Effects of 17β-Estradiol Pollution on Microbial Communities and Methane Emissions in Aerobic Water Bodies
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Sample Collection and Measurement
2.3. DNA Extraction, Amplification, and Sequencing
2.4. Bioinformatic Analysis
2.5. Analysis of Methane Emission Rates
2.6. Statistical Analysis
3. Results
3.1. The Impact of 17β-Estradiol Pollution on Methane Emission Patterns
3.2. Response of Bacterial and Archaeal Community Diversity to 17β-Estradiol Pollution
3.3. Exposure to 17β-Estradiol Alters Taxonomic Composition of Bacterial and Archaeal Communities
3.4. The Influence of 17β-Estradiol Pollution on Community Assembly
3.5. Molecular Ecological Network Analysis
3.6. The Influence of 17β-Estradiol Contamination on Ecological Functions
4. Discussion
4.1. Ecological Toxicological Effects of 17β-Estradiol on Bacterial and Archaeal Communities
4.2. Mechanism of 17β-Estradiol in Promoting Methane Emission
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- LaFleur, A.D.; Schug, K.A. A Review of Separation Methods for the Determination of Estrogens and Plastics-Derived Estrogen Mimics from Aqueous Systems. Anal. Chim. Acta 2011, 696, 6–26. [Google Scholar] [CrossRef] [PubMed]
- Nelles, J.L.; Hu, W.-Y.; Prins, G.S. Estrogen Action and Prostate Cancer. Expert Rev. Endocrinol. Metab. 2011, 6, 437–451. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Liu, X.; Jia, Z.; Wang, T.; Zhang, H. Screening of Estrogenic Endocrine-Disrupting Chemicals in Meat Products Based on the Detection of Vitellogenin by Enzyme-Linked Immunosorbent Assay. Chemosphere 2021, 263, 128251. [Google Scholar] [CrossRef] [PubMed]
- Marlatt, V.L.; Bayen, S.; Castaneda-Cortès, D.; Delbès, G.; Grigorova, P.; Langlois, V.S.; Martyniuk, C.J.; Metcalfe, C.D.; Parent, L.; Rwigemera, A.; et al. Impacts of Endocrine Disrupting Chemicals on Reproduction in Wildlife and Humans. Environ. Res. 2022, 208, 112584. [Google Scholar] [CrossRef] [PubMed]
- Moore, S.C.; Matthews, C.E.; Ou Shu, X.; Yu, K.; Gail, M.H.; Xu, X.; Ji, B.-T.; Chow, W.-H.; Cai, Q.; Li, H.; et al. Endogenous Estrogens, Estrogen Metabolites, and Breast Cancer Risk in Postmenopausal Chinese Women. JNCI J. Natl. Cancer Inst. 2016, 108, djw103. [Google Scholar] [CrossRef] [PubMed]
- Chun, S.; Lee, J.; Radosevich, M.; White, D.; Geyer, R. Influence of Agricultural Antibiotics and 17β-Estradiol on the Microbial Community of Soil. J. Environ. Sci. Health Part B Pestic. Food Contam. Agric. Wastes 2006, 41, 923–935. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Li, Y.; Liu, B.; Wang, J.; Feng, C. The Effects of Estrone and 17β-Estradiol on Microbial Activity and Bacterial Diversity in an Agricultural Soil: Sulfamethoxazole as a Co-Pollutant. Ecotoxicol. Environ. Saf. 2014, 107, 313–320. [Google Scholar] [CrossRef]
- Dong, Z.; Xiao, C.; Zeng, W.; Zhao, J. Impact of 17β-Estradiol on Natural Water’s Heterotrophic Nitrifying Bacteria. GEP 2020, 8, 230–241. [Google Scholar] [CrossRef]
