 237 | 165 | 35 |
235 | 165 | 35 | ||
4,4′-DDD | 12.011 | 237 | 165 | 35 |
235 | 165 | 30 | ||
4,4′-DDE | 11.31 | 248 | 176 | 45 |
246 | 176 | 45 | ||
4,4′-DDT | 12.593 | 237 | 165 | 35 |
235 | 165 | 35 | ||
Alachlor | 9.598 | 237 | 160 | 10 |
188 | 160 | 10 | ||
Aldrin | 10.091 | 263 | 193 | 45 |
263 | 191 | 45 | ||
Ametryn | 9.577 | 227 | 185 | 5 |
227 | 170 | 15 | ||
Atrazine | 8.538 | 215 | 200 | 45 |
215 | 58 | 25 | ||
α-HCH (α-BHC) | 8.310 | 217 | 181 | 20 |
181 | 145 | 25 | ||
β-HCH (β-BHC) | 8.729 | 217 | 181 | 10 |
181 | 145 | 20 | ||
γ-HCH (γ-BHC, Lindane) | 8.730 | 217 | 181 | 10 |
181 | 145 | 20 | ||
Boscalid | 16.491 | 140 | 112 | 15 |
140 | 76 | 35 | ||
Buprofezin | 11.764 | 175 | 132 | 15 |
172 | 57 | 15 | ||
Carfentrazone-ethyl | 12.361 | 340 | 312 | 15 |
312 | 151 | 30 | ||
Chlordane (cis) | 10.884 | 375 | 266 | 35 |
373 | 266 | 30 | ||
Chlordane (trans) | 10.885 | 375 | 266 | 35 |
373 | 266 | 35 | ||
Chlorothalonil | 9.080 | 266 | 231 | 25 |
266 | 170 | 35 | ||
Chlorpyrifos | 10.106 | 314 | 258 | 25 |
199 | 171 | 20 | ||
Cypermethrin | 16.516 | 165 | 91 | 15 |
163 | 127 | 5 | ||
Deltamethrin | 18.012 | 253 | 174 | 10 |
253 | 93 | 25 | ||
Dieldrin | 11.403 | 265 | 193 | 45 |
263 | 193 | 45 | ||
Endosulfan sulfate | 12.589 | 272 | 237 | 20 |
270 | 235 | 20 | ||
239 | 204 | 20 | ||
α-Endosulfan | 11.052 | 241 | 206 | 20 |
205 | 170 | 20 | ||
β-Endosulfan | 12.866 | 207 | 172 | 20 |
205 | 170 | 20 | ||
Endrin | 11.403 | 263 | 193 | 45 |
263 | 191 | 45 | ||
Fenitrothion | 9.841 | 277 | 260 | 5 |
277 | 109 | 20 | ||
Heptachlor | 9.648 | 274 | 237 | 20 |
272 | 237 | 20 | ||
Heptachlor epoxide (cis) | 10.638 | 353 | 253 | 20 |
217 | 182 | 30 | ||
Heptachlor epoxide (trans) | 10.639 | 353 | 253 | 25 |
217 | 182 | 30 | ||
Hexachlorobenzene | 8.419 | 284 | 249 | 20 |
284 | 214 | 45 | ||
Iprobenfos | 9.165 | 204 | 121 | 45 |
204 | 91 | 10 | ||
Isoprothiolane | 11.208 | 231 | 189 | 10 |
189 | 89 | 25 | ||
Mirex | 14.826 | 272 | 237 | 20 |
272 | 143 | 50 | ||
270 | 235 | 20 | ||
Oxadiazon | 11.319 | 258 | 175 | 10 |
175 | 112 | 20 | ||
Pendimethalin | 10.838 | 194 | 208 | 5 |
252 | 162 | 10 | ||
Permethrin | 15.652 | 183 | 168 | 20 |
183 | 155 | 10 | ||
Prometryn | 9.616 | 241 | 199 | 5 |
241 | 184 | 15 | ||
Tebuconazole | 12.841 | 252 | 127 | 30 |
250 | 125 | 30 | ||
Terbutryn | 9.787 | 241 | 185 | 5 |
185 | 170 | 10 | ||
Tetraconazole | 10.179 | 336 | 218 | 25 |
336 | 204 | 40 | ||
Thifluzamide | 11.861 | 194 | 166 | 15 |
194 | 125 | 35 | ||
Trifluralin | 8.044 | 306 | 264 | 10 |
264 | 206 | 5 |
Daily Food Intake (DFI) | Detected Pesticide Concentration (DPC) | ||
---|---|---|---|
EDI Scenario a (9 cases) | 1 (Average intake by seafood group) | × | A (Detected pesticide + LOQ value for non-detection)/number of test (20) |
