Independent and Joint Effects of Prenatal Incense-Burning Smoke Exposure and Children’s Early Outdoor Activity on Preschoolers’ Obesity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Data Collection
2.3. Prenatal IBS Exposure Measurement
2.4. Early Frequency and Duration of Outdoor Activity Measurement
2.5. Measurement and Definition of Obesity
2.6. Potential Confounding Variables
2.7. Statistical Analyses
3. Results
3.1. Population Characteristics
3.2. Association between Maternal Exposure to IBS during Pregnancy and Obesity among Preschoolers
3.3. Association of Frequency and Duration of Outdoor Activity from 1 to 3 Years of Age with Children Obesity
3.4. Combination Effect between Maternal IBS Exposure during Pregnancy and Outdoor Activity from 1 to 3 Years of Age on Preschool Obesity
3.5. Sensitivity Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- NCD Risk Factor Collaboration (NCD-RisC). Worldwide trends in body-mass index, underweight, overweight, and obesity from 1975 to 2016: A pooled analysis of 2416 population-based measurement studies in 128.9 million children, adolescents, and adults. Lancet 2017, 390, 2627–2642. [Google Scholar] [CrossRef]
- World Health Organization. Obesity and Overweight. Available online: https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight (accessed on 6 July 2023).
- GBD 2015 Obesity Collaborators; Afshin, A.; Forouzanfar, M.H.; Reitsma, M.B.; Sur, P.; Estep, K.; Lee, A.; Marczak, L.; Mokdad, A.H.; Moradi-Lakeh, M.; et al. Health Effects of Overweight and Obesity in 195 Countries over 25 Years. N. Engl. J. Med. 2017, 377, 13–27. [Google Scholar] [CrossRef]
- Mühlig, Y.; Antel, J.; Föcker, M.; Hebebrand, J. Are bidirectional associations of obesity and depression already apparent in childhood and adolescence as based on high-quality studies? A systematic review. Obes. Rev. 2016, 17, 235–249. [Google Scholar] [CrossRef] [PubMed]
- Milaneschi, Y.; Simmons, W.K.; van Rossum, E.F.C.; Penninx, B.W. Depression and obesity: Evidence of shared biological mechanisms. Mol. Psychiatry 2019, 24, 18–33. [Google Scholar] [CrossRef] [PubMed]
- Weiss, R.; Dziura, J.; Burgert, T.S.; Tamborlane, W.V.; Taksali, S.E.; Yeckel, C.W.; Allen, K.; Lopes, M.; Savoye, M.; Morrison, J.; et al. Obesity and the metabolic syndrome in children and adolescents. N. Engl. J. Med. 2004, 350, 2362–2374. [Google Scholar] [CrossRef]
- Friedemann, C.; Heneghan, C.; Mahtani, K.; Thompson, M.; Perera, R.; Ward, A.M. Cardiovascular disease risk in healthy children and its association with body mass index: Systematic review and meta-analysis. BMJ 2012, 345, e4759. [Google Scholar] [CrossRef]
- Renehan, A.G.; Tyson, M.; Egger, M.; Heller, R.F.; Zwahlen, M. Body-mass index and incidence of cancer: A systematic review and meta-analysis of prospective observational studies. Lancet 2008, 371, 569–578. [Google Scholar] [CrossRef]
- Blake-Lamb, T.L.; Locks, L.M.; Perkins, M.E.; Baidal, J.A.W.; Cheng, E.R.; Taveras, E.M. Interventions for Childhood Obesity in the First 1000 Days A Systematic Review. Am. J. Prev. Med. 2016, 50, 780–789. [Google Scholar] [CrossRef]
- Geserick, M.; Vogel, M.; Gausche, R.; Lipek, T.; Spielau, U.; Keller, E.; Pfäffle, R.; Kiess, W.; Körner, A. Acceleration of BMI in Early Childhood and Risk of Sustained Obesity. N. Engl. J. Med. 2018, 379, 1303–1312. [Google Scholar] [CrossRef]
- Locke, A.E.; Kahali, B.; Berndt, S.I.; Justice, A.E.; Pers, T.H.; Day, F.R.; Powell, C.; Vedantam, S.; Buchkovich, M.L.; Yang, J.; et al. Genetic studies of body mass index yield new insights for obesity biology. Nature 2015, 518, 197–206. [Google Scholar] [CrossRef]
- Aris, I.M.; Bernard, J.Y.; Chen, L.-W.; Tint, M.T.; Pang, W.W.; E Soh, S.; Saw, S.-M.; Shek, L.P.-C.; Godfrey, K.M.; Gluckman, P.D.; et al. Modifiable risk factors in the first 1000 days for subsequent risk of childhood overweight in an Asian cohort: Significance of parental overweight status. Int. J. Obes. 2018, 42, 44–51. [Google Scholar] [CrossRef]
