Changes in the Biology and Susceptibility of Weevil (Cylas formicarius) to the Insecticide Spinetoram as a Response to Cadmium Contamination
Abstract
:1. Introduction
2. Materials and Methods
2.1. Insects, Sweet Potato and Cadmium Concentrations
2.2. Food Intake by Adult Sweet Potato Weevils
2.3. Adult Daily Survival Rate
2.4. Larval Survival Rate and Developmental Duration
2.5. Resistance of Adult Sweet Potato Weevils to Spinetoram and Susceptibility to Beauveria bassiana
2.6. Statistical Analyses
3. Results
3.1. Food Intake of Adult Sweet Potato Weevils
3.2. Adult and Larval Survival Rates and Larval Developmental Duration
3.3. Resistance of Adult Sweet Potato Weevils to Spinetoram and Susceptibility to Beauveria bassiana
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Nowicka, B. Heavy metal–induced stress in eukaryotic algae—Mechanisms of heavy metal toxicity and tolerance with particular emphasis on oxidative stress in exposed cells and the role of antioxidant response. Environ. Sci. Pollut. Res. 2022, 29, 16860–16911. [Google Scholar] [CrossRef] [PubMed]
- Babczynska, A.; Gorka, M.; Lis, A.; Tarnawska, M.; Lozowski, B.; Brozek, J.; Rozpedek, K.; Augustyniak, M.; Skowronek, M.; Kafel, A. Joint cadmium and polypropylene microparticle action in cadmium tolerant model insect. Environ. Toxicol. Pharmacol. 2023, 101, 104209. [Google Scholar] [CrossRef]
- Gall, J.E.; Boyd, R.S.; Rajakaruna, N. Transfer of heavy metals through terrestrial food webs: A review. Environ. Monit. Assess. 2015, 187, 201. [Google Scholar] [CrossRef]
- Butt, A.; Qurat-ul-Ain; Rehman, K.; Khan, M.X.; Hesselberg, T. Bioaccumulation of cadmium, lead, and zinc in agriculture-based insect food chains. Environ. Monit. Assess. 2018, 190, 698. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Wang, M.Z.; Liu, Y.H.; Zhu, Z.X.; Fahad, S.; Qayyum, A.; Zhu, G.P. Vanadium stress alters sweet potato (Ipomoea batatas L.) growth, ROS accumulation, antioxidant defense system, stomatal traits, and vanadium uptake. Antioxidants 2022, 11, 2407. [Google Scholar] [CrossRef] [PubMed]
- Morales-Silva, T.; Silva, B.C.; Silva, V.H.D.; Faria, L.D.B. Simplification effect of lead soil contamination on the structure and function of a food web of plant-associated insects. Agric. Ecosyst. Environ. 2023, 354, 108570. [Google Scholar] [CrossRef]
- Yan, S.C.; Tan, M.T.; Zhang, A.Y.; Jiang, D. The exposure risk of heavy metals to insect pests and their impact on pests occurrence and cross-tolerance to insecticides: A review. Sci. Total Environ. 2024, 916, 170274. [Google Scholar] [CrossRef] [PubMed]
- Huang, B.F.; Xin, J.L.; Dai, H.W.; Zhou, W.J.; Peng, L.J. Identification of low-Cd cultivars of sweet potato (Ipomoea batatas (L.) Lam.) after growing on Cd-contaminated soil: Uptake and partitioning to the edible roots. Environ. Sci. Pollut. Res. 2015, 22, 11813–11821. [Google Scholar] [CrossRef] [PubMed]