2 (Average intake by fish species) | B (Detected pesticide/number of detections) | ||
3 (Extreme (99th percentile) intake by fish species) | C Maximum detected pesticide |
Pesticides | Linearities a (R2) | LOD b (ng/g) | LOQ c (ng/g) | Recovery (%) | ||
---|---|---|---|---|---|---|
LOQ | 10× LOQ | 50× LOQ | ||||
2,4′-DDD | 0.99937 | 2 | 7 | 88.3–103.2 | 82.8–105.2 | 85.1–109.5 |
2,4′-DDE | 0.99931 | 2 | 7 | 88.0–102.2 | 83.5–103.1 | 86.8–108.3 |
2,4′-DDT | 0.99752 | 2–3 | 7–9 | 86.7–103.4 | 81.0–103.9 | 84.7–108.8 |
4,4′-DDD | 0.99935 | 2 | 7 | 82.2–102.6 | 78.2–103.4 | 81.6–107.8 |
4,4′-DDE | 0.99930 | 2 | 7 | 86.6–103.4 | 81.2–103.7 | 85.8–108.8 |
4,4′-DDT | 0.99778 | 2–3 | 7–9 | 86.0–102.4 | 81.2–104.1 | 86.8–109.8 |
Alachlor | 0.99792 | 2 | 7–8 | 82.2–103.2 | 78.2–105.0 | 79.3–110.8 |
Aldrin | 0.99777 | 3 | 9 | 86.4–104.5 | 82.8–107.2 | 87.5–113.3 |
Ametryn | 0.99946 | 2 | 7–8 | 73.5–103.0 | 70.0–106.0 | 70.9–113.1 |
Atrazine | 0.99900 | 2 | 7 | 82.9–96.7 | 76.6–99.0 | 78.9–103.9 |
Boscalid | 0.99695 | 2 | 7 | 73.3–107.2 | 72.5–109.1 | 78.0–116.4 |
Buprofezin | 0.99741 | 2 | 7–8 | 74.4–103.6 | 71.1–105.1 | 71.0–110.5 |
Carfentrazone-ethyl | 0.99788 | 2 | 7 | 70.5–104.4 | 78.7–105.8 | 77.6–111.2 |
Chlordane (cis) | 0.99881 | 2 | 7 | 89.5–106.9 | 85.0–105.7 | 85.2–114.5 |
Chlordane (trans) | 0.99901 | 2 | 7 | 86.1–106.2 | 86.2–108.1 | 87.5–114.3 |
Chlorothalonil | 0.99934 | 3 | 10 | 86.9–100.3 | 80.9–101.5 | 84.9–108.1 |
Chlorpyrifos | 0.99926 | 2 | 7 | 84.0–101.9 | 78.2–104.2 | 80.8–109.4 |
Cypermethrin | 0.99565 | 3 | 10 | 99.4–107.4 | 84.9–103.4 | 77.4–109.2 |
Deltamethrin | 0.99384 | 3 | 10 | 80.9–102.3 | 79.1–103.9 | 72.4–109.5 |
Dieldrin | 0.99584 | 2–3 | 7–10 | 78.9–107.1 | 81.8–109.1 | 72.4–115.6 |
Endosulfan sulfate | 0.99905 | 2 | 7 | 86.5–101.8 | 80.9–106.2 | 88.2–112.6 |
α-Endosulfan | 0.99853 | 2 | 7 | 83.8–103.5 | 85.7–105.1 | 83.5–111.2 |
β-Endosulfan | 0.99893 | 2 | 7 | 82.7–103.4 | 78.3–106.4 | 79.3–111.1 |
Endrin | 0.99741 | 2–3 | 7–9 | 75.5–106.4 | 71.3–109.6 | 71.7–117.7 |
Fenitrothion | 0.99793 | 2 | 7 | 85.8–103.2 | 79.2–105.1 | 83.2–111.3 |
Heptachlor | 0.99911 | 2 | 7 | 87.2–100.8 | 86.4–103.4 | 88.4–109.0 |
Heptachlor epoxide (cis) | 0.99743 | 2 | 7 | 83.2–101.6 | 80.3–104.2 | 85.7–109.4 |
Heptachlor epoxide (trans) | 0.99863 | 2 | 7 | 85.6–104.0 | 77.0–106.4 | 84.5–111.6 |
Hexachlorobenzene | 0.99936 | 3 | 10 | 88.8–103.9 | 85.1–106.2 | 90.9–111.9 |
Iprobenfos | 0.99720 | 2 | 7 | 81.6–103.9 | 78.9–106.2 | 78.4–112.3 |
Isoprothiolane | 0.99669 | 2 | 7 | 90.7–106.6 | 87.5–108.9 | 87.9–116.7 |
Mirex | 0.99925 | 2–3 | 7–9 | 68.4–107.6 | 65.9–111.0 | 68.8–117.6 |