- Whitaker, R.C.; Wright, J.A.; Pepe, M.S.; Seidel, K.D.; Dietz, W.H. Predicting obesity in young adulthood from childhood and parental obesity. N. Engl. J. Med. 1997, 337, 869–873. [Google Scholar] [CrossRef]
- Joubert, B.R.; Felix, J.F.; Yousefi, P.; Bakulski, K.M.; Just, A.C.; Breton, C.; Reese, S.E.; Markunas, C.A.; Richmond, R.C.; Xu, C.-J.; et al. DNA Methylation in Newborns and Maternal Smoking in Pregnancy: Genome-wide Consortium Meta-analysis. Am. J. Hum. Genet. 2016, 98, 680–696. [Google Scholar] [CrossRef]
- Kominiarek, M.A.; Peaceman, A.M. Gestational weight gain. Am. J. Obstet. Gynecol. 2017, 217, 642–651. [Google Scholar] [CrossRef]
- Larqué, E.; Labayen, I.; Flodmark, C.-E.; Lissau, I.; Czernin, S.; Moreno, L.A.; Pietrobelli, A.; Widhalm, K. From conception to infancy—Early risk factors for childhood obesity. Nat. Rev. Endocrinol. 2019, 15, 456–478. [Google Scholar] [CrossRef]
- Shi, X.; Zheng, Y.; Cui, H.; Zhang, Y.; Jiang, M. Exposure to outdoor and indoor air pollution and risk of overweight and obesity across different life periods: A review. Ecotoxicol. Environ. Saf. 2022, 242, 113893. [Google Scholar] [CrossRef]
- Sun, J.; Liu, H.; Zhang, C.; Liu, X.; Sun, X.; Chen, X.; Yang, G.; Wang, N. Predisposed obesity and long-term metabolic diseases from maternal exposure to fine particulate matter (PM2.5)—A review of its effect and potential mechanisms. Life Sci. 2022, 310, 121054. [Google Scholar] [CrossRef]
- Pan, X.-F.; Tang, L.; Lee, A.H.; Binns, C.; Yang, C.-X.; Xu, Z.-P.; Zhang, J.-L.; Yang, Y.; Wang, H.; Sun, X. Association between fetal macrosomia and risk of obesity in children under 3 years in Western China: A cohort study. World J. Pediatr. 2019, 15, 153–160. [Google Scholar] [CrossRef]
- Martín-Calvo, N.; Goni, L.; Tur, J.A.; Martínez, J.A. Low birth weight and small for gestational age are associated with complications of childhood and adolescence obesity: Systematic review and meta-analysis. Obes. Rev. 2022, 23 (Suppl. S1), e13380. [Google Scholar] [CrossRef]
- Robinson, T.N.; Banda, J.A.; Hale, L.; Lu, A.S.; Fleming-Milici, F.; Calvert, S.L.; Wartella, E. Screen Media Exposure and Obesity in Children and Adolescents. Pediatrics 2017, 140 (Suppl. S2), S97–S101. [Google Scholar] [CrossRef]
- Dattilo, A.M. Modifiable Risk Factors and Interventions for Childhood Obesity Prevention within the First 1000 Days. In Complementary Feeding: Building the Foundations for a Healthy Life; Karger Publishers: Basel, Switzerland, 2017; Volume 87. [Google Scholar]
- Bleich, S.N.; Vercammen, K.A.; Zatz, L.Y.; Frelier, J.M.; Ebbeling, C.B.; Peeters, A. Interventions to prevent global childhood overweight and obesity: A systematic review. Lancet Diabetes Endocrinol. 2018, 6, 332–346. [Google Scholar] [CrossRef]
- Herrington, S.; Brussoni, M. Beyond Physical Activity: The Importance of Play and Nature-Based Play Spaces for Children’s Health and Development. Curr. Obes. Rep. 2015, 4, 477–483. [Google Scholar] [CrossRef]
- Padmanabhan, V.; Cardoso, R.C.; Puttabyatappa, M. Developmental Programming, a Pathway to Disease. Endocrinology 2016, 157, 1328–1340. [Google Scholar] [CrossRef]
- Li, X.; Zhang, M.; Pan, X.; Xu, Z.; Sun, M. “Three Hits” Hypothesis for Developmental Origins of Health and Diseases in View of Cardiovascular Abnormalities: “Three Hits” Hypothesis for FOAD. Birth Defects Res. 2017, 109, 744–757. [Google Scholar] [CrossRef]
- Rueda-Clausen, C.F.; Morton, J.S.; Dolinsky, V.W.; Dyck, J.R.B.; Davidge, S.T. Synergistic effects of prenatal hypoxia and postnatal high-fat diet in the development of cardiovascular pathology in young rats. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2012, 303, R418–R426. [Google Scholar] [CrossRef]
