Amino Group-Driven Adsorption of Sodium p-Perfluorous Nonenoxybenzene Sulfonate in Water by the Modified Graphene Oxide
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Preparation of GO and CS-GO
2.3. Characterization
2.4. Adsorption Experiments
2.5. Analysis Method
2.6. Data Analysis
2.6.1. OBS Removal Rate E and Adsorption Amount qe for Unit Adsorbent Calculated Formulas
- E: The removal efficiency of OBS, %;
- C0: The initial concentration of OBS, mg/L;
- C: The concentration of OBS at i-time, mg/L.
- Ce: The equilibrium concentration of OBS, mg/L;
- V: The volume of solution, L;
- m: Dosage of adsorbent, mg;
- qe: The equilibrium adsorption capacity of the adsorbent, g/g.
2.6.2. Adsorption Dynamic Models
- qt: The adsorption capacity of adsorbent at time t, mg/g;
- k1: Adsorption rate constant of pseudo-first-order kinetic equation, min−1.
- k2: Adsorption rate constant of the pseudo-second-order kinetic equation, [g/(mg⋅min)].
2.7. Computational Methods of Quantum Chemistry
- Ead: Adsorption energy, Kcal/mol;
- Etotal: The energy of adsorption system, Kcal/mol;
- Ea: The energy of adsorbent, Kcal/mol;
- Eb: The energy of OBS, Kcal/mol.
- MSD: Mean square displacement, cm2/s.
3. Results
3.1. Characterization of Adsorbents
3.1.1. SEM Analysis
3.1.2. BET Analysis
3.1.3. FTIR Analysis
3.2. Single Influence Factors Studies of Adsorption
3.2.1. Influence of Adsorption Materials
3.2.2. Influence of Adsorbent Dosage
3.2.3. Influence of Solution pH
3.2.4. Influence of Inorganic Ions
4. Adsorption Mechanism
4.1. Adsorption Energy
4.2. Molecular Dynamics
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ateia, M.; Alsbaiee, A.; Karanfil, T.; Dichtel, W. Efficient PFAS Removal by Amine-Functionalized Sorbents: Critical Review of the Current Literature. Environ. Sci. Technol. 2019, 6, 688–695. [Google Scholar] [CrossRef]
- Denison, L. Stockholm Convention on Persistent Organic Pollutants. Air Qual. Clim. Change 2013, 47, 10–11. [Google Scholar]
- REACH, EU REACH Regulation (EC) No 1907/2006, 1 June 2007. Available online: https://www.chemsafetypro.com/Topics/EU/REACH_Regulation_EC_No_1907_2006.html (accessed on 12 January 2024).
- Liu, Y.; Lu, M.Y.; Bao, J.; Shao, L.X.; Yu, W.J.; Hu, X.M.; Zhao, X. Periodically reversing electrocoagulation technique for efficient removal of short-chain perfluoroalkyl substances from contaminated groundwater around a fluorochemical facility. Chemosphere 2023, 334, 138953. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Shao, L.X.; Yu, W.J.; Bao, J.; Li, T.Y.; Hu, X.M.; Zhao, X. Simultaneous removal of multiple PFAS from contaminated groundwater around a fluorochemical facility by the periodically reversing electrocoagulation technique. Chemosphere 2022, 307, 135874. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Zhang, X.; Zhang, Y.H.; Mi, X.; Wang, R.; Shi, H.L.; Li, C.L.; Du, Z.W.; Qiao, Y.M. Adsorption of emerging sodium p-perfluorous nonenoxybenzene sulfonate (OBS) onto soils: Kinetics, isotherms and mechanisms. Pedosphere 2021, 31, 596–605. [Google Scholar] [CrossRef]
- Bao, Y.X.; Qu, Y.X.; Huang, J.; Cagnetta, G.; Yu, G.; Weber, R. First assessment on degradability of sodium p-perfluorous nonenoxybenzene sulfonate (OBS), a high volume alternative to perfluorooctane sulfonate in fire-fighting foams and oil production agents in China. RSC Adv. 2017, 7, 46948–46957. [Google Scholar] [CrossRef]
- Qu, Y.X.; Jiang, X.S.; Cagnetta, G.; Liu, L.Q.; Bao, Y.X.; Li, W.C.; Wang, Q.; Liang, C.R.; Huang, J.; Yang, H.W.; et al. Poly- and perfluoroalkyl substances in a drinking water treatment plant in the Yangtze River Delta of China: Temporal trend, removal and human health risk. Sci. Total Environ. 2019, 696, 133949. [Google Scholar] [CrossRef]
