Non-Targeted PFAS Suspect Screening and Quantification of Drinking Water Samples Collected through Community Engaged Research in North Carolina’s Cape Fear River Basin
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Sample Collection
2.2. Materials
2.3. Sample Preparation
2.4. Quantitative Method
2.5. Quantitative Data Analysis and Quality Controls
2.6. Non-Targeted Data Dependent Suspect Screening Method
2.7. Non-Targeted Data Analysis
3. Results
3.1. Quantitative Study
3.2. Data Dependent Suspect Screening Study
4. Discussion
4.1. High Resolution Quantitative Results
4.2. Data-Dependent Suspect Screening Study
4.3. Fipronil Sulfone (Level 2a)
4.4. Bistriflimide (Level 2a)
4.5. 3-(Tridecafluoroundecyl)catechol (Level 2b)
4.6. 2-Ethyl-4-Nitro-6-(Trifluoromethyl)-1H-Benzimidazol-1-ol (Level 2b)
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Abunada, Z.; Alazaiza, M.Y.D.; Bashir, M.J.K. An Overview of Per- and Polyfluoroalkyl Substances (PFAS) in the Environment: Source, Fate, Risk and Regulations. Water 2020, 12, 3590. [Google Scholar] [CrossRef]
- Giesy, J.P.; Kannan, K. Global distribution of perfluorooctane sulfonate in wildlife. Environ. Sci. Technol. 2001, 35, 1339–1342. [Google Scholar] [CrossRef]
- Kurwadkar, S.; Dane, J.; Kanel, S.R.; Nadagouda, M.N.; Cawdrey, R.W.; Ambade, B.; Struckhoff, G.C.; Wilkin, R. Per- and polyfluoroalkyl substances in water and wastewater: A critical review of their global occurrence and distribution. Sci. Total Environ. 2022, 809, 151003. [Google Scholar] [CrossRef]
- Buck, R.C.; Franklin, J.; Berger, U.; Conder, J.M.; Cousins, I.T.; de Voogt, P.; Jensen, A.A.; Kannan, K.; Mabury, S.A.; van Leeuwen, S.P. Perfluoroalkyl and polyfluoroalkyl substances in the environment: Terminology, classification, and origins. Integr. Environ. Assess. Manag. 2011, 7, 513–541. [Google Scholar] [CrossRef]
- Crone, B.C.; Speth, T.F.; Wahman, D.G.; Smith, S.J.; Abulikemu, G.; Kleiner, E.J.; Pressman, J.G. Occurrence of per- and polyfluoroalkyl substances (PFAS) in source water and their treatment in drinking water. Crit. Rev. Environ. Sci. Technol. 2019, 49, 2359–2396. [Google Scholar] [CrossRef] [PubMed]
- Guillette, T.C.; Jackson, T.W.; Guillette, M.; McCord, J.; Belcher, S.M. Blood concentrations of per- and polyfluoroalkyl substances are associated with autoimmune-like effects in American alligators from Wilmington, North Carolina. Front. Toxicol. 2022, 4, 1010185. [Google Scholar] [CrossRef] [PubMed]
- Kirkwood, K.I.; Fleming, J.; Nguyen, H.; Reif, D.M.; Baker, E.S.; Belcher, S.M. Utilizing Pine Needles to Temporally and Spatially Profile Per- and Polyfluoroalkyl Substances (PFAS). Environ. Sci. Technol. 2022, 56, 3441–3451. [Google Scholar] [CrossRef] [PubMed]
- Mahinroosta, R.; Senevirathna, L. A review of the emerging treatment technologies for PFAS contaminated soils. J. Environ. Manag. 2020, 255, 109896. [Google Scholar] [CrossRef] [PubMed]
- Anderson, J.K.; Brecher, R.W.; Cousins, I.T.; DeWitt, J.; Fiedler, H.; Kannan, K.; Kirman, C.R.; Lipscomb, J.; Priestly, B.; Schoeny, R.; et al. Grouping of PFAS for human health risk assessment: Findings from an independent panel of experts. Regul. Toxicol. Pharm. 2022, 134, 105226. [Google Scholar] [CrossRef]
- Panieri, E.; Baralic, K.; Djukic-Cosic, D.; Djordjevic, A.B.; Saso, L. PFAS Molecules: A Major Concern for the Human Health and the Environment. Toxics 2022, 10, 44. [Google Scholar] [CrossRef]
- Sunderland, E.M.; Hu, X.D.C.; Dassuncao, C.; Tokranov, A.K.; Wagner, C.C.; Allen, J.G. A review of the pathways of human exposure to poly- and perfluoroalkyl substances (PFASs) and present understanding of health effects. J. Expo. Sci. Environ. Epidemiol. 2019, 29, 131–147. [Google Scholar] [CrossRef] [PubMed]
- Vandermeyden, C.; Hagerty, V. Managing PFAS: A North Carolina Utility Story. J. Am. Water Work. 2020, 112, 10–18. [Google Scholar] [CrossRef]
- Orellana, M.A.; Olawuyi, D.S.; Boyd, D.R.; Fakhri, M.; Arrojo-Agudo, P. Mandates of the Special Rapporteur on the Implications for Human Rights of the Environmentally Sound Management and Disposal of Hazardous Substances and Wastes. AL USA 26/2023, United Nations to United States of America. Available online: https://spcommreports.ohchr.org/TMResultsBase/DownLoadPublicCommunicationFile?gId=28341 (accessed on 15 April 2024).