- Liang, Y.; Strodl, E.; Lu, Q.; Liu, X.-C.; Hu, B.-J.; Chen, W.-Q. Combined Effect of Prenatal Mosquito Coil Smoke Exposure and Early Postnatal Nutritional Status on Obesity among Preschoolers. Atmosphere 2023, 14, 1004. [Google Scholar] [CrossRef]
- Wang, B.; Lee, S.C.; Ho, K.F.; Kang, Y.M. Characteristics of emissions of air pollutants from burning of incense in temples, Hong Kong. Sci. Total Environ. 2007, 377, 52–60. [Google Scholar] [CrossRef]
- Jetter, J.J.; Guo, Z.; A McBrian, J.; Flynn, M.R. Characterization of emissions from burning incense. Sci. Total Environ. 2002, 295, 51–67. [Google Scholar] [CrossRef]
- Yeatts, K.B.; El-Sadig, M.; Leith, D.; Kalsbeek, W.; Al-Maskari, F.; Couper, D.; Funk, W.E.; Zoubeidi, T.; Chan, R.L.; Trent, C.B.; et al. Indoor air pollutants and health in the United Arab Emirates. Environ. Health Perspect. 2012, 120, 687–694. [Google Scholar] [CrossRef]
- He, J.-R.; Wei, D.-M.; Chan, F.-F.; Luan, Y.-Z.; Tu, S.; Lu, J.-H.; Li, W.-D.; Yuan, M.-Y.; Chen, N.-N.; Chen, Q.-Z.; et al. Associations between maternal exposure to incense burning and blood pressure during pregnancy. Sci. Total Environ. 2018, 610–611, 1421–1427. [Google Scholar] [CrossRef]
- Chen, Y.C.; Ho, W.C.; Yu, Y.H. Adolescent lung function associated with incense burning and other environmental exposures at home. Indoor Air 2017, 27, 746–752. [Google Scholar] [CrossRef]
- Fang, X.-Y.; Strodl, E.; Liu, B.-Q.; Liu, L.; Yin, X.-N.; Wen, G.-M.; Sun, D.-L.; Xian, D.-X.; Jiang, H.; Jing, J.; et al. Association between prenatal exposure to household inhalants exposure and ADHD-like behaviors at around 3 years of age: Findings from Shenzhen Longhua Child Cohort Study. Environ. Res. 2019, 177, 108612. [Google Scholar] [CrossRef]
- Pan, A.; Clark, M.L.; Ang, L.-W.; Yu, M.C.; Yuan, J.-M.; Koh, W.-P. Incense use and cardiovascular mortality among Chinese in Singapore: The Singapore Chinese Health Study. Environ. Health Perspect. 2014, 122, 1279–1284. [Google Scholar] [CrossRef]
- Tang, L.; Lim, W.-Y.; Eng, P.; Leong, S.S.; Lim, T.K.; Ng, A.W.; Tee, A.; Seow, A. Lung cancer in Chinese women: Evidence for an interaction between tobacco smoking and exposure to inhalants in the indoor environment. Environ. Health Perspect. 2010, 118, 1257–1260. [Google Scholar] [CrossRef]
- He, Y.-Q.; Xue, W.-Q.; Shen, G.-P.; Tang, L.-L.; Zeng, Y.-X.; Jia, W.-H. Household inhalants exposure and nasopharyngeal carcinoma risk: A large-scale case-control study in Guangdong, China. BMC Cancer 2015, 15, 1022. [Google Scholar] [CrossRef]
- Chen, L.-Y.; Ho, C. Incense Burning during Pregnancy and Birth Weight and Head Circumference among Term Births: The Taiwan Birth Cohort Study. Environ. Health Perspect. 2016, 124, 1487–1492. [Google Scholar] [CrossRef]
- Jiang, N.; Bao, W.-W.; Gui, Z.-H.; Chen, Y.-C.; Zhao, Y.; Huang, S.; Zhang, Y.-S.; Liang, J.-H.; Pu, X.-Y.; Huang, S.-Y.; et al. Findings of indoor air pollution and childhood obesity in a cross-sectional study of Chinese schoolchildren. Environ. Res. 2023, 225, 115611. [Google Scholar] [CrossRef]
- Li, H.; Ji, C.-Y.; Zong, X.-N.; Zhang, Y.-Q. Body mass index growth curves for Chinese children and adolescents aged 0 to 18 years. Zhonghua Er Ke Za Zhi. 2009, 47, 493–498. [Google Scholar]
- Lu, Q.; Strodl, E.; Liang, Y.; Huang, L.-H.; Hu, B.-J.; Chen, W.-Q. Joint Effects of Prenatal Folic Acid Supplement with Prenatal Multivitamin and Iron Supplement on Obesity in Preschoolers Born SGA: Sex Specific Difference. Nutrients 2023, 15, 380. [Google Scholar] [CrossRef]
- Knol, M.J.; VanderWeele, T.J. Recommendations for presenting analyses of effect modification and interaction. Int. J. Epidemiol. 2012, 41, 514–520. [Google Scholar] [CrossRef]
