The Legacy of Hg Contamination in a Past Mining Area (Tuscany, Italy): Hg Speciation and Health Risk Assessment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description
2.2. Soil Sampling and Analysis
2.3. Environmental Indices, Exposure Models, and Risk Assessment
Symbol | Definition (units) | Value |
---|---|---|
IRing | Ingestion rate (mg/day) (accounting for both soil and dust ingestion) | 100 for adult, 200 for children |
EF | Exposure frequency (day/year) for a residential setting | 350 |
ET | Exposure time (h/day) for a residential setting | 24 |
ED | Exposure duration (years) for a residential setting | 24 for adults, 6 for children |
SA | Exposed skin area (cm2) | 5700 for adults, 2800 for children |
SAF | Skin adherence factor (mg/cm2) | 0.07 for adults, 0.2 for children |
ABS | Dermal absorption factor (fraction of contaminant absorbed dermally from soil, unitless) | 0.01 (chemical specific) |
BW | Average body weight (kg) | 70 for adults, 15 for children |
AT (Ingestion and dermal contact) | Average time of exposure (day) | ED × 365 day/year for non-carcinogens |
AT (inhalation) | Average time of exposure (h) | ED × 365 day/year × 24 h/day for non-carcinogens |
VFp | Total respirable particulate concentration from the soil source (mg/m3-air/mg/kg-soil) | 1.35 × 10−11 |
VFss | Volatilization factor, subsurface soil to ambient air (mg/m3-air/mg/kg-soil) | 1.32 × 10−5 |
Hgtot = 25.5 mg/kg Hg(0)= 4.4 mg/kg MeHg = 0.3 μg/kg Mercuric Chloride = 1.3 μg/kg | HQ | Soil Ingestion | Dermal Contact | Inhalation Vapor | Inhalation Dust | Sum of Outdoor Exposures (HI) | SSL |
---|---|---|---|---|---|---|---|
Elemental mercury RfDing = 1.6 × 10−4 mg/kg/day (**) RfDderm = RfDoral RfC = 3 × 10−4 mg/m3 (***) | 0.352 (3.77 × 10−2) | 9.84 × 10−3 (1.50 × 10−3) | 0.186 | 1.89 × 10−7 | 0.547 (0.225) | 8.04 (19.6) | |
Methylmercury RfDing = 10−4 mg/kg/day (***) RfDderm = RfDoral | 3.84 × 10−5 (4.11 × 10−6) | 1.07 × 10−6 (1.64 × 10−7) | - | * | 3.94 × 10−5 (4.27 × 10−6) | 7.61 (70.2) | |
Mercuric Chloride RfDing = 3 × 10−4 mg/kg/day (***) RfDderm = RfDoral | 5.54 × 10−5 (5.94 × 10−6) | 1.55 × 10−6 (2.37 × 10−7) | - | * | 5.70 × 10−5 (6.17 × 10−6) | 22.8 (211) | |
Hgtot attributed to Hg(0) | 2.04 (0.218) | 5.71 × 10−2 (8.71 × 10−3) | 1.09 | 1.11 × 10−6 | 3.18 (1.31) | ||
Hgtot attributed to MeHg | 3.26 (0.349) | 9.13 × 10−2 (1.39 × 10−2) | - | * | 3.35 (0.363) | ||
Hgtot attributed to Mercuric Chloride | 1.09 (0.116) | 3.04 × 10−2 (4.65 × 10−3) | - | * | 1.12 (0.121) |
3. Results
3.1. Geochemical Parameters and Total Mercury
3.2. Mercury Speciation
3.3. Mercury Risk Assessment
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- WHO. Ten Chemicals of Major Health Concern; World Health Organization: Geneva, Switzerland, 2017. [Google Scholar]
- Bjørklund, G.; Dadar, M.; Mutter, J.; Aaseth, J. The toxicology of mercury: Current research and emerging trends. Environ. Res. 2017, 159, 545–554. [Google Scholar] [CrossRef] [PubMed]
- Tariq, M. Toxicity of mercury in humans: A review. J. Clin. Toxicol. 2019, 9, 431. [Google Scholar]
- EU. Directive 2008/105/EC of the European Parliament and of the Council. Off. J. Eur. Union 2008. Available online: https://eur-lex.europa.eu/eli/dir/2008/105/oj (accessed on 3 May 2024).
