Potential Hepatoprotective Effects of Allicin on Carbon Tetrachloride-Induced Acute Liver Injury in Mice by Inhibiting Oxidative Stress, Inflammation, and Apoptosis
Abstract
:1. Introduction
2. Results
2.1. Allicin Pretreatment Inhibits NO Production and Cytokine Expression in LPS-Stimulated RAW264.7 Cells
2.2. Allicin Suppressed ROS Generation in LPS-Stimulated RAW264.7 Cells
2.3. Allicin Pretreatment Attenuates CCl4-Induced Acute Liver Injury in Mice
2.4. Allicin Alleviated CCl4-Induced Hepatocytes Apoptosis
2.5. Allicin Suppressed CCl4-Induced Hepatic Inflammatory Response
2.6. Allicin Attenuates CCl4-Induced Oxidative Stress in Mice
2.7. Allicin Activates Nrf2/NQO1 Pathway following CCl4-Induced Acute Liver Injury
3. Discussion
4. Materials and Methods
4.1. Reagents and Antibodies
4.2. Allicin Preparation and Content Quantification
4.3. Cell Culture
4.4. LPS-Induced Inflammation in RAW264.7 Cells and Allicin Treatment
4.4.1. Cell Groups and Treatment
4.4.2. Detection of NO Production in RAW264.7 Cells
4.4.3. RNA Isolation and Real-Time Quantitative PCR (Real-Time RT-PCR)
4.4.4. Western Blot Analysis for IL-6 and IL-1β Expression
4.4.5. Detection of ROS Generation in RAW264.7 Cells
4.5. CCL4-Induced Acute Liver Injury and Allicin Pretreatment
4.5.1. Animal Experimental Design
4.5.2. Hepatic Histological Detection
4.5.3. Liver Function Evaluation
4.5.4. Assay of Malondialdehyde (MDA) Activities and Catalase (CAT) Activities
4.5.5. Cytokine Measurement Using Enzyme Linked Immunosorbent Assay (ELISA)
4.5.6. Western Blot Analysis of Related Proteins in Liver Tissue
4.6. Statistical Analysis
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bellentani, S.; Saccoccio, G.; Masutti, F.; Croce, L.S.; Brandi, G.; Sasso, F.; Cristanini, G.; Tiribelli, C. Prevalence of and risk factors for hepatic steatosis in Northern Italy. Ann. Intern. Med. 2000, 132, 112–117. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.L.; Niu, J.L.; Ou, L.N.; Deng, B.; Wang, Y.Y.; Li, S.Q. Zerumbone Protects against Carbon Tetrachloride (CCl4)-Induced Acute Liver Injury in Mice via Inhibiting Oxidative Stress and the Inflammatory Response: Involving the TLR4/NF-B/COX-2 Pathway. Molecules 2019, 24, 1964. [Google Scholar] [CrossRef] [PubMed]
- Udompap, P.; Kim, D.; Kim, W.R. Current and Future Burden of Chronic Nonmalignant Liver Disease. Clin. Gastroenterol. Hepatol. 2015, 13, 2031–2041. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.S.; Fan, J.G.; Zhang, Z.; Gao, B.; Wang, H.Y. The Global Burden of Liver Disease: The Major Impact of China. Hepatology 2014, 60, 2099–2108. [Google Scholar] [CrossRef] [PubMed]