- Mao, G.; Nachman, R.M.; Sun, Q.; Zhang, X.; Koehler, K.; Chen, Z.; Hong, X.; Wang, G.; Caruso, D.; Zong, G.; et al. Individual and Joint Effects of Early-Life Ambient PM2.5 Exposure and Maternal Prepregnancy Obesity on Childhood Overweight or Obesity. Environ. Health Perspect. 2017, 125, 067005. [Google Scholar] [CrossRef]
- Bloemsma, L.D.; Dabelea, D.; Thomas, D.S.K.; Peel, J.L.; Adgate, J.L.; Allshouse, W.B.; Martenies, S.E.; Magzamen, S.; Starling, A.P. Prenatal exposure to ambient air pollution and traffic and indicators of adiposity in early childhood: The Healthy Start study. Int. J. Obes. 2022, 46, 494–501. [Google Scholar] [CrossRef]
- Chiu, Y.-H.M.; Hsu, H.-H.L.; Wilson, A.; Coull, B.A.; Pendo, M.P.; Baccarelli, A.; Kloog, I.; Schwartz, J.; Wright, R.O.; Taveras, E.M.; et al. Prenatal particulate air pollution exposure and body composition in urban preschool children: Examining sensitive windows and sex-specific associations. Environ. Res. 2017, 158, 798–805. [Google Scholar] [CrossRef]
- Qureshi, R.; Jadotte, Y.; Zha, P.; Porter, S.A.; Holly, C.; Salmond, S.; Watkins, E.A. The association between prenatal exposure to environmental tobacco smoke and childhood obesity: A systematic review. JBI Database Syst. Rev. Implement. Rep. 2018, 16, 1643–1662. [Google Scholar] [CrossRef]
- Kuh, D.; Ben-Shlomo, Y.; Lynch, J.; Hallqvist, J.; Power, C. Life course epidemiology. J. Epidemiol. Community Health 2003, 57, 778–783. [Google Scholar] [CrossRef]
- Wu, X.Y.; Han, L.H.; Zhang, J.H.; Luo, S.; Hu, J.W.; Sun, K. The influence of physical activity, sedentary behavior on health-related quality of life among the general population of children and adolescents: A systematic review. PLoS ONE 2017, 12, e0187668. [Google Scholar] [CrossRef]
- Martin, A.; Booth, J.N.; Laird, Y.; Sproule, J.; Reilly, J.J.; Saunders, D.H. Physical activity, diet and other behavioural interventions for improving cognition and school achievement in children and adolescents with obesity or overweight. Cochrane Database Syst. Rev. 2018, 3, CD009728. [Google Scholar] [CrossRef]
- Weihrauch-Blüher, S.; Wiegand, S. Risk Factors and Implications of Childhood Obesity. Curr. Obes. Rep. 2018, 7, 254–259. [Google Scholar] [CrossRef]
- Cleland, V.; Crawford, D.; A Baur, L.; Hume, C.; Timperio, A.; Salmon, J. A prospective examination of children’s time spent outdoors, objectively measured physical activity and overweight. Int. J. Obes. 2008, 32, 1685–1693. [Google Scholar] [CrossRef]
- Burdette, H.L.; Whitaker, R.C.; Daniels, S.R. Parental report of outdoor playtime as a measure of physical activity in preschool-aged children. Arch. Pediatr. Adolesc. Med. 2004, 158, 353–357. [Google Scholar] [CrossRef]
- Gray, C.; Gibbons, R.; Larouche, R.; Sandseter, E.B.H.; Bienenstock, A.; Brussoni, M.; Chabot, G.; Herrington, S.; Janssen, I.; Pickett, W.; et al. What Is the Relationship between Outdoor Time and Physical Activity, Sedentary Behaviour, and Physical Fitness in Children? A Systematic Review. Int. J. Environ. Res. Public Health 2015, 12, 6455–6474. [Google Scholar] [CrossRef]
- Wittmeier, K.D.; Mollard, R.C.; Kriellaars, D.J. Physical Activity Intensity and Risk of Overweight and Adiposity in Children. Obesity 2008, 16, 415–420. [Google Scholar] [CrossRef]
- Leppänen, M.H.; Nyström, C.D.; Henriksson, P.; Pomeroy, J.; Ruiz, J.R.; Ortega, F.B.; Cadenas-Sánchez, C.; Löf, M. Physical activity intensity, sedentary behavior, body composition and physical fitness in 4-year-old children: Results from the ministop trial. Int. J. Obes. 2016, 40, 1126–1133. [Google Scholar] [CrossRef]
- Davison, K.K.; Birch, L.L. Childhood overweight: A contextual model and recommendations for future research. Obes. Rev. 2001, 2, 159–171. [Google Scholar] [CrossRef]
- World Health Organization. Global Recommendations on Physical Activity for Health. 2010. Available online: http://www.ncbi.nlm.nih.gov/books/NBK305057/ (accessed on 24 February 2024).