- Orellana, M.A.; Olawuyi, D.S.; Boyd, D.R.; Fakhri, M.; Arrojo-Agudo, P. Mandates of the Special Rapporteur on the Implications for Human Rights of the Environmentally Sound Management and Disposal of Hazardous Substances and Wastes. AL OTH 113/2023, United Nations to Chemours. 2023. Available online: https://spcommreports.ohchr.org/TMResultsBase/DownLoadPublicCommunicationFile?gId=28409 (accessed on 15 April 2024).
- Nakayama, S.; Strynar, M.J.; Helfant, L.; Egeghy, P.; Ye, X.B.; Lindstrom, A.B. Perfluorinated compounds in the Cape Fear Drainage Basin in North Carolina. Environ. Sci. Technol. 2007, 41, 5271–5276. [Google Scholar] [CrossRef] [PubMed]
- Herkert, N.J.; Merrill, J.; Peters, C.; Bollinger, D.; Zhang, S.; Hoffman, K.; Ferguson, P.L.; Knappe, D.R.U.; Stapleton, H.M. Assessing the Effectiveness of Point-of-Use Residential Drinking Water Filters for Perfluoroalkyl Substances (PFASs). Environ. Sci. Technol. Lett. 2020, 7, 178–184. [Google Scholar] [CrossRef]
- Hopkins, Z.R.; Sun, M.; DeWitt, J.C.; Knappe, D.R.U. Recently Detected Drinking Water Contaminants: GenX and Other Per- and Polyfluoroalkyl Ether Acids. J. Am. Water Work Assoc. 2018, 110, 13–28. [Google Scholar] [CrossRef]
- Pétré, M.A.; Genereux, D.P.; Koropeckyj-Cox, L.; Knappe, D.R.U.; Duboscq, S.; Gilmore, T.E.; Hopkins, Z.R. Per- and Polyfluoroalkyl Substance (PFAS) Transport from Groundwater to Streams near a PFAS Manufacturing Facility in North Carolina, USA. Environ. Sci. Technol. 2021, 55, 5848–5856. [Google Scholar] [CrossRef]
- Pétré, M.A.; Salk, K.R.; Stapleton, H.M.; Ferguson, P.L.; Tait, G.; Obenour, D.R.; Knappe, D.R.U.; Genereux, D.P. Per- and polyfluoroalkyl substances (PFAS) in river discharge: Modeling loads upstream and downstream of a PFAS manufacturing plant in the Cape Fear watershed, North Carolina. Sci. Total Environ. 2022, 831, 154763. [Google Scholar] [CrossRef]
- Sun, M.; Arevalo, E.; Strynar, M.; Lindstrom, A.; Richardson, M.; Kearns, B.; Pickett, A.; Smith, C.; Knappe, D.R.U. Legacy and Emerging Perfluoroalkyl Substances Are Important Drinking Water Contaminants in the Cape Fear River Watershed of North Carolina. Environ. Sci. Technol. Lett. 2016, 3, 415–419. [Google Scholar] [CrossRef]
- Hall, S.M.; Zhang, S.R.; Tait, G.H.; Hoffman, K.; Collier, D.N.; Hoppin, J.A.; Stapleton, H.M. PFAS levels in paired drinking water and serum samples collected from an exposed community in Central North Carolina. Sci. Total Environ. 2023, 895, 165091. [Google Scholar] [CrossRef]
- Kotlarz, N.; McCord, J.; Collier, D.; Lea, C.S.; Strynar, M.; Lindstrom, A.B.; Wilkie, A.A.; Islam, J.Y.; Matney, K.; Tarte, P.; et al. Measurement of Novel, Drinking Water-Associated PFAS in Blood from Adults and Children in Wilmington, North Carolina. Environ. Health Perspect. 2020, 128, 077005. [Google Scholar] [CrossRef]
- Poothong, S.; Papadopoulou, E.; Padilla-Sánchez, J.A.; Thomsen, C.; Haug, L.S. Multiple pathways of human exposure to poly- and perfluoroalkyl substances (PFASs): From external exposure to human blood. Environ. Int. 2020, 134, 105244. [Google Scholar] [CrossRef] [PubMed]
- De Silva, A.O.; Armitage, J.M.; Bruton, T.A.; Dassuncao, C.; Heiger-Bernays, W.; Hu, X.C.; Kärrman, A.; Kelly, B.; Ng, C.; Robuck, A.; et al. PFAS Exposure Pathways for Humans and Wildlife: A Synthesis of Current Knowledge and Key Gaps in Understanding. Environ. Toxicol. Chem. 2021, 40, 631–657. [Google Scholar] [CrossRef] [PubMed]
- Vestergren, R.; Cousins, I.T. Tracking the Pathways of Human Exposure to Perfluorocarboxylates. Environ. Sci. Technol. 2009, 43, 5565–5575. [Google Scholar] [CrossRef]
- North Carolina Department of Environmental Quality. “DEQ PFAS Sampling of Public Water Systems”. Available online: https://www.deq.nc.gov/news/key-issues/emerging-compounds/understanding-pfas/deq-pfas-sampling-public-water-systems (accessed on 26 April 2024).
