Occurrence, Accumulation, and Impacts of Environmental Pollutants in Aquatic Systems

A special issue of Toxics (ISSN 2305-6304). This special issue belongs to the section "Ecotoxicology".

Deadline for manuscript submissions: 29 November 2024 | Viewed by 6294

Special Issue Editors


E-Mail Website
Guest Editor
Chinese Research Academy of Environmental Sciences, Beijing, China
Interests: dissolved organic matter; black carbon; biomass pyrolysis; environmental pollutants; water quality

E-Mail Website
Guest Editor
School of Environment, Tsinghua University, Beijing 100084, China
Interests: toxicity assessment and control; industrial wastewater treatment; novel biological treatment; membrane process; wastewater reclamation and reuse; emerging contaminants; environmental microorganisms

E-Mail Website
Guest Editor
State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China
Interests: wastewater treatment; constructed wetlands; biological treatment; persistent organic pollutants; new pollutants; bioelectrochemistry; toxicity assessment and control

Special Issue Information

Dear Colleagues,

This Special Issue aims to explore the occurrence, migration, transformation, accumulation, and effects of pollutants on wastewater treatment and aquatic systems. This Special Issue provides in-depth and systematic cross-disciplinary research on the release and traceability of environmental pollutants, toxicity assessment, novel detoxification technologies, environmental behaviour, and policy development. The research results can provide theoretical support and a scientific basis for the control and risk assessment of pollutants (nitrogen, phosphorus, heavy metals, toxic organic matter, emerging pollutants, etc.). This Special Issue focuses on the assessment of water quality and pollutant behaviour, including, but not limited to, the following topics:

  1. The transformation of pollutants in degradation units or Earth’s water environment.
  2. Research on toxicity sensors for toxic and hazardous chemicals.
  3. Efficient purification processes and mechanisms of highly toxic and hazardous chemicals.
  4. Community interactions and the genomic expression of microorganisms under the stress of toxic and hazardous chemicals.
  5. Fate and risk assessment of toxic and hazardous chemicals in environments.

Dr. Fanhao Song
Dr. Zhuowei Zhang
Dr. Hongbin Lu
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Toxics is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • emerging contaminants
  • environmental behaviour
  • ecotoxicology
  • ecological engineering
  • novel detoxification technologies
  • environmental microorganisms

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (6 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

19 pages, 9682 KiB  
Article
Using Sediment Bacterial Communities to Predict Trace Metal Pollution Risk in Coastal Environment Management: Feasibility, Reliability, and Practicability
by Yuanfen Xia, Jiayuan Liu, Xuechun Yang, Xiaofeng Ling, Yan Fang, Zhen Xu and Fude Liu
Toxics 2024, 12(12), 839; https://doi.org/10.3390/toxics12120839 - 22 Nov 2024
Viewed by 182
Abstract
The distribution of trace metals (TMs) in a continuous water body often exhibits watershed attributes, but the tidal gates of the coastal rivers may alter their transformation and accumulation patterns. Therefore, a tidal gate-controlled coastal river was selected to test the distribution and [...] Read more.
The distribution of trace metals (TMs) in a continuous water body often exhibits watershed attributes, but the tidal gates of the coastal rivers may alter their transformation and accumulation patterns. Therefore, a tidal gate-controlled coastal river was selected to test the distribution and accumulation risks of Al, As, Cr, Cu, Fe, Mn, Ni, Sr, and Zn in the catchment area (CA), estuarine area (EA), and offshore area (OA). Associations between TMs and bacterial communities were analyzed to assess the feasibility of using bacterial parameters as ecological indicators. The results showed that As and Cr were the key pollutants due to the higher enrichment factor and geoaccumulation index, reaching slight to moderate pollution levels. The Nemero index was highest in EAs (14.93), indicating a higher pollution risk in sediments near tide gates. Although the TM dynamics can be explained by the metal-indicating effects of Fe and Mn, they have no linear relationships with toxic metals. Interestingly, the metabolic abundance of bacterial communities showed good correlations with different TMs in the sediment. These results highlight bacterial community characteristics as effective biomarkers for assessing TM pollution and practical tools for managing pollution control in coastal environment. Full article
Show Figures