- Ning, C.Q.; Gao, X.G.; Wang, C.Y.; Huo, X.K.; Liu, Z.H.; Sun, H.J.; Yang, X.B.; Sun, P.Y.; Ma, X.D.; Meng, Q.; et al. Hepatoprotective effect of ginsenoside Rg1 from Panax ginseng on carbon tetrachloride-induced acute liver injury by activating Nrf2 signal-ing pathway in mice. Environ. Toxicol. 2018, 33, 1050–1060. [Google Scholar] [CrossRef] [PubMed]
- Reyes-Gordillo, K.; Shah, R.; Muriel, P. Oxidative Stress and Inflammation in Hepatic Diseases: Current and Future Therapy. Oxid. Med. Cell Longev. 2017, 2017. [Google Scholar] [CrossRef] [PubMed]
- Ankri, S.; Mirelman, D. Antimicrobial properties of allicin from garlic. Microbes Infect. 1999, 1, 125–129. [Google Scholar] [CrossRef] [PubMed]
- Alam, R.T.M.; Fawzi, E.M.; Alkhalf, M.I.; Alansari, W.S.; Aleya, L.; Abdel-Daim, M.M. Anti-Inflammatory, Immunomodulatory, and Antioxidant Activities of Allicin, Norfloxacin, or Their Combination against Pasteurella multocida Infection in Male New Zealand Rabbits. Oxid. Med. Cell Longev. 2018, 1–10. [Google Scholar]
- Li, C.L.; Liu, X.H.; Qiao, Y.; Ning, L.N.; Li, W.J.; Sun, Y.S.; Liu, D.S.; Gao, W.; Ma, C.M. Allicin alleviates inflammation of diabetic macro-angiopathy via the Nrf2 and NF-kB pathway. Eur. J. Pharmacol. 2020, 876, 173052. [Google Scholar] [CrossRef]
- Xiang, Q.; Cheng, Z.R.; Wang, J.T.; Feng, X.B.; Hua, W.B.; Luo, R.J.; Wang, B.J.; Liao, Z.W.; Ma, L.; Li, G.C.; et al. Allicin Attenuated Advanced Oxidation Protein Product-Induced Oxidative Stress and Mito-chondrial Apoptosis in Human Nucleus Pulposus Cells. Oxid. Med. Cell Longev. 2020, 2020, 6685043. [Google Scholar] [CrossRef]
- Sanchez-Gloria, J.L.; Martinez-Olivares, C.E.; Rojas-Morales, P.; Hernandez-Pando, R.; Carbo, R.; Rubio-Gayosso, I.; Arellano-Buendia, A.S.; Rada, K.M.; Sanchez-Munoz, F.; Osorio-Alonso, H. Anti-Inflammatory Effect of Allicin Associated with Fibrosis in Pulmonary Arterial Hypertension. Int. J. Mol. Sci. 2021, 22, 8600. [Google Scholar] [CrossRef] [PubMed]
- Panyod, S.; Sheen, L.Y. Beneficial effects of Chinese herbs in the treatment of fatty liver diseases. J. Tradit. Complement. Med. 2020, 10, 260–267. [Google Scholar] [CrossRef] [PubMed]
- Panyod, S.; Wu, W.K.; Lu, K.H.; Liu, C.T.; Chu, Y.L.; Ho, C.T.; Hsiao, W.W.; Lai, Y.S.; Chen, W.C.; Lin, Y.E.; et al. Al-licin Modifies the Composition and Function of the Gut Microbiota in Alcoholic Hepatic Steatosis Mice. J. Agric. Food Chem. 2020, 68, 3088–3098. [Google Scholar] [CrossRef] [PubMed]
- Panyod, S.W.W.; Chen, P.C.; Chong, K.V.; Yang, Y.T.; Chuang, H.L.; Chen, C.C.; Chen, R.A.; Liu, P.Y.; Chung, C.H.; Huang, H.S.; et al. Atherosclerosis amelioration by allicin in raw garlic through gut microbiota and trimethylamine-N-oxide modulation. NPJ. Biofilms Microbiomes 2022, 8, 4. [Google Scholar] [CrossRef] [PubMed]