- Grant, C.A.; Clarke, J.M.; Duguid, S.; Chaney, R.L. Selection and breeding of plant cultivars to minimize cadmium accumulation. Sci. Total Environ. 2008, 390, 301–310. [Google Scholar] [CrossRef] [PubMed]
- Sterckeman, T.; Thomine, S. Mechanisms of cadmium accumulation in plants. Crit. Rev. Plant Sci. 2020, 39, 322–359. [Google Scholar] [CrossRef]
- Singh, S.; Prasad, S.M.; Sharma, S.; Dubey, N.K.; Ramawat, N.; Prasad, R.; Singh, V.P.; Tripathi, D.K.; Chauhan, D.K. Silicon and nitric oxide-mediated mechanisms of cadmium toxicity alleviation in wheat seedlings. Physiol. Plant. 2022, 174, e13065. [Google Scholar] [CrossRef] [PubMed]
- Mielcarek, K.; Nowakowski, P.; Puscion-Jakubik, A.; Gromkowska-Kepka, K.J.; Soroczynska, J.; Markiewicz-Zukowska, R.; Naliwajko, S.K.; Grabia, M.; Bielecka, J.; Zmudzi, A.; et al. Arsenic, cadmium, lead and mercury content and health risk assessment of consuming freshwater fish with elements of chemometric analysis. Food Chem. 2022, 379, 132167. [Google Scholar] [CrossRef] [PubMed]
- Qin, G.; Niu, Z.; Yu, J.; Li, Z.; Ma, J.; Xiang, P. Soil heavy metal pollution and food safety in China: Effects, sources and removing technology. Chemosphere 2021, 267, 129205. [Google Scholar] [CrossRef] [PubMed]
- GB 15618-2018; Soil Environmental Quality Risk Control Standard for Soil Contamination of Agricultural Land. Ministry of Ecology and Environment of the People’s Republic of China: Beijing, China, 2018.
- Tan, M.T.; Wu, H.F.; Li, Y.N.; Zhang, A.Y.; Xu, J.S.; Chai, R.S.; Meng, Z.J.; Yan, S.C.; Jiang, D. Cadmium exposure through the food chain reduces the parasitic fitness of Chouioia cunea to Hyphantria cunea pupae: An ecotoxicological risk to pest control. Sci. Total Environ. 2023, 887, 164106. [Google Scholar] [CrossRef]
- van Ooik, T.; Rantala, M.J. Local adaptation of an insect herbivore to a heavy metal contaminated environment. Ann. Zool. Fenn. 2010, 47, 215–222. [Google Scholar] [CrossRef]
- Bahadorani, S.; Hilliker, A.J. Biological and behavioral effects of heavy metals in Drosophila melanogaster adults and larvae. J. Insect Behav. 2009, 22, 399–411. [Google Scholar] [CrossRef]
- Butovsky, R.O. Heavy metals in carabids (Coleoptera, Carabidae). Zookeys 2011, 100, 215–222. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.B.; Wu, N.; Ma, Y.; Wang, Z.Q.; Cai, R.J.; Xu, X.Y. Migration and transformation of Cd in pig manure-insect frass (Hermetia illucens)-soil-maize system. Int. J. Environ. Res. Public Health 2023, 20, 60. [Google Scholar] [CrossRef] [PubMed]
- Guan, H.R.; Zhang, J.W.; Wang, T.; Xu, J.M.; Liu, X.M. Lowered oral bioaccessibility of cadmium and selenium and associated health risk by co-digestion of rice and vegetables. Sci. Total Environ. 2023, 898, 165489. [Google Scholar] [CrossRef] [PubMed]