- Wang, G.; DiBari, J.; Bind, E.; Steffens, A.M.; Mukherjee, J.; Bartell, T.R.; Bellinger, D.C.; Hong, X.; Ji, Y.; Wang, M.-C.; et al. In utero exposure to mercury and childhood overweight or obesity: Counteracting effect of maternal folate status. BMC Med. 2019, 17, 216. [Google Scholar] [CrossRef]
- Tsai, C.-C.; Tiao, M.-M.; Sheen, J.-M.; Huang, L.-T.; Tain, Y.-L.; Lin, I.-C.; Lin, Y.-J.; Lai, Y.-J.; Chen, C.-C.; Chang, K.-A.; et al. Obesity programmed by prenatal dexamethasone and postnatal high-fat diet leads to distinct alterations in nutrition sensory signals and circadian-clock genes in visceral adipose tissue. Lipids Health Dis. 2019, 18, 19. [Google Scholar] [CrossRef]
- Claycombe, K.J.; Vomhof-DeKrey, E.E.; Garcia, R.; Johnson, W.T.; Uthus, E.; Roemmich, J.N. Decreased beige adipocyte number and mitochondrial respiration coincide with increased histone methyl transferase (G9a) and reduced FGF21 gene expression in Sprague–Dawley rats fed prenatal low protein and postnatal high-fat diets. J. Nutr. Biochem. 2016, 31, 113–121. [Google Scholar] [CrossRef]
- Rahmalia, A.; Giorgis-Allemand, L.; Lepeule, J.; Philippat, C.; Galineau, J.; Hulin, A.; Charles, M.-A.; Slama, R. Pregnancy exposure to atmospheric pollutants and placental weight: An approach relying on a dispersion model. Environ. Int. 2012, 48, 47–55. [Google Scholar] [CrossRef]
- Hoffman, D.J.; Powell, T.L.; Barrett, E.S.; Hardy, D.B. Developmental origins of metabolic diseases. Physiol. Rev. 2021, 101, 739–795. [Google Scholar] [CrossRef]
- Harary, M.D.; Akinyemi, A.; Charron, M.J.; Fuloria, M. Fetal Growth and Intrauterine Epigenetic Programming of Obesity and Cardiometabolic Disease. NeoReviews 2022, 23, e363–e372. [Google Scholar] [CrossRef]
- Lavigne, E.; Ashley-Martin, J.; Dodds, L.; Arbuckle, T.E.; Hystad, P.; Johnson, M.; Crouse, D.L.; Ettinger, A.S.; Shapiro, G.D.; Fisher, M.; et al. Air Pollution Exposure During Pregnancy and Fetal Markers of Metabolic function: The MIREC Study. Am. J. Epidemiol. 2016, 183, 842–851. [Google Scholar] [CrossRef]
- Van den Hooven, E.H.; de Kluizenaar, Y.; Pierik, F.H.; Hofman, A.; van Ratingen, S.W.; Zandveld, P.Y.; Lindemans, J.; Russcher, H.; Steegers, E.A.; Miedema, H.M.; et al. Chronic air pollution exposure during pregnancy and maternal and fetal C-reactive protein levels: The Generation R Study. Environ. Health Perspect. 2012, 120, 746–751. [Google Scholar] [CrossRef]
- Friedman, C.; Dabelea, D.; Thomas, D.S.K.; Peel, J.L.; Adgate, J.L.; Magzamen, S.; Martenies, S.E.; Allshouse, W.B.; Starling, A.P. Exposure to ambient air pollution during pregnancy and inflammatory biomarkers in maternal and umbilical cord blood: The Healthy Start study. Environ. Res. 2021, 197, 111165. [Google Scholar] [CrossRef]
- Sen, S.; Simmons, R.A. Maternal antioxidant supplementation prevents adiposity in the offspring of Western diet-fed rats. Diabetes 2010, 59, 3058–3065. [Google Scholar] [CrossRef]