- Viancelli, A.; Avalos, D.; Reis, P.; Málaga, P.; Shah, M.; Dwivedi, N.; Michelon, W. The Impact of 17β-Estradiol (E2) on the Growth Profile of Environmental Enterobacteriaceae. Water Air Soil Pollut. 2022, 234, 20. [Google Scholar] [CrossRef]
- Battin, T.J.; Kaplan, L.A.; Findlay, S.; Hopkinson, C.S.; Marti, E.; Packman, A.I.; Newbold, J.D.; Sabater, F. Biophysical Controls on Organic Carbon Fluxes in Fluvial Networks. Nat. Geosci. 2008, 1, 95–100. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, J.; Zhao, L.; Zhang, X.; Xie, S. Spatial Distribution of Bacterial Communities in High-Altitude Freshwater Wetland Sediment. Limnology 2014, 15, 249–256. [Google Scholar] [CrossRef]
- Sun, H.; Yu, R.; Liu, X.; Cao, Z.; Li, X.; Zhang, Z.; Wang, J.; Zhuang, S.; Ge, Z.; Zhang, L.; et al. Drivers of Spatial and Seasonal Variations of CO2 and CH4 Fluxes at the Sediment Water Interface in a Shallow Eutrophic Lake. Water Res. 2022, 222, 118916. [Google Scholar] [CrossRef] [PubMed]
- Gao, J.; Xie, D.; Cao, L.; Zhao, Z.; Zhou, J.; Liao, W.; Xu, X.; Wang, Q.; He, F. The Ratio but Not Individual of Fragile to Refractory DOM Affects Greenhouse Gases Release in Different Trophic Level Lakes. J. Environ. Manag. 2024, 351, 119914. [Google Scholar] [CrossRef] [PubMed]
- Descy, J.-P.; Darchambeau, F.; Schmid, M. Lake Kivu: Past and Present. In Lake Kivu: Limnology and Biogeochemistry of a Tropical Great Lake; Descy, J.-P., Darchambeau, F., Schmid, M., Eds.; Springer: Dordrecht, The Netherlands, 2012; pp. 1–11. ISBN 978-94-007-4243-7. [Google Scholar]
- Bizic, M. Phytoplankton Photosynthesis: An Unexplored Source of Biogenic Methane Emission from Oxic Environments. J. Plankton Res. 2021, 43, 822–830. [Google Scholar] [CrossRef]
- Tang, K.W.; McGinnis, D.F.; Ionescu, D.; Grossart, H.-P. Methane Production in Oxic Lake Waters Potentially Increases Aquatic Methane Flux to Air. Environ. Sci. Technol. Lett. 2016, 3, 227–233. [Google Scholar] [CrossRef]
- Ditchfield, A.; Wilson, S.; Hart, M.; Purdy, K.; Green, D.; Hatton, A. Identification of Putative Methylotrophic and Hydrogenotrophic Methanogens within Sedimenting Material and Copepod Faecal Pellets. Aquat. Microb. Ecol. 2012, 67, 151–160. [Google Scholar] [CrossRef]
- Bianchi, M.; Marty, D.; Teyssie, J.-L.; Fowler, S. Strictly Aerobic and Anaerobic Bacteria Associated with Sinking Particulate Matter and Zooplankton Fecal Pellets. Mar. Ecol. Prog. Ser. 1992, 88, 55–60. [Google Scholar] [CrossRef]
- Oremland, R.S. Methanogenic Activity in Plankton Samples and Fish Intestines A Mechanism for in Situ Methanogenesis in Oceanic Surface Waters. Limnol. Oceanogr. 1979, 24, 1136–1141. [Google Scholar] [CrossRef]
- Wang, Q.; Dore, J.E.; McDermott, T.R. Methylphosphonate Metabolism by Pseudomonas Sp. Populations Contributes to the Methane Oversaturation Paradox in an Oxic Freshwater Lake. Environ. Microbiol. 2017, 19, 2366–2378. [Google Scholar] [CrossRef]