Figure 1

15 pages, 13173 KiB  
Article
Characteristics and Mechanism of Hematite Dissolution and Release on Arsenic Migration in Heterogeneous Materials
by Zheying Li, Huimei Shan, Wanyue Rong, Zhicheng Zhao, Kexin Ma, Sanxi Peng and Song Wei
Toxics 2024, 12(9), 687; https://doi.org/10.3390/toxics12090687 - 23 Sep 2024
Viewed by 620
Abstract
The migration of arsenic in groundwater is influenced by the heterogeneity of the medium, and the presence of iron minerals adds complexity and uncertainty to this effect. In this study, a stratified heterogeneous sand column with an embedded hematite lens at the coarse-to-medium [...] Read more.
The migration of arsenic in groundwater is influenced by the heterogeneity of the medium, and the presence of iron minerals adds complexity and uncertainty to this effect. In this study, a stratified heterogeneous sand column with an embedded hematite lens at the coarse-to-medium sand interface was designed. We introduced an arsenic-laden solution and controlled groundwater flow to investigate the spatiotemporal characteristics of arsenic migration and the impact of hematite dissolution. The results showed that the medium structure significantly influenced the arsenic migration and distribution within the lens-containing sand column. The clay layers directed the lateral migration of arsenic, and the arsenic concentrations in deeper layers were up to seven times greater than those on the surface. The extraction experiments of solid-phase arsenic revealed that the main adsorption modes on quartz sand surfaces were the specific adsorption (F2) and adsorption on weakly crystalline iron–aluminum oxides (F3), correlating to the specific and colloidal adsorption modes, respectively. Monitoring the total iron ions (Fe(aq)) revealed rapid increases within the first 14 days, reaching a maximum on day 15, and then gradually declining; these results indicate that hematite did not continuously dissolve. This study can aid in the prevention and control of arsenic contamination in groundwater. Full article
Show Figures

Figure 1

19 pages, 1599 KiB  
Article
Bioaccumulation of Arsenic, Cadmium, Chromium, Cobalt, Copper, and Zinc in Uroteuthis edulis from the East China Sea
by Mengqi Li, Baihao Zhang and Zhou Fang
Toxics 2024, 12(7), 496; https://doi.org/10.3390/toxics12070496 - 6 Jul 2024
Viewed by 899
Abstract
In this study, the concentrations of trace elements (TEs) in Uroteuthis edulis caught from the East China Sea were determined. There were significant differences between TE concentrations in different body parts. Cu, Zn, and Cd were the most concentrated in the digestive glands [...] Read more.
In this study, the concentrations of trace elements (TEs) in Uroteuthis edulis caught from the East China Sea were determined. There were significant differences between TE concentrations in different body parts. Cu, Zn, and Cd were the most concentrated in the digestive glands and the concentrations of Cr and Co were highest in the gills. No significant differences in concentrations were shown between these tissues. In the four tissues analyzed, the mantle recorded the highest proportion of elemental load, while the digestive glands and gills had the lowest proportions. After maturity, TEs in the mantle showed no significant differences. In the digestive gland, the concentrations of all elements, except Zn, were significantly increased. The gonads illustrated apparent increases in the concentrations of Cr, Cu, and As. In the gills, the concentrations of Co and As were markedly increased. Full article
Show Figures

Figure 1

15 pages, 8550 KiB  
Article
Effects of 17β-Estradiol Pollution on Microbial Communities and Methane Emissions in Aerobic Water Bodies
by Zihao Gao, Yu Zheng, Zhendong Li and Aidong Ruan
Toxics 2024, 12(5), 373; https://doi.org/10.3390/toxics12050373 - 19 May 2024
Viewed by 1022
Abstract
17β-Estradiol (E2) is a widely present trace pollutant in aquatic environments. However, its impact on microbial communities in aerobic lake waters, which are crucial for methane (CH4) production, remains unclear. This study conducted an E2 contamination experiment by constructing laboratory-simulated aerobic [...] Read more.
17β-Estradiol (E2) is a widely present trace pollutant in aquatic environments. However, its impact on microbial communities in aerobic lake waters, which are crucial for methane (CH4) production, remains unclear. This study conducted an E2 contamination experiment by constructing laboratory-simulated aerobic microecosystems. Using 16S rRNA high-throughput sequencing, the effects of E2 on bacterial and archaeal communities were systematically examined. Combined with gas chromatography, the patterns and mechanisms of E2’s impact on CH4 emissions in aerobic aquatic systems were uncovered for the first time. Generally, E2 contamination increased the randomness of bacterial and archaeal community assemblies and weakened microbial interactions. Furthermore, changes occurred in the composition and ecological functions of bacterial and archaeal communities under E2 pollution. Specifically, two days after exposure to E2, the relative abundance of Proteobacteria in the low-concentration (L) and high-concentration (H) groups decreased by 6.99% and 4.01%, respectively, compared to the control group (C). Conversely, the relative abundance of Planctomycetota was 1.81% and 1.60% higher in the L and H groups, respectively. E2 contamination led to an increase in the relative abundance of the methanogenesis functional group and a decrease in that of the methanotrophy functional group. These changes led to an increase in CH4 emissions. This study comprehensively investigated the ecotoxicological effects of E2 pollution on microbial communities in aerobic water bodies and filled the knowledge gap regarding aerobic methane production under E2 contamination. Full article
Show Figures