- Hu, H.M.; Zhang, Y.Y.; Zhao, N.; Xie, J.H.; Zhou, Y.Q.; Zhao, M.R.; Jin, H.B. Legacy and emerging poly- and perfluorochemicals in seawater and sediment from East China Sea. Sci. Total Environ. 2021, 797, 149052. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Munoz, G.; Duy, S.V.; Zhang, L.; Yao, Y.M.; Zhao, Z.; Yi, L.X.; Liu, M.; Sun, H.W.; Liu, J.X.; et al. Occurrence and Distribution of Per- and Polyfluoroalkyl Substances in Tianjin, China: The Contribution of Emerging and Unknown Analogues. Environ. Sci. Technol. 2020, 54, 14254–14264. [Google Scholar] [CrossRef]
- Xu, L.; Shi, Y.L.; Li, C.X.; Song, X.W.; Qin, Z.F.; Cao, D.; Cai, Y.Q. Discovery of a novel polyfluoroalkyl benzenesulfonic acid around oilfields in Northern China. Environ. Sci. Technol. 2017, 51, 14173–14181. [Google Scholar] [CrossRef]
- Tang, A.P.; Zhang, X.H.; Li, R.F.; Tu, W.Q.; Guo, H.Q.; Zhang, Y.P.; Li, Z.R.; Liu, Y.; Mai, B.X. Spatiotemporal distribution, partitioning behavior and flux of per- and polyfluoroalkyl substances in surface water and sediment from Poyang Lake, China. Chemosphere 2022, 295, 133855. [Google Scholar] [CrossRef] [PubMed]
- Hou, M.M.; Jin, Q.; Na, G.S.; Cai, Y.Q.; Shi, Y.L. Emissions, Isomer-Specific Environmental Behavior, and Transformation of OBS from One Major Fluorochemical Manufacturing Facility in China. Environ. Sci. Technol. 2022. 56, 8103–8113. [CrossRef]
- Zeng, Z.T.; Song, B.; Xiao, R.; Zeng, G.M.; Gong, J.L.; Chen, M.; Xu, P.A.; Zhang, P.; Shen, M.C.; Yi, H. Assessing the human health risks of perfluorooctane sulfonate by in vivo and in vitro studies. Environ Int. 2019, 126, 598–610. [Google Scholar] [CrossRef]
- Shi, Y.L.; Song, X.W.; Jin, Q.; Li, W.H.; He, S.S.; Cai, Y.Q. Tissue distribution and bioaccumulation of a novel polyfluoroalkyl benzenesulfonate in crucian carp. Environ. Int. 2020, 135, 105418. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.Y.; Zhang, Y.; Deng, M.; Wang, X.; Tu, W.Q.; Fu, Z.W.; Jin, Y.X. Bioaccumulation in the gut and liver causes gut barrier dysfunction and hepatic metabolism disorder in mice after exposure to low doses of OBS. Environ. Int. 2019, 129, 279–290. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.Y.; Jin, C.Y.; Tu, W.Q.; Jin, Y.X. Maternal exposure of mice to sodium p-perfluorous nonenoxybenzene sulfonate causes endocrine disruption in both dams and offspring. Endocr. J. 2019, 68, 1165–1177. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.Y.; Liu, Y.; Zhang, M.; Liu, S.; Wan, N.N.; Li, M.Q.; Tu, W.Q. Novel PFOS alternative OBS inhibits body growth of developing zebrafish by triggering thyroid function disorder and osteoclast differentiation. Chemosphere 2023, 341, 140068. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Sun, L.W.; Mennigen, J.A.; Liu, Y.; Liu, S.; Zhang, M.; Wang, Q.Y.; Tu, W.Q. Developmental toxicity of the novel PFOS alternative OBS in developing zebrafish: An emphasis on cilia disruption. J. Hazard. Mater. 2020, 409, 124491. [Google Scholar] [CrossRef] [PubMed]
- Bao, J.; Shao, L.X.; Liu, Y.; Cui, S.W.; Wang, X.; Lu, G.L.; Wang, X.; Jin, Y.H. Target analysis and suspect screening of per- and polyfluoroalkyl substances in paired samples of maternal serum, umbilical cord serum, and placenta near fluorochemical plants in Fuxin, China. Chemosphere 2022, 307, 135731. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.Q.; Deng, S.S.; Bao, Y.X.; Huang, J.; Yu, G. Degradation of OBS (Sodiump-Perfluorous Nonenoxybenzenesulfonate) as a Novel Per- and Polyfluoroalkyl Substance by UV/Persulfate and UV/Sulfite: Fluorinated Intermediates and Treatability in Fluoroprotein Foam. Environ. Sci. Technol. 2022, 56, 6201–6211. [Google Scholar] [CrossRef]