- Cape Fear Public Utility Authority. Sweeney Treatment Enhancements Project. Available online: https://www.cfpua.org/775/Sweeney-Treatment-Enhancements-Project (accessed on 26 April 2024).
- Town of Pittsboro. Water Quality & GAC. Available online: https://pittsboronc.gov/514/Water-Quality-GAC (accessed on 10 April 2024).
- Key, K.D.; Furr-Holden, D.; Lewis, E.Y.; Cunningham, R.; Zimmerman, M.A.; Johnson-Lawrence, V.; Selig, S. The Continuum of Community Engagement in Research: A Roadmap for Understanding and Assessing Progress. Prog. Community Health Partnersh. Res. Educ. Action 2019, 13, 427–434. [Google Scholar] [CrossRef] [PubMed]
- Ross, L.F.; Loup, A.; Nelson, R.M.; Botkin, J.R.; Kost, R.; Smith, G.R.; Gehlert, S. The Challenges of Collaboration for Academic and Community Partners in a Research Partnership: Points to Consider. J. Empir. Res. Hum. Res. 2010, 5, 19–31. [Google Scholar] [CrossRef]
- Weed, R.A.; Boatman, A.K.; Enders, J.R. Recovery of per- and polyfluoroalkyl substances after solvent evaporation. Environ. Sci.-Proc. Imp. 2022, 24, 2263–2271. [Google Scholar] [CrossRef] [PubMed]
- Enders, J.R.; Weed, R.A.; Griffith, E.H.; Muddiman, D.C. Development and validation of a high resolving power absolute quantitative per- and polyfluoroalkyl substances method incorporating Skyline data processing. Rapid Commun. Mass Spectrom. 2022, 36, e9295. [Google Scholar] [CrossRef] [PubMed]
- Henry, H.; Sobhi, H.R.; Scheibner, O.; Bromirski, M.; Nimkar, S.B.; Rochat, B. Comparison between a high-resolution single-stage Orbitrap and a triple quadrupole mass spectrometer for quantitative analyses of drugs. Rapid Commun. Mass. Spectrom. 2012, 26, 499–509. [Google Scholar] [CrossRef] [PubMed]
- Grund, B.; Marvin, L.; Rochat, B. Quantitative performance of a quadrupole-orbitrap-MS in targeted LC-MS determinations of small molecules. J. Pharm. Biomed. 2016, 124, 48–56. [Google Scholar] [CrossRef] [PubMed]
- Herrero, P.; Cortes-Francisco, N.; Borrull, F.; Caixach, J.; Pocurull, E.; Marcé, R.M. Comparison of triple quadrupole mass spectrometry and Orbitrap high-resolution mass spectrometry in ultrahigh performance liquid chromatography for the determination of veterinary drugs in sewage: Benefits and drawbacks. J. Mass. Spectrom. 2014, 49, 585–596. [Google Scholar] [CrossRef]
- Munoz, G.; Duy, S.V.; Budzinski, H.; Labadie, P.; Liu, J.X.; Sauvé, S. Quantitative analysis of poly- and perfluoroalkyl compounds in water matrices using high resolution mass spectrometry: Optimization for a laser diode thermal desorption method. Anal. Chim. Acta 2015, 881, 98–106. [Google Scholar] [CrossRef] [PubMed]
- Charbonnet, J.A.; McDonough, C.A.; Xiao, F.; Schwichtenberg, T.; Cao, D.P.; Kaserzon, S.; Thomas, K.V.; Dewapriya, P.; Place, B.J.; Schymanski, E.L.; et al. Communicating Confidence of Per- and Polyfluoroalkyl Substance Identification via High-Resolution Mass Spectrometry. Environ. Sci. Technol. Lett. 2022, 9, 473–481. [Google Scholar] [CrossRef] [PubMed]
- Schymanski, E.L.; Jeon, J.; Gulde, R.; Fenner, K.; Ruff, M.; Singer, H.P.; Hollender, J. Identifying Small Molecules via High Resolution Mass Spectrometry: Communicating Confidence. Environ. Sci. Technol. 2014, 48, 2097–2098. [Google Scholar] [CrossRef] [PubMed]
- Chu, S.G.; Letcher, R.J. A targeted and non-targeted discovery screening approach for poly-and per-fluoroalkyl substances in model environmental biota samples. J. Chromatogr. A 2024, 1715, 464584. [Google Scholar] [CrossRef] [PubMed]
- Koelmel, J.P.; Stelben, P.; McDonough, C.A.; Dukes, D.A.; Aristizabal-Henao, J.J.; Nason, S.L.; Li, Y.; Sternberg, S.; Lin, E.; Beckmann, M.; et al. FluoroMatch 2.0-making automated and comprehensive non-targeted PFAS annotation a reality. Anal. Bioanal. Chem. 2022, 414, 1201–1215. [Google Scholar] [CrossRef] [PubMed]