- Boyd, R.S. Plant defense using toxic inorganic ions: Conceptual models of the defensive enhancement and joint effects hypotheses. Plant Sci. 2012, 195, 88–95. [Google Scholar] [CrossRef] [PubMed]
- Putra, R.; Muller, C. Extending the elemental defence hypothesis in the light of plant chemodiversity. New Phytol. 2023, 239, 1545–1555. [Google Scholar] [CrossRef] [PubMed]
- Morkunas, I.; Wozniak, A.; Mai, V.C.; Rucinska-Sobkowiak, R.; Jeandet, P. The role of heavy metals in plant response to biotic stress. Molecules 2018, 23, 2320. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.L.; Lu, L.L.; Lin, X.Y.; Hu, Y. Cadmium armors the Cd hyperaccumulator Sedum alfredii against aphid attack. Front. Environ. Sci. 2022, 10, 1036708. [Google Scholar] [CrossRef]
- Esteves-Aguilar, J.; Mussali-Galante, P.; Valencia-Cuevas, L.; Garcia-Cigarrero, A.A.; Rodriguez, A.; Castrejon-Godinez, M.L.; Tovar-Sanchez, E. Ecotoxicological effects of heavy metal bioaccumulation in two trophic levels. Environ. Sci. Pollut. Res. 2023, 30, 49840–49855. [Google Scholar] [CrossRef] [PubMed]
- Jiang, D.; Wang, G.R.; Yan, S.C. The improved resistance against gypsy moth in Larix olgensis seedlings exposed to Cd stress association with elemental and chemical defenses. Pest Manag. Sci. 2020, 76, 1713–1721. [Google Scholar] [CrossRef] [PubMed]
- Jiang, D.; Tan, M.T.; Guo, Q.X.; Yan, S.C. Transfer of heavy metal along food chain: A mini-review on insect susceptibility to entomopathogenic microorganisms under heavy metal stress. Pest Manag. Sci. 2021, 77, 1115–1120. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, C.S.; Nogara, P.A.; Lima, L.S.; Galiciolli, M.E.A.; Souza, J.V.; Aschner, M.; Rocha, J.B.T. Toxic metals that interact with thiol groups and alteration in insect behavior. Curr. Opin. Insect Sci. 2022, 52, 100923. [Google Scholar] [CrossRef] [PubMed]
- Morales-Silva, T.; Silva, B.C.; Faria, L.D.B. Soil contamination with permissible levels of lead negatively affects the community of plant-associated insects: A case of study with kale. Environ. Pollut. 2022, 304, 119143. [Google Scholar] [CrossRef] [PubMed]
- Behmer, S.T.; Lloyd, C.M.; Raubenheimer, D.; Stewart-Clark, J.; Knight, J.; Leighton, R.S.; Harper, F.A.; Smith, J.A.C. Metal hyperaccumulation in plants: Mechanisms of defence against insect herbivores. Funct. Ecol. 2005, 19, 55–66. [Google Scholar] [CrossRef]
- Scheirs, J.; Vandevyvere, I.; Wollaert, K.; Blust, R.; De Bruyn, L. Plant-mediated effects of heavy metal pollution on host choice of a grass miner. Environ. Pollut. 2006, 143, 138–145. [Google Scholar] [CrossRef] [PubMed]
- Mireji, P.O.; Keating, J.; Hassanali, A.; Mbogo, C.M.; Muturi, M.N.; Githure, J.I.; Beier, J.C. Biological cost of tolerance to heavy metals in the mosquito Anopheles gambiae. Med. Vet. Entomol. 2010, 24, 101–107. [Google Scholar] [CrossRef] [PubMed]