- Saenen, N.D.; Vrijens, K.; Janssen, B.G.; Roels, H.A.; Neven, K.Y.; Berghe, W.V.; Gyselaers, W.; Vanpoucke, C.; Lefebvre, W.; De Boever, P.; et al. Lower Placental Leptin Promoter Methylation in Association with Fine Particulate Matter Air Pollution during Pregnancy and Placental Nitrosative Stress at Birth in the ENVIRONAGE Cohort. Environ. Health Perspect. 2017, 125, 262–268. [Google Scholar] [CrossRef]
- Cai, J.; Zhao, Y.; Liu, P.; Xia, B.; Zhu, Q.; Wang, X.; Song, Q.; Kan, H.; Zhang, Y. Exposure to particulate air pollution during early pregnancy is associated with placental DNA methylation. Sci. Total Environ. 2017, 607–608, 1103–1108. [Google Scholar] [CrossRef]
Characteristics | Total (N = 64,889) | Obesity (n = 6538) | Prevalence (%) | p |
---|---|---|---|---|
Gender | <0.001 | |||
Boys | 34,647 | 4070 | 11.7 | |
Girls | 30,242 | 2468 | 8.2 | |
Age (years) | <0.001 | |||
<3 | 185 | 18 | 9.7 | |
3–4 | 12,527 | 1076 | 8.6 | |
4–5 | 22,313 | 2279 | 10.2 | |
≥5 | 29,864 | 3165 | 10.6 | |
Single child | <0.001 | |||
No | 21,162 | 1759 | 8.3 | |
Yes | 43,727 | 4779 | 10.9 | |
Family income (USD/month) | <0.001 | |||
<3077 | 32,246 | 3396 | 10.5 | |
3077~6154 | 21,781 | 2089 | 9.6 | |
≥6154 | 10,862 | 1053 | 9.7 | |
Marital status | <0.001 | |||
Married | 63,225 | 6308 | 10.0 | |
Others | 1664 | 230 | 13.8 | |
Maternal prepregnancy BMI | <0.001 | |||
Underweight (<18.5) | 13,356 | 1059 | 7.9 | |
Normal (18.5~23.9) | 45,976 | 4675 | 10.2 | |
Overweight (>24) | 5557 | 804 | 14.5 | |
Maternal occupation | 0.006 | |||
Full-time housewife | 10,545 | 948 | 9.0 | |
others | 54,344 | 5411 | 9.9 | |
Maternal gestational weight gain | <0.001 | |||
<5kg | 3141 | 431 | 13.7 | |
5–10 kg | 21,857 | 2223 | 10.2 | |
11–15 kg | 25,598 | 2296 | 9.0 | |
16–20 kg | 10,921 | 1168 | 10.7 | |
>20 kg | 3372 | 420 | 12.5 | |
Folic acid intake during pregnancy | <0.001 | |||
No | 38,198 | 4097 | 10.7 | |
Yes | 26,691 | 2441 | 9.1 | |
Environmental tobacco smoke (ETS) | 0.121 | |||
No | 53,922 | 5388 | 10.0 | |
Yes | 10,967 | 1150 | 10.5 | |
Mosquito coil smoke (MCS) | <0.001 | |||
No | 45,092 | 4352 | 9.7 | |
Yes | 19,797 | 2186 | 11.0 | |
Home renovated | 0.026 | |||
No | 61,363 | 6194 | 10.1 | |
Yes | 2131 | 185 | 8.7 | |
Unclear | 1395 | 159 | 11.4 | |
Cooking oil fumes | <0.001 | |||
No | 13,597 | 1498 | 11.0 | |
Yes | 51,292 | 5040 | 9.8 | |
Heavy metal exposure | 0.831 | |||
No | 64,392 | 6486 | 10.1 | |
Yes | 497 | 52 | 10.5 | |
Benzene exposure | 0.155 | |||
No | 64,438 | 6483 | 10.1 | |
Yes | 451 | 55 | 12.2 | |
Maternal education level | <0.001 | |||
Junior high school or lower | 9498 | 1063 | 11.2 | |
High school | 13,117 | 1391 | 10.6 | |
College or higher | 42,274 | 4084 | 9.7 | |
Paternal education level | <0.001 | |||
Junior high school or lower | 8532 | 980 | 11.5 | |
High school | 13,256 | 1402 | 10.6 | |
College or higher | 43,101 | 4156 | 9.6 | |