- Wang, W.; Cao, Y.; Hu, X.; Zhou, S.X.; Zhu, D.H.; Qi, D.L.; Deng, S.B. Granular reduced graphene oxide/Fe3O4 hydrogel for efficient adsorption and catalytic oxidation of perfluorous nonenoxybenzene sulfonate. J. Hazard. Mater. 2019, 386, 121662. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Li, T.Y.; Bao, J.; Hu, X.M.; Zhao, X.; Shao, L.X.; Li, C.L.; Lu, M.Y. A Review of Treatment Techniques for Short-Chain Perfluoroalkyl Substances. Appl. Sci. 2022, 12, 1941. [Google Scholar] [CrossRef]
- Wang, Z.Y.; Alinezhad, A.; Nason, S.; Xiao, F.; Pignatello, J.J. Enhancement of per- and polyfluoroalkyl substances removal from water by pyrogenic carbons: Tailoring carbon surface chemistry and pore properties. Water Res. 2022, 229, 119467. [Google Scholar] [CrossRef]
- Ochoa-Herrera, V.; Sierra-Alvarez, R. Removal of perfluorinated surfactants by sorption onto granular activated carbon, zeolite and sludge. Chemosphere 2008, 72, 1588–1593. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Q.; Deng, S.B.; Yu, Q.; Zhang, Q.Y.; Yu, G.; Huang, J.; He, H.P. Sorption of perfluorooctane sulfonate on organo-montmorillonites. Chemosphere 2010, 78, 688–694. [Google Scholar] [CrossRef] [PubMed]
- Liu, K.; Zhang, S.Y.; Hu, X.Y.; Zhang, K.Y.; Roy, A.; Yu, G. Understanding the adsorption of PFOA on MIL-101(Cr)-based anionic-exchange metal−organic frameworks: Comparing DFT calculations with aqueous sorption experiments. Environ. Sci. Technol. 2015, 49, 8657–8665. [Google Scholar] [CrossRef] [PubMed]
- Klemes, M.J.; Skala, L.P.; Ateia, M.; Trang, B.; Helbling, D.E.; Dichtel, W.R. Polymerized Molecular Receptors as Adsorbents to Remove Micropollutants from Water. Acc. Chem. Res. 2020, 53, 2314–2324. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Mi, X.; Shi, H.L.; Zhang, X.; Zhou, Z.M.; Li, C.L.; Zhu, D.H. Adsorption behaviour and mechanism of the PFOS substitute OBS (sodium p-perfluorous nonenoxybenzene sulfonate) on activated carbon. R. Soc. Open Sci. 2019, 6, 191069. [Google Scholar] [CrossRef] [PubMed]
- Bursch, M.; Mewes, J.M.; Hansen, A.; Grimme, S. Best-Practice DFT Protocols for Basic Molecular Computational Chemistry. Angew. Chem. Int. Ed. Engl. 2022, 61, 05735. [Google Scholar] [CrossRef]
- Yu, M.C.; Zhou, Y.F.; Zhao, K.; Sun, Y.; Niu, J.F. Removal of perfluorinated compounds at environmentally relevant concentrations on non-equivalent dual sites regulated by single-atom-strengthened biochar. Sep. Purif. Technol. 2022, 301, 121957. [Google Scholar] [CrossRef]
- Jiang, X.Z.; Wang, W.; Yu, G.; Deng, S.B. Contribution of Nanobubbles for PFAS Adsorption on Graphene and OH- and NH2-Functionalized Graphene: Comparing Simulations with Experimental Results. Environ. Sci. Technol. 2021, 55, 13254–13263. [Google Scholar] [CrossRef] [PubMed]
- Peng, L.; Xu, Z.; Liu, Z.; Wei, Y.Y.; Sun, H.Y.; Li, Z.; Zhao, X.L.; Gao, C. An iron-based green approach to 1-h production of single-layer graphene oxide. Nat. Commun. 2015, 6, 5716. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Hu, R.T.; Sun, D.J.; Wu, T.; Li, Y.J. Fabrication of chitosan/magnetite-graphene oxide composites as a novel bioadsorbent for adsorption and detoxification of Cr (VI) from aqueous solution. Sci. Rep. 2018, 8, 15397. [Google Scholar] [CrossRef] [PubMed]
- Tian, Y.H. Novel Adsorbents for Per- and Polyfluoroalkyl Substances (PFAS): Mechanisms and Regeneration; Washington State University: Pullman, WA, USA, 2019. [Google Scholar]
- Yan, B.; Munoz, G.; Sauvé, S.; Liu, J.X. Molecular mechanisms of per- and polyfluoroalkyl substances on a modified clay: A combined experimental and molecular simulation study. Water Res. 2020, 184, 116166. [Google Scholar] [CrossRef] [PubMed]