- Zhao, S.; Song, T.Y.; Gu, Y.; Zhang, Y.H.; Cao, S.Y.; Miao, Q.; Zhang, X.Y.; Chen, H.S.; Gao, Y.Q.; Zhang, L.; et al. Hydrogen Sulfide Alleviates Liver Injury Through the S-Sulfhydrated-Kelch-Like ECH-Associated Protein 1/Nuclear Erythroid 2-Related Factor 2/Low-Density Lipoprotein Receptor-Related Protein 1 Pathway. Hepatology 2021, 73, 282–302. [Google Scholar] [CrossRef] [PubMed]
- Dong, S.; Xu, S.; Hou, X.; Luo, D.; Chen, J.; Liu, X. Anti-inflammatory and anti-oxidative protec-tive effects of Nrf2 activation on AGEs-induced hippocampal damage in rats. Stroke Nerv. Dis. 2017, 24, 388–392. [Google Scholar]
- Ma, J.Q.; Li, Z.; Xie, W.R.; Liu, C.M.; Liu, S.S. Quercetin protects mouse liver against CCl4-induced inflammation by the TLR2/4 and MAPK/NF-κB pathway. Int. Immunopharmacol. 2015, 28, 531–539. [Google Scholar] [CrossRef]
- Zhou, Y.; Li, X.; Luo, W.; Zhu, J.; Zhao, J.; Wang, M.; Sang, L.; Chang, B.; Wang, B. Allicin in Digestive System Cancer: From Biological Effects to Clinical Treatment. Front. Pharmacol. 2022, 13, 903259. [Google Scholar] [CrossRef] [PubMed]
- Majewski, M. Allium sativum: Facts and myths regarding human health. Rocz. Panstw. Zakl. Hig. 2014, 65, 1–8. [Google Scholar] [PubMed]
- Aydin, O.C.; Aydin, S.; Barun, S. Role of natural products and intestinal flora on type 2 diabetes mellitus treatment. World J. Clin. Cases 2023, 11, 65–72. [Google Scholar]
- Nada, S.A.; Omara, E.A.; Abdel-Salam, O.M.; Zahran, H.G. Mushroom insoluble polysaccharides prevent carbon tetrachloride-induced hepatotoxicity in rat. Food Chem. Toxicol. 2010, 48, 3184–3188. [Google Scholar] [CrossRef] [PubMed]
- Domitrovic, R.; Jakovac, H.; Vasiljev Marchesi, V.; Vladimir-Knezevic, S.; Cvijanovic, O.; Tadic, Z.; Romic, Z.; Rahelic, D. Differential hepatoprotective mechanisms of rutin and quercetin in CCl(4)-intoxicated BALB/cN mice. Acta Pharmacol. Sin. 2012, 33, 1260–1270. [Google Scholar] [CrossRef] [PubMed]
- Mohammed, A.; Abd Al Haleem, E.N.; El-Bakly, W.M.; El-Demerdash, E. Deferoxamine alleviates liver fibrosis induced by CCl4 in rats. Clin. Exp. Pharmacol. Physiol. 2016, 43, 760–768. [Google Scholar] [CrossRef] [PubMed]
- Woolbright, B.L.; Jaeschke, H. The impact of sterile inflammation in acute liver injury. J. Clin. Transl. Res. 2017, 3, 170–188. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.M.; Chun, S.B.; Koo, M.S.; Choi, W.J.; Kim, T.W.; Kwon, Y.G.; Chung, H.T.; Billiar, T.R.; Kim, Y.M. Differential regulation of NO availability from macrophages and endothelial cells by the garlic component S-allyl cysteine. Free Radic. Biol. Med. 2001, 30, 747–756. [Google Scholar] [CrossRef] [PubMed]
- Farah, C.; Michel, L.Y.M.; Balligand, J.L. Nitric oxide signalling in cardiovascular health and disease. Nat. Rev. Cardiol. 2018, 15, 292–316. [Google Scholar] [CrossRef] [PubMed]