Figure 1

Review

Jump to: Research

26 pages, 6113 KiB  
Review
Methods Using Marine Aquatic Photoautotrophs along the Qatari Coastline to Remediate Oil and Gas Industrial Water
by Roda F. Al-Thani and Bassam T. Yasseen
Toxics 2024, 12(9), 625; https://doi.org/10.3390/toxics12090625 - 24 Aug 2024
Viewed by 1223
Abstract
Qatar and other Gulf States have a diverse range of marine vegetation that is adapted to the stressful environmental conditions of seawater. The industrial wastewater produced by oil and gas activities adds further detrimental conditions for marine aquatic photosynthetic organisms on the Qatari [...] Read more.
Qatar and other Gulf States have a diverse range of marine vegetation that is adapted to the stressful environmental conditions of seawater. The industrial wastewater produced by oil and gas activities adds further detrimental conditions for marine aquatic photosynthetic organisms on the Qatari coastlines. Thus, these organisms experience severe stress from both seawater and industrial wastewater. This review discusses the biodiversity in seawater around Qatar, as well as remediation methods and metabolic pathways to reduce the negative impacts of heavy metals and petroleum hydrocarbons produced during these activities. The role of microorganisms that are adjacent to or associated with these aquatic marine organisms is discussed. Exudates that are released by plant roots enhance the role of microorganisms to degrade organic pollutants and immobilize heavy metals. Seaweeds may have other roles such as biosorption and nutrient uptake of extra essential elements to avoid or reduce eutrophication in marine environments. Special attention is paid to mangrove forests and their roles in remediating shores polluted by industrial wastewater. Seagrasses (Halodule uninervis, Halophila ovalis, and Thalassia hemprichii) can be used as promising candidates for phytoremediation or bioindicators for pollution status. Some genera among seaweeds that have proven efficient in accumulating the most common heavy metals found in gas activities and biodegradation of petroleum hydrocarbons are discussed. Full article
Show Figures

Figure 1

16 pages, 1540 KiB  
Review
Research on the Application and Mechanisms of Electroactive Microorganisms in Toxicants Monitoring: A Review
by Fei Xing, Liang Duan, Haiya Zhang, Hengliang Zhang and Shilong Li
Toxics 2024, 12(3), 173; https://doi.org/10.3390/toxics12030173 - 24 Feb 2024
Viewed by 1375
Abstract
A biological treatment is the core process for removing organic pollutants from industrial wastewater. However, industrial wastewater often contains large amounts of toxic and harmful pollutants, which can inhibit the activity of microorganisms in a treatment system, precipitate the deterioration of effluent quality, [...] Read more.
A biological treatment is the core process for removing organic pollutants from industrial wastewater. However, industrial wastewater often contains large amounts of toxic and harmful pollutants, which can inhibit the activity of microorganisms in a treatment system, precipitate the deterioration of effluent quality, and threaten water ecological security from time to time. In most of the existing anaerobic biological treatment processes, toxic effects on microorganisms are determined according to the amounts of end-products of the biochemical reactions, and the evaluation results are relatively lacking. When microorganisms contact toxic substances, changes in biological metabolic activity precede the accumulation of reaction products. As sensitive units, electroactive microorganisms can generate electrical signals, a change in which can directly reflect the toxicity level. The applications of electroactive microorganisms for the toxicity monitoring of wastewater are very promising. Further attention needs to be paid to considering the appropriate evaluation index, the influence of the environment on test results, mechanisms, and other aspects. Therefore, we reviewed the literature regarding the above aspects in order to provide a research foundation for the practical application of electroactive microorganisms in toxicant monitoring. Full article
Show Figures

Figure 1

Back to TopTop