- ATSDR Agency for Toxic Substances and Disease Registry. ATSDR’s Substance Priority List. 2022. Available online: www.atsdr.cdc.gov/spl/index.html (accessed on 3 May 2024).
- Obrist, D.; Kirk, J.L.; Zhang, L.; Sunderland, E.M.; Jiskra, M.; Selin, N.E. A review of global environmental mercury processes in response to human and natural perturbations: Changes of emissions, climate, and land use. Ambio 2018, 47, 116–140. [Google Scholar] [CrossRef] [PubMed]
- Ceccatelli, S.; Aschner, M. Methylmercury and Neurotoxicity; Springer: New York, NY, USA, 2012. [Google Scholar]
- Elwaleed, A.; Jeong, H.; Abdelbagi, A.H.; Quynh, N.T.; Agusa, T.; Ishibashi, Y.; Arizono, K. Human Health Risk Assessment from Mercury-Contaminated Soil and Water in Abu Hamad Mining Market, Sudan. Toxics 2024, 12, 112. [Google Scholar] [CrossRef] [PubMed]
- Veiga, M.M.; Maxson, P.A.; Hylander, L.D. Origin and consumption of mercury in small-scale gold mining. J. Clean. Prod. 2006, 14, 436–447. [Google Scholar] [CrossRef]
- Zhao, S.; Pudasainee, D.; Duan, Y.; Gupta, R.; Liu, M.; Lu, J. A review on mercury in coal combustion process: Content and occurrence forms in coal, transformation, sampling methods, emission, and control technologies. Prog. Energy Combust. Sci. 2019, 73, 26–64. [Google Scholar] [CrossRef]
- Mojammal, A.H.M.; Back, S.K.; Seo, Y.C.; Kim, J.H. Mass balance and behavior of mercury in oil refinery facilities. Atmos. Pollut. Res. 2019, 10, 145–151. [Google Scholar] [CrossRef]
- Wang, F.Y.; Wang, S.X.; Zhang, L.; Yang, H.; Gao, W.; Wu, Q.R.; Hao, J.M. Mercury mass flow in iron and steel production process and its implications for mercury emission control. J. Environ. Sci. 2016, 43, 293–301. [Google Scholar] [CrossRef]
- Wang, F.Y.; Wang, S.X.; Zhang, L.; Yang, H.; Wu, Q.R.; Hao, J.M. Characteristics of mercury cycling in the cement production process. J. Hazard. Mater. 2016, 302, 27–35. [Google Scholar] [CrossRef]
- Gibičar, D.; Horvat, M.; Logar, M.; Fajon, V.; Falnoga, I.; Ferrara, R.; Lanzillotta, E.; Ceccarini, C.; Mazzolai, B.; Pacyna, J. Human exposure to mercury in the vicinity of chlor-alkali plant. Environ. Res. 2009, 109, 355–367. [Google Scholar] [CrossRef] [PubMed]
- Bravo, A.G.; Cosio, C.; Amouroux, D.; Zopfi, J.; Chevalley, P.A.; Spangenberg, J.E.; Ungureanu, V.-G.; Dominik, J. Extremely elevated methyl mercury levels in water, sediment and organisms in a Romanian reservoir affected by release of mercury from a chlor-alkali plant. Water Res. 2014, 49, 391–405. [Google Scholar] [CrossRef] [PubMed]
- Biester, H.; Müller, G.; Schöler, H.F. Binding and mobility of mercury in soils contaminated by emissions from chlor-alkali plants. Sci. Total Environ. 2002, 284, 191–203. [Google Scholar] [CrossRef]
- Southworth, G.R.; Lindberg, S.E.; Zhang, H.; Anscombe, F.R. Fugitive mercury emissions from a chlor-alkali factory: Sources and fluxes to the atmosphere. Atmos. Environ. 2004, 38, 597–611. [Google Scholar] [CrossRef]
- Taube, F.; Pommer, L.; Larsson, T.; Shchukarev, A.; Nordin, A. Soil remediation–mercury speciation in soil and vapor phase during thermal treatment. Water Air Soil Pollut. 2008, 193, 155–163. [Google Scholar] [CrossRef]