- Lind, M.; Hayes, A.; Caprnda, M.; Petrovic, D.; Rodrigo, L.; Kruzliak, P.; Zulli, A. Inducible nitric oxide synthase: Good or bad? Bio-Med. Pharmacother. 2017, 93, 370–375. [Google Scholar] [CrossRef] [PubMed]
- Chang, H.P.; Chen, Y.H. Differential effects of organosulfur compounds from garlic oil on nitric oxide and prostaglandin E2 in stimulated macrophages. Nutrition 2005, 21, 530–536. [Google Scholar] [CrossRef] [PubMed]
- Liu, K.L.; Chen, H.W.; Wang, R.Y.; Lei, Y.P.; Sheen, L.Y.; Lii, C.K. DATS reduces LPS-induced iNOS expression, NO production, oxida-tive stress, and NF-kappaB activation in RAW 264.7 macrophages. J. Agric. Food Chem. 2006, 54, 3472–3478. [Google Scholar] [CrossRef] [PubMed]
- Schwartz, I.F.; Hershkovitz, R.; Iaina, A.; Gnessin, E.; Wollman, Y.; Chernichowski, T.; Blum, M.; Levo, Y.; Schwartz, D. Garlic attenuates nitric oxide production in rat cardiac myocytes through inhibition of inducible nitric oxide synthase and the arginine transporter CAT-2 (cationic amino acid transporter-2). Clin. Sci. 2002, 102, 487–493. [Google Scholar] [CrossRef]
- Rose, P.; Moore, P.K.; Zhu, Y.Z. Garlic and Gaseous Mediators. Trends Pharmacol. Sci. 2018, 39, 624–634. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Tan, H.Y.; Wang, N.; Zhang, Z.J.; Lao, L.; Wong, C.W.; Feng, Y. The Role of Oxidative Stress and Antioxidants in Liver Diseases. Int. J. Mol. Sci. 2015, 16, 26087–26124. [Google Scholar] [CrossRef]
- Tipoe, G.L.; Leung, T.M.; Liong, E.C.; Lau, T.Y.; Fung, M.L.; Nanji, A.A. Epigallocatechin-3-gallate (EGCG) reduces liver inflamma-tion, oxidative stress and fibrosis in carbon tetrachloride (CCl4)-induced liver injury in mice. Toxicology 2010, 273, 45–52. [Google Scholar] [CrossRef] [PubMed]
- Son, G.; Iimuro, Y.; Seki, E.; Hirano, T.; Kaneda, Y.; Fujimoto, J. Selective inactivation of nf-kappab in the liver using nf-kappab decoy suppresses CCl4-induced liver injury and fibrosis. Am. J. Physiol. 2007, 293, 631–639. [Google Scholar]
- Li, W.; Huang, R.; Gong, X.; Zhao, Z.; Zhang, L.; Zhou, Q.; Jiang, X.; Tie, H.; Wan, J.; Wang, B. Allicin attenuated hepatic ische-mia/reperfusion injury in mice by regulating PPARgamma-IRAK-M-TLR4 signal pathway. Food Funct. 2022, 13, 7361–7376. [Google Scholar] [CrossRef] [PubMed]
- Friedman, S.L. Mechanisms of hepatic fibrogenesis. Gastroenterology 2008, 134, 1655–1669. [Google Scholar] [CrossRef] [PubMed]
- Weiskirchen, R.; Tacke, F. Liver Fibrosis: From Pathogenesis to Novel Therapies. Dig. Dis. 2016, 34, 410–422. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Cheng, Y.; Bi, M.; Lin, H.; Chen, Y.; Zou, Y.; Liu, Y.; Kang, H.; Guo, Y. Effects of N-butylphthalide on the activation of Keap1/Nrf-2 signal pathway in rats after carbon monoxide poisoning. Environ. Toxicol. Pharmacol. 2015, 40, 22–29. [Google Scholar] [CrossRef] [PubMed]