- Augustyniak, M.; Babczynska, A.; Migula, P.; Wilczek, G.; Laszczyca, P.; Kafel, A.; Augustyniak, M. Joint effects of dimethoate and heavy metals on metabolic responses in a grasshopper (Chorthippus brunneus) from a heavy metals pollution gradient. Comp. Biochem. Physiol. C-Toxicol. Pharmacol. 2005, 141, 412–419. [Google Scholar] [CrossRef] [PubMed]
- Huang, F.; Zhou, H.; Gu, J.F.; Liu, C.Y.; Yang, W.J.; Liao, B.H.; Zhou, H. Differences in absorption of cadmium and lead among fourteen sweet potato cultivars and health risk assessment. Ecotoxicol. Environ. Saf. 2020, 203, 111012. [Google Scholar] [CrossRef] [PubMed]
- Huang, B.F.; Liao, Q.; Fu, H.L.; Ye, Z.Y.; Mao, Y.X.; Luo, J.M.; Wang, Y.T.; Yuan, H.W.; Xin, J.L. Effect of potassium intake on cadmium transporters and root cell wall biosynthesis in sweet potato. Ecotoxicol. Environ. Saf. 2023, 250, 114501. [Google Scholar] [CrossRef] [PubMed]
- Shi, L.; Chen, Z.M.; Hou, Y.A.; Li, J.M.; Shen, Z.G.; Chen, Y.H. The original polyethylene microplastics inhibit the growth of sweet potatoes and increase the safety risk of cadmium. Front. Plant Sci. 2023, 14, 1138281. [Google Scholar] [CrossRef] [PubMed]
- Toishimanov, M.; Abilda, Z.; Daurov, D.; Daurova, A.; Zhapar, K.; Sapakhova, Z.; Kanat, R.; Stamgaliyeva, Z.; Zhambakin, K.; Shamekova, M. Phytoremediation properties of sweet potato for soils contaminated by heavy metals in South Kazakhstan. Appl. Sci. 2023, 13, 9589. [Google Scholar] [CrossRef]
- Antonious, G.F.; Dennis, S.O.; Unrine, J.M.; Snyder, J.C. Ascorbic acid, beta-carotene, sugars, phenols, and heavy metals in sweet potatoes grown in soil fertilized with municipal sewage sludge. J. Environ. Sci. Health Part B-Pestic. Food Contam. Agric. Wastes 2011, 46, 112–121. [Google Scholar] [CrossRef] [PubMed]
- Huang, B.F.; Dai, H.W.; Zhou, W.J.; Peng, L.J.; Li, M.Z.; Wan, R.J.; He, W.T. Characteristics of Cd accumulation and distribution in two sweet potato cultivars. Int. J. Phytoremediation 2019, 21, 391–398. [Google Scholar] [CrossRef] [PubMed]
- Baro, Y.; Schuster, C.; Gato, Y.; Marquez, M.E.; Leclerque, A. Characterization, identification and virulence of Metarhizium species from Cuba to control the sweet potato weevil, Cylas formicarius Fabricius (Coleoptera: Brentidae). J. Appl. Microbiol. 2022, 132, 3705–3716. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Wang, Y.R.; Zhu, H.B.; Mei, G.G.; Liao, Y.Y.; Rao, S.F.; Li, S.Q.; Chen, A.; Liu, H.J.; Zeng, L.T.; et al. Natural allelic variation confers high resistance to sweet potato weevils in sweet potato. Nat. Plants 2022, 8, 1233–1244. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.P.; Zhao, Z.H.; Chen, J.Y.; Huang, L.F. The field efficacy test of bifenthrin·thiamethoxam 1% GR application in the control of sweet potato weevil. Chin. J. Trop. Agric. 2023, 43, 67–71. (In Chinese) [Google Scholar]