- Le Faucheur, S.; Vasiliu, D.; Catianis, I.; Zazu, M.; Dranguet, P.; Beauvais-Flück, R.; Cosio, C.; Ungureanu, C.; Ungureanu, V.-G.; Slaveykova, V.I. Environmental quality assessment of reservoirs impacted by Hg from chlor-alkali technologies: Case study of a recovery. Environ. Sci. Pollut. Res. 2016, 23, 22542–22553. [Google Scholar] [CrossRef]
- Guney, M.; Kumisbek, A.; Akimzhanova, Z.; Kismelyeva, S.; Beisova, K.; Zhakiyenova, A.; Inglezakis, V.; Karaca, F. Environmental partitioning, spatial distribution, and transport of atmospheric mercury (Hg) originating from a site of former chlor-alkali plant. Atmosphere 2021, 12, 275. [Google Scholar] [CrossRef]
- Schuster, E. The behavior of mercury in the soil with special emphasis on complexation and adsorption processes: A review of the literature. Water Air Soil Pollut. 1991, 56, 667–680. [Google Scholar] [CrossRef]
- O’Connor, D.; Hou, D.; Ok, Y.S.; Mulder, J.; Duan, L.; Wu, Q.; Wang, S.; Tack, F.M.G.; Rinklebe, J. Mercury speciation, transformation, and transportation in soils, atmospheric flux, and implications for risk management: A critical review. Environ. Int. 2019, 126, 747–761. [Google Scholar] [CrossRef]
- Zhang, Z.S.; Lu, X.G.; Wang, Q.C.; Zheng, D.M. Mercury, cadmium, and lead biogeochemistry in the soil–plant–insect system in Huludao City. Bull. Environ. Contam. Toxicol. 2009, 83, 255–259. [Google Scholar] [CrossRef]
- Liu, Z.; Chen, B.; Wang, L.; Urbanovich, O.; Nagorskaya, L.; Li, X.; Tang, L. A review on phytoremediation of mercury contaminated soils. J. Hazard. Mater. 2020, 400, 123138. [Google Scholar] [CrossRef] [PubMed]
- Richard, J.H.; Bischoff, C.; Ahrens, C.G.; Biester, H. Mercury (II) reduction and co-precipitation of metallic mercury on hydrous ferric oxide in contaminated groundwater. Sci. Total Environ. 2016, 539, 36–44. [Google Scholar] [CrossRef] [PubMed]
- Coulibaly, M.; Mazrui, N.M.; Jonsson, S.; Mason, R.P. Abiotic Reduction of Mercury (II) in the Presence of Sulfidic Mineral Suspensions. Front. Environ. Chem. 2021, 2, 660058. [Google Scholar] [CrossRef]
- Zhang, H.A.; Lindberg, S.E. Processes influencing the emission of mercury from soils: A conceptual model. J. Geophys. Res. Atmos. 1999, 104, 21889–21896. [Google Scholar] [CrossRef]
- Shao, D.; Kang, Y.; Wu, S.; Wong, M.H. Effects of sulfate reducing bacteria and sulfate concentrations on mercury methylation in freshwater sediments. Sci. Total Environ. 2012, 424, 331–336. [Google Scholar] [CrossRef] [PubMed]
- Celo, V.; Lean, D.R.; Scott, S.L. Abiotic methylation of mercury in the aquatic environment. Sci. Total Environ. 2006, 368, 126–137. [Google Scholar] [CrossRef]
- Ullrich, S.M.; Ilyushchenko, M.A.; Uskov, G.A.; Tanton, T.W. Mercury distribution and transport in a contaminate driver system in Kazakhstan and associated impacts on aquatic biota. Appl. Geochem. 2007, 22, 2706–2734. [Google Scholar] [CrossRef]
- Achá, D.; Hintelmann, H.; Yee, J. Importance of sulfate reducing bacteria in mercury methylation and demethylation in periphyton from Bolivian Amazon region. Chemosphere 2011, 82, 911–916. [Google Scholar] [CrossRef]
- Gosnell, K.; Balcom, P.; Ortiz, V.; DiMento, B.; Schartup, A.; Greene, R.; Mason, R. Seasonal cycling and transport of mercury and methylmercury in the turbidity maximum of the Delaware estuary. Aquat. Geochem. 2016, 22, 313–336. [Google Scholar] [CrossRef]
- Mendes, L.A.; de Lena, J.C.; do Valle, C.M.; Fleming, P.M.; Windmöller, C.C. Quantification of methylmercury and geochemistry of mercury in sediments from a contaminated area of Descoberto (MG), Brazil. Appl. Geochem. 2016, 75, 32–43. [Google Scholar] [CrossRef]