- Koelmel, J.P.; Paige, M.K.; Aristizabal-Henao, J.J.; Robey, N.M.; Nason, S.L.; Stelben, P.J.; Li, Y.; Kroeger, N.M.; Napolitano, M.P.; Savvaides, T.; et al. Toward Comprehensive Per- and Polyfluoroalkyl Substances Annotation Using FluoroMatch Software and Intelligent High-Resolution Tandem Mass Spectrometry Acquisition. Anal. Chem. 2020, 92, 11186–11194. [Google Scholar] [CrossRef] [PubMed]
- Kind, T.; Liu, K.H.; Lee, D.Y.; DeFelice, B.; Meissen, J.K.; Fiehn, O. LipidBlast in silico tandem mass spectrometry database for lipid identification. Nat. Methods 2013, 10, 755–758. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Buser, A.M.; Cousins, I.T.; Demattio, S.; Drost, W.; Johansson, O.; Ohno, K.; Patlewicz, G.; Richard, A.M.; Walker, G.W.; et al. A New OECD Definition for Per- and Polyfluoroalkyl Substances. Environ. Sci. Technol. 2021, 55, 15575–15578. [Google Scholar] [CrossRef] [PubMed]
- EPA. Method 533: Determination of Per- and Polyfluoroalkyl Substances in Drinking Water by Isotope Dilution Anion Exchange Solid Phase Extraction and Liquid Chromatography/Tandem Mass Spectrometry; U.S. EPA: Washington, DC, USA, 2019. Available online: https://www.epa.gov/dwanalyticalmethods/method-533-determination-and-polyfluoroalkyl-substances-drinking-water-isotope (accessed on 22 May 2024).
- 2nd Draft Method 1633: Analysis of Per- and Polyfluoroalkyl Substances (PFAS) in Aqueous, Solid, Biosolids, and Tissue Samples by LC-MS/MS; U.S. EPA: Washington, DC, USA, 2022. Available online: https://www.epa.gov/system/files/documents/2022-07/2nd%20Draft%20of%20Method%201633%20June%202022%20508-compliant.pdf (accessed on 22 May 2024).
- Zhou, J.Q.; Baumann, K.; Surratt, J.D.; Turpin, B.J. Legacy and emerging airborne per- and polyfluoroalkyl substances (PFAS) collected on PM filters in close proximity to a fluoropolymer manufacturing facility. Environ. Sci. Process. Impacts 2022, 24, 2272–2283. [Google Scholar] [CrossRef]
- Kotlarz, N.; McCord, J.; Wiecha, N.; Weed, R.A.; Cuffney, M.; Enders, J.R.; Strynar, M.; Knappe, D.R.U.; Reich, B.J.; Hoppin, J.A. Measurement of Hydro-EVE and 6:2 FTS in Blood from Wilmington, North Carolina, Residents, 2017–2018. Environ. Health Persp. 2024, 132, 027702. [Google Scholar] [CrossRef]
- Kotlarz, N.; McCord, J.; Wiecha, N.; Weed, R.A.; Cuffney, M.; Enders, J.R.; Strynar, M.; Knappe, D.R.U.; Reich, B.J.; Hoppin, J.A. Reanalysis of PFO5DoA Levels in Blood from Wilmington, North Carolina, Residents, 2017–2018. Environ. Health Persp. 2024, 132, 027701. [Google Scholar] [CrossRef] [PubMed]
- Kotlarz, N.; Guillette, T.; Critchley, C.; Collier, D.; Lea, C.S.; McCord, J.; Strynar, M.; Cuffney, M.; Hopkins, Z.R.; Knappe, D.R.U.; et al. Per- and polyfluoroalkyl ether acids in well water and blood serum from private well users residing by a fluorochemical facility near Fayetteville, North Carolina. J. Expo. Sci. Environ. Epidemiol. 2024, 34, 97–107. [Google Scholar] [CrossRef] [PubMed]
- Cahoon, L.B. GenX in Cape Fear River Water Was Only One Part of the PFAS Story in North Carolina. In Contaminants in Our Water: Identification and Remediation Methods; American Chemical Society: Washington, DC, USA, 2020; Volume 1352, pp. 91–103. [Google Scholar]
- The North Carolina Department of Health and Human Services. Press Release: NCDHHS Recommends Limiting Fish Consumption from the Middle and Lower Cape Fear River Due to Contamination with “Forever Chemicals”; The North Carolina Department of Health and Human Services: Raleigh, NC, USA, 2023. [Google Scholar]