- Augustyniak, M.; Tarnawska, M.; Babczynska, A.; Kafel, A.; Zawisza-Raszka, A.; Adamek, B.; Plachetka-Bozek, A. Cross tolerance in beet armyworm: Long-term selection by cadmium broadens tolerance to other stressors. Ecotoxicology 2017, 26, 1408–1418. [Google Scholar] [CrossRef] [PubMed]
- Kheirallah, D.A.M.; El-Samad, L.M.; Mokhamer, E.M.; Abdul-Aziz, K.K.; Toto, N.A.H. DNA damage and oogenesis anomalies in Pimelia latreillei (Coleoptera: Tenebrionidae) induced by heavy metals soil pollution. Toxicol. Ind. Health 2019, 35, 688–702. [Google Scholar] [CrossRef] [PubMed]
- Jiang, R.F.; Ma, D.Y.; Zhao, F.J.; McGrath, S.P. Cadmium hyperaccumulation protects Thlaspi caerulescens from leaf feeding damage by thrips (Frankliniella occidentalis). New Phytol. 2005, 167, 805–813. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.F.; Chen, J.; Wu, K.X.; Chen, S.R.; Wang, J.W.; Shu, Y.H. Complex Cd-Pb multigenerational exposure improves the growth and food utilization of the cutworm Spodoptera litura. Agronomy 2023, 13, 1207. [Google Scholar] [CrossRef]
- Wan, S.J.; Si, H.R.; Wang, X.Z.; Chao, L.; Ma, W.; Sun, S.S.; Tang, B.; Tan, X.L.; Wang, S.G. Regulation of Vicia faba L. response and its effect on Megoura crassicauda reproduction under zinc stress. Int. J. Mol. Sci. 2023, 24, 9659. [Google Scholar] [CrossRef] [PubMed]
- Luo, M.; Cao, H.M.; Fan, Y.Y.; Zhou, X.C.; Chen, J.X.; Chung, H.; Wei, H.Y. Bioaccumulation of cadmium affects development, mating behavior, and fecundity in the Asian Corn Borer, Ostrinia furnacalis. Insects 2020, 11, 7. [Google Scholar] [CrossRef] [PubMed]
- Vlahovic, M.; Matic, D.; Mutic, J.; Trifkovic, J.; Durdic, S.; Mataruga, V.P. Influence of dietary cadmium exposure on fitness traits and its accumulation (with an overview on trace elements) in Lymantria dispar larvae. Comp. Biochem. Physiol. Part C 2017, 200, 27–33. [Google Scholar] [CrossRef] [PubMed]
- Merritt, T.J.S.; Bewick, A.J. Genetic diversity in insect metal tolerance. Front. Genet. 2017, 8, 172. [Google Scholar] [CrossRef] [PubMed]
- Zhan, H.X.; Zhang, J.P.; Chen, Z.; Huang, Y.J.; Ruuhola, T.; Yang, S.Y. Effects of Cd2+ exposure on key life history traits and activities of four metabolic enzymes in Helicoverpa armigera (Lepidopteran: Noctuidae). Chem. Ecol. 2017, 33, 325–338. [Google Scholar] [CrossRef]
- Yang, Y.; Qi, J.W.; Wang, Z.L.; Zhou, Z.X.; Zhao, C.W.; Dong, X.L.; Li, X.H.; Li, C.R. Evaluating the effects of Cu2+ on the development and reproduction of Spodoptera litura (Lepidoptera: Noctuidae) based on the age-stage, two-sex life table. J. Insect Sci. 2022, 22, 4. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.B.; Zou, X.P.; Zhang, N.; Feng, Q.L.; Zheng, S.C. Detoxification of insecticides, allechemicals and heavy metals by glutathione S transferase SlGSTE1 in the gut of Spodoptera litura. Insect Sci. 2015, 22, 503–511. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.F.; Tan, M.T.; Li, Y.N.; Zheng, L.; Xu, J.S.; Jiang, D. The immunotoxicity of Cd exposure to gypsy moth larvae: An integrated analysis of cellular immunity and humoral immunity. Ecotoxicol. Environ. Saf. 2022, 235, 113434. [Google Scholar] [CrossRef] [PubMed]