Maternal age at childbirth (years) | 0.559 | |||
<35 | 58,481 | 5879 | 10.1 | |
≥35 | 6408 | 659 | 10.3 | |
Paternal age at childbirth (years) | 0.03 | |||
<35 | 39,847 | 3926 | 9.9 | |
≥35 | 25,042 | 2612 | 10.4 | |
Feeding pattern | 0.007 | |||
Breastfeeding | 38,094 | 3864 | 10.1 | |
Artificial feeding | 6424 | 706 | 11.0 | |
Mixed feeding | 20,371 | 1968 | 9.7 | |
Nutritional status at 0–1 years old | <0.001 | |||
Poorly nourished | 856 | 77 | 9.0 | |
Medium-nourished | 15,949 | 13,689 | 8.6 | |
Well-nourished | 48,084 | 5093 | 10.6 | |
Nutritional status at 1–3 years old | <0.001 | |||
Poorly nourished | 996 | 81 | 8.1 | |
Medium-nourished | 20,520 | 1592 | 7.8 | |
Well-nourished | 43,373 | 4865 | 11.2 | |
Birth weight (g) | <0.001 | |||
<2500 | 3022 | 335 | 11.1 | |
2500–4000 | 55,763 | 5351 | 9.6 | |
≥4000 | 6104 | 852 | 14.0 | |
Preterm birth | <0.001 | |||
No | 60,309 | 5982 | 9.9 | |
Yes | 4580 | 556 | 12.1 |
Prenatal IBS Exposure | Total (N = 64,889) | Obesity (n, %) | AOR (95% CI) a | AOR (95% CI) b |
---|---|---|---|---|
The whole pregnancy | ||||
No | 58,772 | 5837 (9.9) | 1.00 | 1.00 |
Yes | 6117 | 701 (11.5) | 1.13 (1.03, 1.23) ** | 1.13 (1.03, 1.23) ** |
1st trimester | ||||
No | 59,732 | 5933 (9.9) | 1.00 | 1.00 |
Yes | 5157 | 605 (11.7) | 1.15 (1.05, 1.26) ** | 1.14 (0.96, 1.34) |
2nd trimester | ||||
No | 60,243 | 5999 (10.0) | 1.00 | 1.00 |
Yes | 4646 | 539 (11.6) | 1.14 (1.03, 1.26) ** | 1.19 (0.94, 1.51) |
3rd trimester | ||||
No | 60,222 | 6019 (10.0) | 1.00 | 1.00 |
Yes | 4667 | 519 (11.1) | 1.09 (0.99, 1.20) | 0.84 (0.68, 1.04) |
Frequency of IBS Exposure | Total (N = 64,889) | Obesity (n, %) | AOR (95% CI) a | AOR (95% CI) b |
---|---|---|---|---|
1st trimester | ||||
Never | 59,732 | 5933 (9.9) | 1.00 | 1.00 |
1 time/week | 4481 | 516 (11.5) | 1.12 (1.01, 1.24) * | 1.11 (0.94, 1.31) |
≥2 times/week | 676 | 89 (13.2) | 1.33 (1.06, 1.67) * | 1.31 (1.01, 1.70) * |
2nd trimester | ||||
Never | 60,243 | 5999 (10.0) | 1.00 | 1.00 |
1 time/week | 4094 | 474 (11.6) | 1.14 (1.03, 1.26) * | 1.19 (0.94, 1.51) |
≥2 times/week | 552 | 65 (11.8) | 1.15 (0.87, 1.48) | 1.20 (0.84, 1.69) |
3rd trimester | ||||
Never | 60,222 | 6019 (10.0) | 1.00 | 1.00 |
1 time/week | 4086 | 458 (11.2) | 1.10 (0.99, 1.22) | 0.85 (0.68, 1.06) |
≥2 times/week | 581 | 61 (10.5) | 1.01 (0.76, 1.31) | 0.77(0.54, 1.06) |
Trimester-Specific IBS Exposure | Total (N = 64,889) | Obesity (n, %) | OR (95% CI) | AOR (95% CI) a | ||
---|---|---|---|---|---|---|
1st Trimester | 2nd Trimester | 3rd Trimester | ||||
No | No | No | 58,772 | 5837 (9.9) | 1.00 | 1.00 |
Yes | No | No | 980 | 118 (12.0) | 1.24 (1.02, 1.50) * | 1.16 (0.94, 1.40) |
No | Yes | No | 185 | 21 (11.4) | 1.16 (0.72, 1.79) | 1.10 (0.68, 1.71) |
No | No | Yes | 407 | 35 (8.6) | 0.85 (0.59, 1.19) | 0.87 (0.60, 1.21) |
Yes | Yes | No | 285 | 43 (15.1) | 1.61 (1.15, 2.21) ** | 1.50 (1.07, 2.07) * |
Yes | No | Yes | 84 | 9 (10.7) | 1.09 (0.51, 2.06) | 1.08 (0.50, 2.06) |