- Liu, Y.; D’Agostino, L.A.; Qu, G.; Jiang, G.; Martin, J.W. High-resolution mass spectrometry (HRMS) methods for nontarget discovery and characterization of poly- and per-fluoroalkyl substances (PFASs) in environmental and human samples. TrAC Trends Anal. Chem. 2019, 121, 115420. [Google Scholar] [CrossRef]
- Getzinger, G.J.; Higgins, C.P.; Ferguson, P.L. Structure Database and In Silico Spectral Library for Comprehensive Suspect Screening of Per- and Polyfluoroalkyl Substances (PFASs) in Environmental Media by High-resolution Mass Spectrometry. Anal. Chem. 2021, 93, 2820–2827. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.; Li, J.; Zhao, Y.; Wu, Y. Human Exposure of Fipronil Insecticide and the Associated Health Risk. J. Agric. Food Chem. 2022, 70, 63–71. [Google Scholar] [CrossRef]
- Singh, N.S.; Sharma, R.; Singh, S.K.; Singh, D.K. A comprehensive review of environmental fate and degradation of fipronil and its toxic metabolites. Environ. Res. 2021, 199, 111316. [Google Scholar] [CrossRef]
- Kim, Y.A.; Yoon, Y.S.; Kim, H.S.; Jeon, S.J.; Cole, E.; Lee, J.; Kho, Y.; Cho, Y.H. Distribution of fipronil in humans, and adverse health outcomes of fipronil sulfone exposure in newborns. Int. J. Hyg. Environ. Health 2019, 222, 524–532. [Google Scholar] [CrossRef] [PubMed]
- Xia, X.W.; Zheng, Y.X.; Tang, X.W.; Zhao, N.; Wang, B.; Lin, H.; Lin, Y.F. Nontarget Identification of Novel Per- and Polyfluoroalkyl Substances in Cord Blood Samples. Environ. Sci. Technol. 2022, 56, 17061–17069. [Google Scholar] [CrossRef]
- Gunasekara, A.S.; Truong, T.; Goh, K.S.; Spurlock, F.; Tjeerdema, R.S. Environmental fate and toxicology of fipronil. J. Pestic. Sci. 2007, 32, 189–199. [Google Scholar] [CrossRef]
- McMahen, R.L.; Strynar, M.J.; McMillan, L.; DeRose, E.; Lindstrom, A.B. Comparison of fipronil sources in North Carolina surface water and identification of a novel fipronil transformation product in recycled wastewater. Sci. Total Environ. 2016, 569, 880–887. [Google Scholar] [CrossRef]
- Zhao, W.X.; Sun, J.W. Triflimide (HNTf2) in Organic Synthesis. Chem. Rev. 2018, 118, 10349–10392. [Google Scholar] [CrossRef] [PubMed]
- Allanore, A.; Sadoway, D.R. Extraction of Liquid Elements by Electrolysis of Oxides. U.S. Patent US8764962B2, 1 July 2014. [Google Scholar]
- Elabd, Y.A.; Winey, K.I.; Ye, Y.; Choi, J.-H.; Tsen-Shan, S.S. Polymerized Ionic Liquid Block Copolymers as Battery Membranes. U.S. Patent US8853286B2, 7 October 2014. [Google Scholar]
- Barola, C.; Bucaletti, E.; Moretti, S.; Buiarelli, F.; Simonetti, G.; Lucarelli, F.; Goracci, L.; Lorenzetti, S.; Di Filippo, P.; Pomata, D.; et al. Untargeted Screening of Per- and Polyfluoroalkyl Substances (PFASs) in Airborne Particulate of Three Italian E-Waste Recycling Facilities. Separations 2023, 10, 547. [Google Scholar] [CrossRef]
- Zhao, M.S.; Yao, Y.M.; Dong, X.Y.; Baqar, M.; Fang, B.; Chen, H.; Sun, H.W. Nontarget Identification of Novel Per- and Polyfluoroalkyl Substances (PFAS) in Soils from an Oil Refinery in Southwestern China: A Combined Approach with TOP Assay. Environ. Sci. Technol. 2023, 57, 20194–20205. [Google Scholar] [CrossRef]
- Feng, C.; Lin, Y.J.; Le, S.Y.; Ji, J.Y.; Chen, Y.H.; Wang, G.Q.; Xiao, P.; Zhao, Y.F.; Lu, D.S. Suspect, Nontarget Screening, and Toxicity Prediction of Per- and Polyfluoroalkyl Substances in the Landfill Leachate. Environ. Sci. Technol. 2024, 58, 4737–4750. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.R.; Lyu, Y.; Chen, H.; Cai, L.L.; Li, J.; Cao, X.Q.; Sun, W.L. Integration of target, suspect, and nontarget screening with risk modeling for per- and polyfluoroalkyl substances prioritization in surface waters. Water Res. 2023, 233, 119735. [Google Scholar] [CrossRef] [PubMed]