- Yao, M.; Henny, C.; Maresca, J.A. Freshwater Bacteria Release Methane as a By-Product of Phosphorus Acquisition. Appl. Environ. Microbiol. 2016, 82, 6994–7003. [Google Scholar] [CrossRef]
- Repeta, D.J.; Ferrón, S.; Sosa, O.A.; Johnson, C.G.; Repeta, L.D.; Acker, M.; DeLong, E.F.; Karl, D.M. Marine Methane Paradox Explained by Bacterial Degradation of Dissolved Organic Matter. Nat. Geosci. 2016, 9, 884–887. [Google Scholar] [CrossRef]
- Ruan, A.; Zhao, Y.; Liu, C.; Wang, Y.; Xie, X. Effect of Low Concentration 17β-Estradiol on the Emissions of CH4 and CO2 in Anaerobic Sediments. Environ. Toxicol. Chem. 2013, 32, 2672–2677. [Google Scholar] [CrossRef] [PubMed]
- Ruan, A.; Liu, C.; Zhao, Y.; Zong, F.; Jiang, S.; Yu, Z. Effects of 17β-Estradiol on Typical Greenhouse Gas Emissions in Aquatic Anaerobic Ecosystem. Water Sci. Technol. 2015, 71, 1815–1822. [Google Scholar] [CrossRef] [PubMed]
- Ruan, A.; Zhao, Y.; Liu, C.; Zong, F.; Yu, Z. Effects of 17β-Estradiol on Emissions of Greenhouse Gases in Simulative Natural Water Body. Environ. Toxicol. Chem. 2015, 34, 977–982. [Google Scholar] [CrossRef] [PubMed]
- Callahan, B.J.; McMurdie, P.J.; Rosen, M.J.; Han, A.W.; Johnson, A.J.A.; Holmes, S.P. DADA2: High-Resolution Sample Inference from Illumina Amplicon Data. Nat. Methods 2016, 13, 581–583. [Google Scholar] [CrossRef] [PubMed]
- Bolyen, E.; Rideout, J.R.; Dillon, M.R.; Bokulich, N.A.; Abnet, C.C.; Al-Ghalith, G.A.; Alexander, H.; Alm, E.J.; Arumugam, M.; Asnicar, F.; et al. Reproducible, Interactive, Scalable and Extensible Microbiome Data Science Using QIIME 2. Nat. Biotechnol. 2019, 37, 852–857. [Google Scholar] [CrossRef] [PubMed]
- Quast, C.; Pruesse, E.; Yilmaz, P.; Gerken, J.; Schweer, T.; Yarza, P.; Peplies, J.; Glöckner, F.O. The SILVA Ribosomal RNA Gene Database Project: Improved Data Processing and Web-Based Tools. Nucleic Acids Res. 2013, 41, D590–D596. [Google Scholar] [CrossRef] [PubMed]
- Gower, J.C. Some Distance Properties of Latent Root and Vector Methods Used in Multivariate Analysis. Biometrika 1966, 53, 325–338. [Google Scholar] [CrossRef]
- Ning, D.; Yuan, M.; Wu, L.; Zhang, Y.; Guo, X.; Zhou, X.; Yang, Y.; Arkin, A.P.; Firestone, M.K.; Zhou, J. A Quantitative Framework Reveals Ecological Drivers of Grassland Microbial Community Assembly in Response to Warming. Nat. Commun. 2020, 11, 4717. [Google Scholar] [CrossRef]
- Feng, K.; Peng, X.; Zhang, Z.; Gu, S.; He, Q.; Shen, W.; Wang, Z.; Wang, D.; Hu, Q.; Li, Y.; et al. iNAP: An Integrated Network Analysis Pipeline for Microbiome Studies. iMeta 2022, 1, e13. [Google Scholar] [CrossRef]
- Louca, S.; Parfrey, L.W.; Doebeli, M. Decoupling Function and Taxonomy in the Global Ocean Microbiome. Science 2016, 353, 1272–1277. [Google Scholar] [CrossRef] [PubMed]