- Hseu, Y.C.; Chou, C.W.; Kumar, K.J.S.; Fu, K.T.; Wang, H.M.; Hsu, L.S.; Kuo, Y.H.; Wu, C.R.; Chen, S.C.; Yang, H.L. Ellagic acid protects human keratinocyte (HaCaT) cells against UVA-induced oxidative stress and apoptosis through the upregulation of the HO-1 and Nrf-2 antioxidant genes. Food Chem. Toxicol. 2012, 50, 1245–1255. [Google Scholar] [CrossRef] [PubMed]
- Mou, Y.; Liao, W.; Li, Y.; Wan, L.; Liu, J.; Luo, X.; Shen, H.; Sun, Q.; Wang, J.; Tang, J.; et al. Glycyrrhizin and the Related Preparations: An Inspiring Resource for the Treatment of Liver Diseases. Am J. Chin. Med. 2024, 52, 315–354. [Google Scholar] [CrossRef] [PubMed]
- Liang, Y.; Zhang, J.J.; Zhang, Q.B.; Wang, Z.X.; Yin, Z.N.; Li, X.X.; Chen, J.; Ye, L.M. Release test of alliin/alliinase double-layer tablet by HPLC-Allicin determination. J. Pharm. Anal. 2013, 3, 187–192. [Google Scholar] [CrossRef]
Numbers | Genes | Sequence (5’−3’) | Product Length |
---|---|---|---|
NM_008361.4 | IL-1β | F: GGGCCTCAAAGGAAAGAATC | 183 |
R: TACCAGTTGGGGAACTCTGC | |||
NM_031168.2 | IL-6 | F: AGTTGCCTTCTTGGGACTGA | 191 |
R: CAGAATTGCCATTGCACAAC | |||
NM_011198.5 | Cox-2 | F: AGAAGGAAATGGCTGCAGAA | 194 |
R: GCTCGGCTTCCAGTATTGAG | |||
NM_007393.5 | β-actin | F: CCACAGCTGAGAGGGAAATC | 193 |
R: AAGGAAGGCTGGAAAAGAGC |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gong, Q.; Wang, X.; Liu, Y.; Yuan, H.; Ge, Z.; Li, Y.; Huang, J.; Liu, Y.; Chen, M.; Xiao, W.; et al. Potential Hepatoprotective Effects of Allicin on Carbon Tetrachloride-Induced Acute Liver Injury in Mice by Inhibiting Oxidative Stress, Inflammation, and Apoptosis. Toxics 2024, 12, 328. https://doi.org/10.3390/toxics12050328
Gong Q, Wang X, Liu Y, Yuan H, Ge Z, Li Y, Huang J, Liu Y, Chen M, Xiao W, et al. Potential Hepatoprotective Effects of Allicin on Carbon Tetrachloride-Induced Acute Liver Injury in Mice by Inhibiting Oxidative Stress, Inflammation, and Apoptosis. Toxics. 2024; 12(5):328. https://doi.org/10.3390/toxics12050328
Chicago/Turabian StyleGong, Qianmei, Xiaoming Wang, Yongshi Liu, Heling Yuan, Zifeng Ge, Yuzhou Li, Jinhu Huang, Yufan Liu, Ming Chen, Wenjun Xiao, and et al. 2024. "Potential Hepatoprotective Effects of Allicin on Carbon Tetrachloride-Induced Acute Liver Injury in Mice by Inhibiting Oxidative Stress, Inflammation, and Apoptosis" Toxics 12, no. 5: 328. https://doi.org/10.3390/toxics12050328
APA StyleGong, Q., Wang, X., Liu, Y., Yuan, H., Ge, Z., Li, Y., Huang, J., Liu, Y., Chen, M., Xiao, W., Liu, R., Shi, R., & Wang, L. (2024). Potential Hepatoprotective Effects of Allicin on Carbon Tetrachloride-Induced Acute Liver Injury in Mice by Inhibiting Oxidative Stress, Inflammation, and Apoptosis. Toxics, 12(5), 328. https://doi.org/10.3390/toxics12050328