No | Yes | Yes | 368 | 40 (10.9) | 1.11 (0.78, 1.52) | 1.13 (0.80, 1.56) |
Yes | Yes | Yes | 3808 | 435 (11.4) | 1.17 (1.05, 1.30) ** | 1.12 (1.01, 1.25) * |
Outdoor Activity during 1–3 Years Old | Total (N = 64,889) | Obesity (n, %) | OR (95% CI) | AOR (95% CI) a |
---|---|---|---|---|
Frequency | ||||
≥3 times/week | 45,060 | 4261 (9.5) | 1.00 | 1.00 |
<3 times/week | 19,829 | 2277 (11.5) | 1.24 (1.18, 1.31) *** | 1.24 (1.18, 1.32) *** |
Duration | ||||
≥60 min/time | 42,596 | 4175 (9.8) | 1.00 | 1.00 |
<60 min/time | 22,293 | 2363 (10.6) | 1.09(1.03, 1.15) ** | 1.11 (1.05, 1.17) *** |
Combination of Frequency and duration | ||||
≥3 times/week + ≥60 min/time | 32,402 | 3099 (9.6) | 1.00 | 1.00 |
≥3 times/week + <60 min/time | 12,658 | 1162 (9.2) | 0.96 (0.89, 1.03) | 0.98 (0.92, 1.06) |
<3 times/week + ≥60 min/time | 10,194 | 1076 (10.6) | 1.12 (1.04, 1.20) ** | 1.13 (1.04, 1.21) ** |
<3 times/week + <60 min/time | 9635 | 1201 (12.5) | 1.35 (1.25, 1.44) *** | 1.36 (1.26, 1.46) *** |
IBS Exposure | Outdoor Activity | AOR (95% CI) * | IOR (95% CI) | RERI (95% CI) * | AP (95% CI) a |
---|---|---|---|---|---|
Pregnancy | Frequency | ||||
No | ≥3 times/week | 1.00 | |||
No | <3 times/week | 1.21 (1.14, 1.29) *** | |||
Yes | ≥3 times/week | 1.01 (0.90, 1.14) | |||
Yes | <3 times/week | 1.47 (1.31, 1.66) *** | 1.21 (1.01, 1.42) * | 0.08 (0.03, 0.13) | 0.06 (0.03, 0.09) |
Pregnancy | Duration | ||||
No | ≥60 min/time | 1.00 | |||
No | <60 min/time | 1.11 (1.05, 1.17) *** | |||
Yes | ≥60 min/time | 1.14 (1.02, 1.27) * | |||
Yes | <60 min/time | 1.22 (1.07, 1.39) ** | 0.96 (0.81, 1.14) | 0.07 (0.03, 0.11) | 0.05 (0.03, 0.08) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, M.; Strodl, E.; Yang, W.; Yin, X.; Wen, G.; Sun, D.; Xian, D.; Zhao, Y.; Chen, W. Independent and Joint Effects of Prenatal Incense-Burning Smoke Exposure and Children’s Early Outdoor Activity on Preschoolers’ Obesity. Toxics 2024, 12, 329. https://doi.org/10.3390/toxics12050329
Chen M, Strodl E, Yang W, Yin X, Wen G, Sun D, Xian D, Zhao Y, Chen W. Independent and Joint Effects of Prenatal Incense-Burning Smoke Exposure and Children’s Early Outdoor Activity on Preschoolers’ Obesity. Toxics. 2024; 12(5):329. https://doi.org/10.3390/toxics12050329
Chicago/Turabian StyleChen, Meimei, Esben Strodl, Weikang Yang, Xiaona Yin, Guomin Wen, Dengli Sun, Danxia Xian, Yafen Zhao, and Weiqing Chen. 2024. "Independent and Joint Effects of Prenatal Incense-Burning Smoke Exposure and Children’s Early Outdoor Activity on Preschoolers’ Obesity" Toxics 12, no. 5: 329. https://doi.org/10.3390/toxics12050329
APA StyleChen, M., Strodl, E., Yang, W., Yin, X., Wen, G., Sun, D., Xian, D., Zhao, Y., & Chen, W. (2024). Independent and Joint Effects of Prenatal Incense-Burning Smoke Exposure and Children’s Early Outdoor Activity on Preschoolers’ Obesity. Toxics, 12(5), 329. https://doi.org/10.3390/toxics12050329