Oxadiazon | 0.99901 | 2 | 7 | 84.6–106.2 | 80.9–108.2 | 84.0–114.2 |
Pendimethalin | 0.99859 | 2 | 7 | 77.4–102.4 | 80.1–98.5 | 84.6–99.7 |
Permethrin | 0.99668 | 3 | 10 | 82.7–103.3 | 75.3–105.8 | 90.0–111.2 |
Prometryn | 0.99910 | 2–3 | 8–10 | 74.2–106.2 | 73.8–109.1 | 72.6–115.9 |
Tebuconazole | 0.99443 | 3 | 10 | 78.6–115.3 | 105.2–116.3 | 110.0–117.8 |
Terbutryn | 0.99830 | 2 | 7–8 | 78.3–103.8 | 75.2–109.7 | 76.2–115.8 |
Tetraconazole | 0.99465 | 2 | 7 | 105.5–119.1 | 94.6–111.0 | 88.8–117.1 |
Thifluzamide | 0.99599 | 2 | 7 | 100.4–103.3 | 86.3–106.4 | 85.5–114.5 |
Trifluralin | 0.99599 | 2 | 7 | 87.2–109.3 | 83.0–111.6 | 86.0–117.9 |
α-HCH (α-BHC) | 0.99912 | 2 | 7 | 94.4–104.3 | 92.1–104.9 | 91.4–110.2 |
β-HCH (β-BHC) | 0.99947 | 2 | 7 | 97.5–102.5 | 82.6–104.7 | 87.9–108.8 |
γ-HCH (γ-BHC, Lindane) | 0.99943 | 2 | 7 | 89.1–103.2 | 85.1–104.6 | 87.5–109.9 |
Group | Species | Sample (N) | Detected Pesticide | Detection Number | Min (ng/g) | Max (ng/g) | Mean (ng/g) |
---|---|---|---|---|---|---|---|
Freshwater fish | Carp | 20 | 4,4′-DDE | 1 | 7 | 7 | 7 |
Chinese muddy loach | 20 | 4,4′-DDE | 3 | 7 | 8 | 7 | |
Pendimethalin | 1 | 7 | 7 | 7 | |||
Crucian carp | 20 | Thifluzamide | 2 | 10 | 10 | 10 | |
Oxadiazon | 1 | 7 | 7 | 7 | |||
Eel | 20 | Thifluzamide | 1 | 7 | 7 | 7 | |
Far eastern catfish | 20 | Oxadiazon | 3 | 8 | 10 | 9 | |
Mirror carp | 20 | Boscalid | 2 | 8 | 8 | 8 | |
Isoprothiolane | 1 | 8 | 8 | 8 | |||
Oxadiazon | 2 | 8 | 10 | 9 | |||
Trifluralin | 1 | 7 | 7 | 7 | |||
Rainbow trout | 20 | ND | - | - | - | - | |
Marine fish | Flathead mullet | 20 | ND | - | - | - | - |
Korean rockfish | 20 | ND | - | - | - | - | |
Olive flounder | 20 | ND | - | - | - | - | |
Red seabream | 20 | ND | - | - | - | - | |
Sea bass | 20 | 4,4′-DDE | 6 | 10 | 10 | 10 | |
4,4′-DDT | 2 | 10 | 10 | 10 | |||
Pendimethalin | 1 | 10 | 10 | 10 | |||
Starry flounder | 20 | ND | - | - | - | - | |
Crustaceans | Whiteleg shrimp | 20 | ND | - | - | - | - |
Shellfish | Abalone | 20 | ND | - | - | - | - |
Total | 300 | 27 |
Pesticides | Current Study | MRL (ng/g) | |||
---|---|---|---|---|---|
Fish | Mean (ng/g) | Japan | USA | Australia | |
Boscalid | Mirror carp | 8 | - | - | - |
DDT | Carp | 7 | 1000 (Fish) 3000 (Crustaceans, shelled mollusk) | 5000 AL a (Fish: edible portion) | 1000 E b (Fish, crustaceans) |
Chinese muddy loach | 7 | ||||
Sea bass | 10 | ||||
Isoprothiolane | Mirror carp | 8 | 3000 (Fish) | ||
Oxadiazon | Crucian carp | 7 | 600 (Fish) | ||
Far eastern catfish | 9 | ||||
Mirror carp | 9 | ||||
Pendimethalin | Chinese muddy loach | 7 | 300 (Fish) | 50 (Crayfish) | |
Sea bass | 10 | ||||
Thifluzamide | Crucian carp | 10 | 1000 (Fish) | ||
Eel | 7 | ||||