- Fasae, K.D.; Abolaji, A.O. Interactions and toxicity of non-essential heavy metals (Cd, Pb and Hg): Lessons from Drosophila melanogaster. Curr. Opin. Insect Sci. 2022, 51, 100900. [Google Scholar] [CrossRef] [PubMed]
- Frat, L.; Chertemps, T.; Pesce, E.; Bozzolan, F.; Dacher, M.; Planelló, R.; Herrero, O.; Llorente, L.; Moers, D.; Siaussat, D. Single and mixed exposure to cadmium and mercury in Drosophila melanogaster: Molecular responses and impact on post-embryonic development. Ecotoxicol. Environ. Saf. 2021, 220, 112377. [Google Scholar] [CrossRef] [PubMed]
- Alengebawy, A.; Abdelkhalek, S.T.; Qureshi, S.R.; Wang, M.Q. Heavy metals and pesticides toxicity in agricultural soil and plants: Ecological risks and human health implications. Toxics 2021, 9, 42. [Google Scholar] [CrossRef] [PubMed]
- Bueno, E.M.; McIlhenny, C.L.; Chen, Y.H. Cross-protection interactions in insect pests: Implications for pest management in a changing climate. Pest Manag. Sci. 2023, 79, 9–20. [Google Scholar] [CrossRef] [PubMed]
- Dubovskiy, I.M.; Grizanova, E.V.; Ershova, N.S.; Rantala, M.J.; Glupov, V.V. The effects of dietary nickel on the detoxification enzymes, innate immunity and resistance to the fungus Beauveria bassiana in the larvae of the greater wax moth Galleria mellonella. Chemosphere 2011, 85, 92–96. [Google Scholar] [CrossRef]
- Nanda, K.P.; Kumari, C.; Dubey, M.; Firdaus, H. Chronic lead (Pb) exposure results in diminished hemocyte count and increased susceptibility to bacterial infection in Drosophila melanogaster. Chemosphere 2019, 236, 124349. [Google Scholar] [CrossRef] [PubMed]
- Shehzad, M.; Bodlah, I.; Siddiqui, J.A.; Bodlah, M.A.; Fareen, A.G.E.; Islam, W. Recent insights into pesticide resistance mechanisms in Plutella xylostella and possible management strategies. Environ. Sci. Pollut. Res. 2023, 30, 95296–95311. [Google Scholar] [CrossRef]
Concentration of CdCl2 (mg/L) | 24 h | 48 h | ||||||
---|---|---|---|---|---|---|---|---|
Male | Female | Male | Female | |||||
Number of Feeding Holes | Antifeeding Rate (%) | Number of Feeding Holes | Antifeeding Rate (%) | Number of Feeding Holes | Antifeeding Rate (%) | Number of Feeding Holes | Antifeeding Rate (%) | |
0 | 62.67 ± 5.68 a | − − | 76.83 ± 2.54 a | − − | 71.67 ± 4.67 a | − − | 86 ± 5.34 a | − − |
30 | 30.08 ± 2.58 b | 52.00 ± 4.11 b | 32.17 ± 2.26 b | 58.13 ± 2.94 c | 83.08 ± 4.88 a | −15.93 ± 6.81 d | 96.62 ± 7.63 a | −12.35 ± 8.87 d |
60 | 12.92 ± 2.08 c | 79.39 ± 3.31 a | 18.75 ± 2.94 c | 75.60 ± 3.82 b | 43.83 ± 5.35 b | 38.84 ± 7.47 c | 56.00 ± 5.09 b | 34.88 ± 5.92 c |
120 | 9.67 ± 1.25 c | 84.58 ± 2.00 a | 10.5 ± 1.39 cd | 86.33 ± 1.81 a | 21.25 ± 2.76 c | 70.35 ± 3.85 b | 24.25 ± 2.24 c | 71.80 ± 2.60 b |