- Neuwald, I.; Muschket, M.; Zahn, D.; Berger, U.; Seiwert, B.; Meier, T.; Kuckelkorn, J.; Strobel, C.; Knepper, T.P.; Reemtsma, T. Filling the knowledge gap: A suspect screening study for 1310 potentially persistent and mobile chemicals with SFC- and HILIC-HRMS in two German river systems. Water Res. 2021, 204, 117645. [Google Scholar] [CrossRef] [PubMed]
- Development OfEC-oa. Reconciling Terminology of the Universe of Per-and Polyfluoroalkyl Substances: Recommendations and Practical Guidance. Ser. Risk Manag. 2021, 61, 1–43. [Google Scholar]
- Rodenstein, M.; Zürcher, S.; Tosatti, S.G.P.; Spencer, N.D. Fabricating Chemical Gradients on Oxide Surfaces by Means of Fluorinated, Catechol-Based, Self-Assembled Monolayers. Langmuir 2010, 26, 16211–16220. [Google Scholar] [CrossRef] [PubMed]
- Castillo-Pazos, D.J.; Lasso, J.D.; Li, C.J. Modern methods for the synthesis of perfluoroalkylated aromatics. Org. Biomol. Chem. 2021, 19, 7116–7128. [Google Scholar] [CrossRef]
- Li, N.N.; Noro, J.; Su, J.; Wang, H.B.; Silva, C.; Cavaco-Paulo, A. Enhancing laccase-assisted polymerization reactions with perfluorinated compounds. Biochem. Eng. J. 2022, 189, 108736. [Google Scholar] [CrossRef]
- Jana Semanova (HighChem, B., Slovakia), Thermo Fisher Scientific. Catechol. Repository: MzCloud. Available online: https://beta.mzcloud.org/dataviewer#/app/dataviewer/library/reference?query=myCloudId%253D2984 (accessed on 26 April 2024).
- Manfrin, A.; Hänggli, A.; van den Wildenberg, J.; McNeill, K. Substituent Effects on the Direct Photolysis of Benzotrifluoride Derivatives. Environ. Sci. Technol. 2020, 54, 11109–11117. [Google Scholar] [CrossRef] [PubMed]
- Leitis, E.; Crosby, D.G. Photodecomposition of Trifluralin. J. Agric. Food Chem. 1974, 22, 842–848. [Google Scholar] [CrossRef] [PubMed]
- Lerch, R.N.; Ferrer, I.; Thurman, E.M.; Zablotowicz, R.M. Identification of trifluralin metabolites in soil using ion-trap LC/MS/MS. ACS Symt. Ser. 2003, 850, 291–310. [Google Scholar]
Pittsboro | Fayetteville | Wilmington | |
---|---|---|---|
Total Sample Number | 8 | 10 | 27 |
Recreation Sample Number | 0 | 3 | 0 |
Drinking Sample Number | 8 | 7 | 27 |
Well | n/a | 6 | 20 |
Municipal | n/a | 1 | 3 |
Unknown | 8 | 0 | 4 |
Confidence Level | Confidence | MS2 Data (Number; Type) * | Predicted Molecular Formula and Isotope Pattern Matching | Retention Time | Kendrick Mass Defect (CF2) | Mass Accuracy (ppm) |
---|---|---|---|---|---|---|
1 | Confirmed structure | Matched to library reference Standard | Match to standard | Match to standard | −0.116 to 0.268 ‡ | ≤5 ppm |
2a | Probable structure | Library Match to mzCloud | Full match for mono-isotopic and M + 1 peak | Consistent with PFAS elution time patterns † | −0.116 to 0.268 ‡ | ≤5 ppm |
2b | Probable structure | ≥3; diagnostic | Full match for mono-isotopic and M + 1 peak | Consistent with PFAS elution time patterns † | −0.116 to 0.268 ‡ | ≤5 ppm |
2c | Probable structure | ≥1; diagnostic | Full match for mono-isotopic and M + 1 peak | Consistent with PFAS elution time patterns † | −0.116 to 0.268 ‡ | ≤5 ppm |
3 | Tentative structure | ≥1; Subclass Aligned | Full match for mono-isotopic and M + 1 peak | Consistent with PFAS elution time patterns † | −0.116 to 0.268 ‡ | ≤5 ppm |
4a | Unequivocal molecular formula | None or structurally inconclusive | Full match for mono-isotopic and M + 1 peak | Consistent with PFAS elution time patterns † | −0.116 to 0.268 ‡ | ≤5 ppm |