- Olesen, J.M.; Bascompte, J.; Dupont, Y.L.; Jordano, P. The Modularity of Pollination Networks. Proc. Natl. Acad. Sci. USA 2007, 104, 19891–19896. [Google Scholar] [CrossRef] [PubMed]
- Hu, Q.; Tan, L.; Gu, S.; Xiao, Y.; Xiong, X.; Zeng, W.; Feng, K.; Wei, Z.; Deng, Y. Network Analysis Infers the Wilt Pathogen Invasion Associated with Non-Detrimental Bacteria. npj Biofilms Microbiomes 2020, 6, 8. [Google Scholar] [CrossRef] [PubMed]
- Feng, Y.; Chen, R.; Stegen, J.C.; Guo, Z.; Zhang, J.; Li, Z.; Lin, X. Two Key Features Influencing Community Assembly Processes at Regional Scale: Initial State and Degree of Change in Environmental Conditions. Mol. Ecol. 2018, 27, 5238–5251. [Google Scholar] [CrossRef] [PubMed]
- Yuan, M.M.; Guo, X.; Wu, L.; Zhang, Y.; Xiao, N.; Ning, D.; Shi, Z.; Zhou, X.; Wu, L.; Yang, Y.; et al. Climate Warming Enhances Microbial Network Complexity and Stability. Nat. Clim. Change 2021, 11, 343–348. [Google Scholar] [CrossRef]
- Ivanova, A.A.; Naumoff, D.G.; Kulichevskaya, I.S.; Meshcheriakova, A.A.; Dedysh, S.N. Paludisphaera Mucosa Sp. Nov., a Novel Planctomycete of the Family Isosphaeraceae from a Boreal Fen. Microbiology 2023, 92, 483–492. [Google Scholar] [CrossRef]
- Rakitin, A.L.; Naumoff, D.G.; Beletsky, A.V.; Kulichevskaya, I.S.; Mardanov, A.V.; Ravin, N.V.; Dedysh, S.N. Complete Genome Sequence of the Cellulolytic Planctomycete Telmatocola Sphagniphila SP2T and Characterization of the First Cellulolytic Enzyme from Planctomycetes. Syst. Appl. Microbiol. 2021, 44, 126276. [Google Scholar] [CrossRef]
- Li, Q.; Zhang, D.; Zhang, J.; Zhou, Z.; Pan, Y.; Yang, Z.; Zhu, J.; Liu, Y.; Zhang, L. Crop Rotations Increased Soil Ecosystem Multifunctionality by Improving Keystone Taxa and Soil Properties in Potatoes. Front. Microbiol. 2023, 14, 1034761. [Google Scholar] [CrossRef]
- Pertile, M.; Sousa, R.M.S.; Mendes, L.W.; Antunes, J.E.L.; Oliveira, L.M.D.S.; De Araujo, F.F.; Melo, V.M.M.; Araujo, A.S.F. Response of Soil Bacterial Communities to the Application of the Herbicides Imazethapyr and Flumyzin. Eur. J. Soil Biol. 2021, 102, 103252. [Google Scholar] [CrossRef]
- Liu, C.; Han, Y.; Teng, C.; Ma, H.; Tao, B.; Yang, F. Residue Dynamics of Florpyrauxifen-Benzyl and Its Effects on Bacterial Community Structure in Paddy Soil of Northeast China. Ecotoxicol. Environ. Saf. 2023, 249, 114390. [Google Scholar] [CrossRef]
- Zhang, M.; Liang, G.; Ren, S.; Li, L.; Li, C.; Li, Y.; Yu, X.; Yin, Y.; Liu, T.; Liu, X. Responses of Soil Microbial Community Structure, Potential Ecological Functions, and Soil Physicochemical Properties to Different Cultivation Patterns in Cucumber. Geoderma 2023, 429, 116237. [Google Scholar] [CrossRef]
- Manucharova, N.A.; Bolshakova, M.A.; Babich, T.L.; Tourova, T.P.; Semenova, E.M.; Yanovich, A.S.; Poltaraus, A.B.; Stepanov, A.L.; Nazina, T.N. Microbial Degraders of Petroleum and Polycyclic Aromatic Hydrocarbons from Sod-Podzolic Soil. Microbiology 2021, 90, 743–753. [Google Scholar] [CrossRef]