- Hongsawat, P.; Bungokule, S.; Boonchouy, N.; Prarat, P.; Punyapalakul, P. Response surface methodology approach for optimization of norfloxacin by the graphene oxide under the presence of tannic acid and its adsorption mechanism. Desalin Water Treat 2021, 217, 272–285. [Google Scholar] [CrossRef]
- Wang, J.; Chen, Z.M.; Chen, B.L. Adsorption of Polycyclic Aromatic Hydrocarbons by Graphene and Graphene Oxide Nanosheets. Environ. Sci. Technol. 2014, 48, 4817–4825. [Google Scholar] [CrossRef] [PubMed]
- Ersan, G.; Apul, O.G.; Perreault, F.; Karanfil, T. Adsorption of organic contaminants by graphene nanosheets: A review. Water Res. 2017, 126, 385–398. [Google Scholar] [CrossRef] [PubMed]
- Yu, Q.; Deng, S.B.; Yu, G. Selective removal of perfluorooctane sulfonate from aqueous solution using chitosan-based molecularly imprinted polymer adsorbents. Water Res. 2008, 42, 3089–3097. [Google Scholar] [CrossRef] [PubMed]
- Gao, X.D.; Chorover, J. Adsorption of perfluorooctanoic acid and perfluorooctanesulfonic acid to iron oxide surfaces as studied by flow-through ATR-FTIR spectroscopy. Environ. Chem. 2012, 9, 148–157. [Google Scholar] [CrossRef]
- Du, Z.W.; Deng, S.B.; Bei, Y.; Huang, Q.; Wang, B.; Huang, J.; Yu, G. Adsorption behavior and mechanism of perfluorinated compounds on various adsorbents—A review. J. Hazard. Mater. 2014, 274, 443–454. [Google Scholar] [CrossRef]
Adsorbents | Element | Concentrations | wt% | wt% Sigma |
---|---|---|---|---|
GH | C | 75.67 | 65.98 | 2.86 |
O | 1.07 | 34.02 | 2.86 | |
GO | C | 50.47 | 98.88 | 0.90 |
O | 46.28 | 1.12 | 0.90 | |
CS-GO | C | 9.94 | 62.16 | 6.84 |
N | 1.25 | 3.45 | 7.80 | |
O | 9.74 | 34.39 | 5.43 |
Adsorbents | Kinetics Model | Qe (mg/g) | k | R2 |
---|---|---|---|---|
CS-GO (10:1) | Pseudo-first-order | 3180 | 0.20 min−1 | 0.98 |
Pseudo-second-order | 3260 | 1.74 × 10−4 kg/(mg⋅min) | 0.99 | |
CS-GO (3:5) | Pseudo-first-order | 2663 | 0.12 min−1 | 0.96 |
Pseudo-second-order | 2783 | 8.38 × 10−5 kg/(mg⋅min) | 0.98 | |
CS-GO (1:5) | Pseudo-first-order | 1408 | 0.058 min−1 | 0.96 |
Pseudo-second-order | 1509 | 5.63 × 10−5 kg/(mg⋅min) | 0.97 | |
GO | Pseudo-first-order | 1500 | 0.038 min−1 | 0.88 |
Pseudo-second-order | 1720 | 2.85 × 10−5 kg/(mg⋅min) | 0.81 | |
GH | Pseudo-first-order | 1056 | 0.088 min−1 | 0.93 |
Pseudo-second-order | 1106 | 1.42 × 10−4 kg/(mg⋅min) | 0.90 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, M.; Liu, Y.; Zheng, X.; Liu, W.; Liu, Y.; Bao, J.; Feng, A.; Bao, Y.; Diao, J.; Liu, H. Amino Group-Driven Adsorption of Sodium p-Perfluorous Nonenoxybenzene Sulfonate in Water by the Modified Graphene Oxide. Toxics 2024, 12, 343. https://doi.org/10.3390/toxics12050343
Lu M, Liu Y, Zheng X, Liu W, Liu Y, Bao J, Feng A, Bao Y, Diao J, Liu H. Amino Group-Driven Adsorption of Sodium p-Perfluorous Nonenoxybenzene Sulfonate in Water by the Modified Graphene Oxide. Toxics. 2024; 12(5):343. https://doi.org/10.3390/toxics12050343
Chicago/Turabian StyleLu, Mengyuan, Yang Liu, Xinning Zheng, Wenjuan Liu, Yang Liu, Jia Bao, Ao Feng, Yueyao Bao, Jiangyong Diao, and Hongyang Liu. 2024. "Amino Group-Driven Adsorption of Sodium p-Perfluorous Nonenoxybenzene Sulfonate in Water by the Modified Graphene Oxide" Toxics 12, no. 5: 343. https://doi.org/10.3390/toxics12050343
APA StyleLu, M., Liu, Y., Zheng, X., Liu, W., Liu, Y., Bao, J., Feng, A., Bao, Y., Diao, J., & Liu, H. (2024). Amino Group-Driven Adsorption of Sodium p-Perfluorous Nonenoxybenzene Sulfonate in Water by the Modified Graphene Oxide. Toxics, 12(5), 343. https://doi.org/10.3390/toxics12050343