4b | Putative molecular formula | None or structurally inconclusive | No library match, Predicted Formula Sfit > 50% § | Consistent with PFAS elution time patterns † | −0.116 to 0.268 ‡ | ≤5 ppm |
5a | Suspect screening exact mass match to mzCloud or EPA CompTox | None | No library match, Predicted Formula Sfit > 50% § | Consistent with PFAS elution time patterns † | −0.116 to 0.268 ‡ | ≤5 ppm |
5b | Exact mass with mass accuracy < 5 ppm | ≥1 subclass hit to in-silico libraries from NIST or Fluoromatch ¶ | No match | Consistent with PFAS elution time patterns † | −0.116 to 0.268 ‡ | ≤5 ppm |
5c | Exact mass with mass accuracy < 5 ppm | None | No match | Consistent with PFAS elution time patterns † | −0.116 to 0.268 ‡ | ≤5 ppm |
* MS2 Fragment types: Diagnostic: structurally informative and or headgroup present; Subclass aligned (in silico): structurally informative and matches in silico database like Fluoromatch or NIST, and one or more of the fragment peak abundances must be 3× greater than background noise (~5000 intensity counts) | ||||||
† Retention times are consistent with typical PFAS elution times, e.g., low molecular weight and hydrophilic compounds eluted earlier | ||||||
‡ This range is representative of 98% of compounds in EPA Comptox list; m/z range from 117 to 1189 [40]. | ||||||
§ M + 2 isotope is ignored unless the predicted molecular formula suggests that a diagnostic atom, like Cl, Br, or S is present. If the isotopic pattern is not in alignment with the predicted molecular formula, then the next best formula is chosen based on the SFit (>50%) [SFit is the spectral similarity score between the theoretical and the measured isotope pattern displayed as a percentage in CD] | ||||||
¶ NIST Compound Class Library: PFAS Fine signature fragment_lib.cLib, Fluoromatch Compound Class Library: PFAS General from FluoroMatch Suite.cLib |
Level | Name | Formula | Calculated Molecular Weight | Kendrick Mass Defect [CF2] | Class Coverage: FluoroMatch % | Class Coverage: NIST % |
---|---|---|---|---|---|---|
1 | Perfluoro-1-hexanesulfonic acid (PFHxS) | C6 H F13 O3 S | 398.93685 | −0.030329162 | 0.75 | 18.75 |
Perfluoro-1-butanesulfonic acid (PFBS) | C4 H F9 O3 S | 298.94319 | −0.03036894 | 0.99 | 31.25 | |
Perfluoroheptanoic acid (PFHpA) | C7 H F13 O2 | 362.96993 | 0.000458177 | 1.37 | 31.25 | |
Perfluorooctanoic acid (PFOA) | C8 H F15 O2 | 412.96671 | 0.000515965 | 1.99 | 43.75 | |
Perfluoro-1-octanesulfonic acid (PFOS) | C8 H F17 O3 S | 498.93051 | −0.030276925 | 3.60 | 62.5 | |
2a | Fipronil sulfone | C12 H4 Cl2 F6 N4 O2 S | 451.93405 | −0.037084358 | 0.37 | 12.5 |
Bistriflimide | C2 H F6 N O4 S2 | 280.92538 | −0.056676962 | 0.12 | 6.25 | |
2b | 3-(Tridecafluoroundecyl)catechol | C17 H15 F13 O2 | 498.08725 | 0.119069512 | 1.12 | 18.75 |
2-Ethyl-4-nitro-6-(trifluoromethyl)-1H-benzimidazol-1-ol | C10 H8 F3 N3 O3 | 275.05186 | 0.069427657 | 0.37 | 6.25 | |
3 | Floctafenine | C20 H17 F3 N2 O4 | 406.1145 | 0.140440239 | 0.12 | 6.25 |
Ethyl 1,4-dihydro-5-isopropoxy-2-methyl-4-(2-trifluoromethylphenyl)-1,6-naphthyridine-3-carboxylate | C22 H23 F3 N2 O3 | 420.16604 | 0.192881683 | 0.37 | 0 | |
2-[2-Imino-6-(trifluoromethoxy)-1,3-benzothiazol-3(2H)-yl]acetamide | C10 H8 F3 N3 O2 S | 291.02921 | 0.047799113 | 0.5 | 18.75 | |
2-tert-Butyl-4-(piperazin-1-yl)-6-trifluoromethyl-pyrimidine | C13 H19 F3 N4 | 288.15756 | 0.175964392 | 1.12 | 18.75 | |
2,2-Bis(3-amino-4-hydroxyphenyl)hexafluoropropane | C15 H12 F6 N2 O2 | 366.08037 | 0.103751965 | 1.86 | 25 | |
3-(Trifluoromethyl)benzyl 3,5-dinitrobenzoate | C15 H9 F3 N2 O6 | 370.04265 | 0.066290222 | 2.36 | 6.25 | |
4a | - | C20 H27 F3 O2 | 356.19495 | 0.21770158 | 0 | 0 |
- | C33 H35 Cl F3 N O3 | 585.22833 | 0.26571272 | 0 | 0 | |