- Wang, Q.; Alowaifeer, A.; Kerner, P.; Balasubramanian, N.; Patterson, A.; Christian, W.; Tarver, A.; Dore, J.E.; Hatzenpichler, R.; Bothner, B.; et al. Aerobic Bacterial Methane Synthesis. Proc. Natl. Acad. Sci. USA 2021, 118, e2019229118. [Google Scholar] [CrossRef] [PubMed]
- Bogard, M.J.; Del Giorgio, P.A.; Boutet, L.; Chaves, M.C.G.; Prairie, Y.T.; Merante, A.; Derry, A.M. Oxic Water Column Methanogenesis as a Major Component of Aquatic CH4 Fluxes. Nat. Commun. 2014, 5, 5350. [Google Scholar] [CrossRef] [PubMed]
- Angle, J.C.; Morin, T.H.; Solden, L.M.; Narrowe, A.B.; Smith, G.J.; Borton, M.A.; Rey-Sanchez, C.; Daly, R.A.; Mirfenderesgi, G.; Hoyt, D.W.; et al. Methanogenesis in Oxygenated Soils Is a Substantial Fraction of Wetland Methane Emissions. Nat. Commun. 2017, 8, 1567. [Google Scholar] [CrossRef] [PubMed]
- Yashiro, Y.; Sakai, S.; Ehara, M.; Miyazaki, M.; Yamaguchi, T.; Imachi, H. Methanoregula Formicica Sp. Nov., a Methane-Producing Archaeon Isolated from Methanogenic Sludge. Int. J. Syst. Evol. Microbiol. 2011, 61, 53–59. [Google Scholar] [CrossRef]
- Kwon, M.J.; Tripathi, B.M.; Göckede, M.; Shin, S.C.; Myeong, N.R.; Lee, Y.K.; Kim, M. Disproportionate Microbial Responses to Decadal Drainage on a Siberian Floodplain. Glob. Change Biol. 2021, 27, 5124–5140. [Google Scholar] [CrossRef] [PubMed]
- Karl, D.M.; Beversdorf, L.; Björkman, K.M.; Church, M.J.; Martinez, A.; Delong, E.F. Aerobic Production of Methane in the Sea. Nat. Geosci. 2008, 1, 473–478. [Google Scholar] [CrossRef]
- Huang, J.; Su, Z.; Xu, Y. The Evolution of Microbial Phosphonate Degradative Pathways. J. Mol. Evol. 2005, 61, 682–690. [Google Scholar] [CrossRef]
- White, A.K.; Metcalf, W.W. Microbial Metabolism of Reduced Phosphorus Compounds. Annu. Rev. Microbiol. 2007, 61, 379–400. [Google Scholar] [CrossRef]
- Zhi, R.; Deng, J.; Xu, Y.; Xu, M.; Zhang, S.; Han, X.; Yang, G.; Ren, C. Altered Microbial P Cycling Genes Drive P Availability in Soil after Afforestation. J. Environ. Manag. 2023, 328, 116998. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, Z.; Zheng, Y.; Li, Z.; Ruan, A. Effects of 17β-Estradiol Pollution on Microbial Communities and Methane Emissions in Aerobic Water Bodies. Toxics 2024, 12, 373. https://doi.org/10.3390/toxics12050373
Gao Z, Zheng Y, Li Z, Ruan A. Effects of 17β-Estradiol Pollution on Microbial Communities and Methane Emissions in Aerobic Water Bodies. Toxics. 2024; 12(5):373. https://doi.org/10.3390/toxics12050373
Chicago/Turabian StyleGao, Zihao, Yu Zheng, Zhendong Li, and Aidong Ruan. 2024. "Effects of 17β-Estradiol Pollution on Microbial Communities and Methane Emissions in Aerobic Water Bodies" Toxics 12, no. 5: 373. https://doi.org/10.3390/toxics12050373
APA StyleGao, Z., Zheng, Y., Li, Z., & Ruan, A. (2024). Effects of 17β-Estradiol Pollution on Microbial Communities and Methane Emissions in Aerobic Water Bodies. Toxics, 12(5), 373. https://doi.org/10.3390/toxics12050373