Trifluralin | Mirror carp | 7 | 500 (Fish) |
Seafood | Food Consumption (g/Person/Day) in KNHANES a (2017–2021) | ||
---|---|---|---|
Mean | High (99th Percentile) | ||
Fish Species | |||
Freshwater fish | Carp | 0.4800 | 12.1200 |
Chinese muddy loach | 0.9600 | 43.6800 | |
Crucian carp | 0.4800 | 12.1200 | |
Eel | 1.3200 | 24.2400 | |
Far eastern catfish | 0.4800 | 12.1200 | |
Mirror carp | 0.4800 | 12.1200 | |
Rainbow trout | 0.4800 | 12.1200 | |
Marine fish | Flathead mullet | 0.4800 | 12.1200 |
Korean rockfish | 1.2000 | 31.2000 | |
Olive flounder | 1.3500 | 48.4500 | |
Red seabream | 0.4800 | 12.1200 | |
Sea bass | 0.4800 | 12.1200 | |
Starry flounder | 0.4800 | 12.1200 | |
Crustaceans | Whiteleg shrimp | 1.8000 | 50.4000 |
Shellfish | Abalone | 0.6000 | 13.8000 |
Seafood Group | |||
Crustaceans | 3.2400 | - | |
Fish | 31.1369 | - | |
Shellfish | 4.3628 | - |
Compound | ADI (mg/kg b.w./Day) | HI %ADI | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Seafood Group | Fish Species | |||||||||
S1 a | S2 | S3 | S4 | S5 | S6 | S7 | S8 | S9 | ||
Boscalid | 0.04 | 0.01 | 0.01 | 0.01 | 0.00 | 0.00 | 0.00 | 0.09 | 0.00 | 0.09 |
DDT | 0.01 | 0.05 | 0.05 | 0.06 | 0.02 | 0.00 | 0.02 | 0.43 | 0.10 | 0.44 |
Isoprothiolane | 0.1 | 0.01 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.04 | 0.00 | 0.04 |
Oxadiazon | 0.0036 | 0.13 | 0.12 | 0.17 | 0.04 | 0.01 | 0.04 | 1.04 | 0.14 | 1.07 |
Pendimethalin | 0.13 | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.03 | 0.01 | 0.03 |
Thifluzamide | 0.014 | 0.03 | 0.03 | 0.04 | 0.01 | 0.00 | 0.01 | 0.27 | 0.04 | 0.27 |
Trifluralin | 0.015 | 0.03 | 0.02 | 0.03 | 0.01 | 0.00 | 0.01 | 0.25 | 0.01 | 0.25 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, M.; Cho, M.; Kim, S.-H.; Lee, Y.; Jo, M.-R.; Moon, Y.-S.; Im, M.-H. Monitoring and Risk Assessment of Pesticide Residues in Fishery Products Using GC–MS/MS in South Korea. Toxics 2024, 12, 299. https://doi.org/10.3390/toxics12040299
Kim M, Cho M, Kim S-H, Lee Y, Jo M-R, Moon Y-S, Im M-H. Monitoring and Risk Assessment of Pesticide Residues in Fishery Products Using GC–MS/MS in South Korea. Toxics. 2024; 12(4):299. https://doi.org/10.3390/toxics12040299
Chicago/Turabian StyleKim, Myungheon, Mihyun Cho, Seo-Hong Kim, Yoonmi Lee, Mi-Ra Jo, Yong-Sun Moon, and Moo-Hyeog Im. 2024. "Monitoring and Risk Assessment of Pesticide Residues in Fishery Products Using GC–MS/MS in South Korea" Toxics 12, no. 4: 299. https://doi.org/10.3390/toxics12040299
APA StyleKim, M., Cho, M., Kim, S. -H., Lee, Y., Jo, M. -R., Moon, Y. -S., & Im, M. -H. (2024). Monitoring and Risk Assessment of Pesticide Residues in Fishery Products Using GC–MS/MS in South Korea. Toxics, 12(4), 299. https://doi.org/10.3390/toxics12040299