240 | 7.00 ± 0.37 c | 88.83 ± 0.58 a | 9.33 ± 0.77 d | 87.85 ± 1.00 a | 7.67 ± 0.28 bcd | 89.30 ± 0.39 ab | 7.17 ± 0.33 c | 91.18 ± 0.48 ab |
480 | 7.50 ± 0.37 c | 88.03±0.58 a | 9.5 ± 0.37 d | 87.64 ± 0.48 a | 5.33 ± 0.25 d | 93.06 ± 0.32 a | 6.00 ± 1.13 c | 93.02 ± 1.32 a |
p | ˂0.00001 | ˂0.00001 | ˂0.00001 | ˂0.00001 | ˂0.00001 | ˂0.00001 | ˂0.00001 | ˂0.00001 |
df | 5.30 | 4.25 | 5.30 | 4.25 | 5.30 | 4.25 | 5.30 | 4.25 |
F | 63.54 | 35.99 | 182.12 | 29.44 | 79.98 | 86.96 | 79.12 | 81.43 |
Concentration of CdCl2 (mg/L) | Male Survival Rates (%) | Female Survival Rates (%) |
---|---|---|
0 | 73.33 ± 3.85 a | 80 ± 8.82 a |
30 | 33.33 ± 5.09 b | 23.33 ± 10.72 b |
60 | 20 ± 11.55 bc | 30 ± 11.55 b |
120 | 3.33 ± 1.92 c | 13.33 ± 5.09 b |
240 | 0c | 0 b |
480 | 0 c | 0 b |
Concentration of CdCl2 (mg/L) | Larva Developmental Duration (d) | Larva Corrected Mortality Rates (%) | |
---|---|---|---|
Day 3 | Day 7 | ||
0 | 13.43 ± 0.8 a | —— | —— |
30 | 11.08 ± 0.57 ab | 5.32 ± 4 a | 15.21 ± 6.73 a |
60 | 10.8 ± 0.68 ab | 15.05 ± 2.28 ab | 21.53 ± 5.32 ab |
120 | 12.1 ± 0.75 ab | 22.68 ± 2.91 b | 28.60 ± 2.37 ab |
240 | 10.3 ± 0.81 b | 24.31 ± 3.24 b | 36.47 ± 3.88 b |
480 | 9.43 ± 0.63 b | 26.39 ± 2.24 b | 60.68 ± 4.37 c |
Concentration of Spinetoram (mg/L) | Corrected Mortality Rate (%) | Probit | χ2 | p-Value | LC50 (mg/L) | 95% Confidence Limits (mg/L) |
---|---|---|---|---|---|---|
17.14 | 23.3333 ± 4.9441 e | −5.4081 + 4.0187 x | 7.069 | 0.132 | 22.16842 | 17.6107–25.9261 |
20 | 45.0000 ± 4.2817 d | |||||
24 | 60.0000 ± 3.6515 cd | |||||
30 | 73.3333 ± 4.2164 bc | |||||
40 | 86.6667 ± 4.9441 ab | |||||
60 | 91.6667 ± 3.0732 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, J.; Tang, A.; Liu, J.-Y.; Yao, C.-L.; Liu, K.-P.; Huang, X.-S.; Shi, P.-Q. Changes in the Biology and Susceptibility of Weevil (Cylas formicarius) to the Insecticide Spinetoram as a Response to Cadmium Contamination. Toxics 2024, 12, 304. https://doi.org/10.3390/toxics12040304
Xu J, Tang A, Liu J-Y, Yao C-L, Liu K-P, Huang X-S, Shi P-Q. Changes in the Biology and Susceptibility of Weevil (Cylas formicarius) to the Insecticide Spinetoram as a Response to Cadmium Contamination. Toxics. 2024; 12(4):304. https://doi.org/10.3390/toxics12040304
Chicago/Turabian StyleXu, Jin, An Tang, Jun-Yan Liu, Chang-Long Yao, Ke-Ping Liu, Xiao-Sheng Huang, and Pei-Qiong Shi. 2024. "Changes in the Biology and Susceptibility of Weevil (Cylas formicarius) to the Insecticide Spinetoram as a Response to Cadmium Contamination" Toxics 12, no. 4: 304. https://doi.org/10.3390/toxics12040304
APA StyleXu, J., Tang, A., Liu, J.-Y., Yao, C.-L., Liu, K.-P., Huang, X.-S., & Shi, P.-Q. (2024). Changes in the Biology and Susceptibility of Weevil (Cylas formicarius) to the Insecticide Spinetoram as a Response to Cadmium Contamination. Toxics, 12(4), 304. https://doi.org/10.3390/toxics12040304