- | C18 H25 F3 O3 | 346.17581 | 0.197923018 | 0 | 0 | |
- | C21 H20 F3 N O2 S | 407.11652 | 0.142529987 | 0 | 0 | |
4b | - | C14 H17 F3 N4 O2 | 330.13173 | 0.15282143 | 0.37 | 6.25 |
- | C10 H14 F4 | 210.10223 | 0.115646518 | 0.62 | 0 | |
5a | - | C37 H59 F17 O2 S | 890.39997 | 0.456845695 | 0 | 0 |
- | C22 H15 F7 O | 428.10194 | 0.12928048 | 0 | 0 | |
- | C14 H19 F13 O3 Si | 510.08959 | 0.12217564 | 0 | 0 | |
- | C18 H15 F4 N3 O S | 397.08778 | 0.113146866 | 0 | 0 | |
5b | - | - | 678.32956 | 0.372887588 | 1.74 | 0 |
- | - | 556.18405 | 0.21958005 | 3.23 | 6.25 | |
- | - | 426.11853 | 0.145750621 | 1.99 | 6.25 | |
- | - | 369.99506 | 0.018690222 | 2.11 | 6.25 | |
- | - | 412.11908 | 0.145407889 | 0.12 | 0 | |
- | - | 638.1888 | 0.229560169 | 0.12 | 0 | |
- | - | 414.2389 | 0.26536011 | 1.99 | 31.25 | |
- | - | 355.19509 | 0.225123167 | 12.5 | 0 | |
- | - | 309.15351 | 0.180598046 | 12.5 | 0 | |
- | - | 391.12726 | 0.159582519 | 25 | 0 | |
- | - | 333.13567 | 0.164291382 | 12.5 | 0 | |
- | - | 305.17175 | 0.19858475 | 6.25 | 0 | |
- | - | 393.17118 | 0.203630226 | 6.25 | 0 | |
- | - | 359.20117 | 0.231450618 | 12.5 | 0 | |
- | - | 377.15836 | 0.189841783 | 0 | 0 | |
- | - | 491.15454 | 0.193257638 | 0 | 0 | |
- | - | 492.16475 | 0.196191042 | 0.5 | 6.25 | |
5c | - | - | 355.02762 | 0.050299003 | 0 | 0 |
- | - | 446.15818 | 0.186676221 | 0 | 0 | |
- | - | 285.14944 | 0.167651451 | 0 | 0 | |
- | - | 389.1504 | 0.17526076 | 0 | 0 | |
- | - | 473.22699 | 0.257217681 | 0 | 0 | |
- | - | 520.10386 | 0.137083129 | 0 | 0 | |
- | - | 438.14485 | 0.172840803 | 0 | 0 | |
- | - | 330.15979 | 0.180881971 | 0 | 0 | |
- | - | 394.17843 | 0.203611898 | 0 | 0 | |
- | - | 461.10495 | 0.134406375 | 0 | 0 | |
- | - | 522.15917 | 0.19252665 | 0 | 0 | |
- | - | 553.15088 | 0.186216128 | 0 | 0 | |
- | - | 437.12711 | 0.155033109 | 0 | 0 | |
- | - | 443.10162 | 0.129920627 | 0 | 0 | |
- | - | 447.09619 | 0.124745676 | 0 | 0 | |
- | - | 496.10795 | 0.139637305 | 0 | 0 | |
- | - | 409.15927 | 0.185403207 | 0 | 0 | |
- | - | 588.20877 | 0.246341597 | 0 | 0 | |
- | - | 477.1642 | 0.194684137 | 0 | 0 | |
- | - | 389.06437 | 0.089225706 | 0 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Weed, R.A.; Campbell, G.; Brown, L.; May, K.; Sargent, D.; Sutton, E.; Burdette, K.; Rider, W.; Baker, E.S.; Enders, J.R. Non-Targeted PFAS Suspect Screening and Quantification of Drinking Water Samples Collected through Community Engaged Research in North Carolina’s Cape Fear River Basin. Toxics 2024, 12, 403. https://doi.org/10.3390/toxics12060403
Weed RA, Campbell G, Brown L, May K, Sargent D, Sutton E, Burdette K, Rider W, Baker ES, Enders JR. Non-Targeted PFAS Suspect Screening and Quantification of Drinking Water Samples Collected through Community Engaged Research in North Carolina’s Cape Fear River Basin. Toxics. 2024; 12(6):403. https://doi.org/10.3390/toxics12060403
Chicago/Turabian StyleWeed, Rebecca A., Grace Campbell, Lacey Brown, Katlyn May, Dana Sargent, Emily Sutton, Kemp Burdette, Wayne Rider, Erin S. Baker, and Jeffrey R. Enders. 2024. "Non-Targeted PFAS Suspect Screening and Quantification of Drinking Water Samples Collected through Community Engaged Research in North Carolina’s Cape Fear River Basin" Toxics 12, no. 6: 403. https://doi.org/10.3390/toxics12060403
APA StyleWeed, R. A., Campbell, G., Brown, L., May, K., Sargent, D., Sutton, E., Burdette, K., Rider, W., Baker, E. S., & Enders, J. R. (2024). Non-Targeted PFAS Suspect Screening and Quantification of Drinking Water Samples Collected through Community Engaged Research in North Carolina’s Cape Fear River Basin. Toxics, 12(6), 403. https://doi.org/10.3390/toxics12060403