- Benoit, J.M.; Gilmour, C.C.; Heyes, A.; Mason, R.P.; Miller, C.L. Geochemical and Biological Controls over Methylmercury Production and Degradation in Aquatic Ecosystems. In Biogeochemistry of Environmentally Important Trace Elements; ACS Symposium Series; American Chemical Society: Washington, DC, USA, 2002; Volume 835, pp. 262–297. [Google Scholar]
- Beckers, F.; Rinklebe, J. Cycling of mercury in the environment: Sources, fate, and human health implications: A review. Crit. Rev. Environ. Sci. Technol. 2017, 47, 693–794. [Google Scholar] [CrossRef]
- Shahid, M.; Khalid, S.; Bibi, I.; Bundschuh, J.; Khan, N.; Dumat, C.A. Critical review of mercury speciation, bioavailability, toxicity, and detoxification in soil-plant environment: Ecotoxicology and health risk assessment. Sci. Total Environ. 2020, 711, 134749. [Google Scholar]
- Bloom, N.S.; Moretto, L.M.; Scopece, P.; Ugo, P. Seasonal cycling of mercury and monomethyl mercury in the Venice Lagoon (Italy). Mar. Chem. 2004, 91, 85–99. [Google Scholar] [CrossRef]
- Kim, C.S.; Bloom, N.S.; Rytuba, J.J.; Brown, G.E. Mercury speciation by X-ray absorption fine structure spectroscopy and sequential chemical extractions: A comparison of speciation methods. Environ. Sci. Technol. 2013, 37, 5102–5108. [Google Scholar] [CrossRef] [PubMed]
- Coufalík, P.; Komárek, J. The use of thermal desorption in the speciation analysis of mercury in soil, sediments, and tailings. J. Anal. Chem. 2014, 69, 1123–1129. [Google Scholar] [CrossRef]
- Coufalík, P.; Zvěřina, O.; Komárek, J. Determination of mercury species using thermal desorption analysis in AAS. Chem. Pap. 2014, 68, 427–434. [Google Scholar] [CrossRef]
- Ghezzi, L.; Valerio, M.; Petrini, R. Novel determination of elemental mercury in silicate rock by thermal desorption. Anal. Lett. 2023, 56, 1270–1278. [Google Scholar] [CrossRef]
- Testa, G.; Lugli, S. Gypsum–anhydrite transformations in Messinian evaporites of central Tuscany (Italy). Sediment. Geol. 2000, 130, 249–268. [Google Scholar] [CrossRef]
- Speranza, G.; Cosentino, D.; Tecce, F.; Faccenna, C. Paleoclimate reconstruction during the Messinian evaporative drawdown of the Mediterranean Basin: Insights from microthermometry on halite fluid inclusions. Geochem. Geophys. Geosyst. 2013, 14, 5054–5077. [Google Scholar] [CrossRef]
- Warren, J.K. Evaporites. A Geological Compendium, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 2016. [Google Scholar]
- Solari, L.; Montalti, R.; Barra, A.; Monserrat, O.; Bianchini, S.; Crosetto, M. Multi-temporal satellite interferometry for fast-motion detection: An application to salt solution mining. Remote Sens. 2020, 12, 3919. [Google Scholar] [CrossRef]
- Scerbo, R.; Ristori, T.; Stefanini, B.; De Ranieri, S.; Barghigiani, C. Mercury assessment and evaluation of its impact on fish in the Cecina River basin (Tuscany, Italy). Environ. Pollut. 2005, 135, 179–186. [Google Scholar] [CrossRef] [PubMed]
- Masciandaro, G.; Doni, S.; Macci, C.; Peruzzi, E.; Scatena, M.; Di Giovanni, F. Fitotrattamento dei Suoli Contaminati da Hg nell’area Canova—Relazione Finale. CNR-IRET, 2019, Technical Report. Available online: https://publications.cnr.it/doc/430188 (accessed on 3 May 2024). (In Italian).
- Hojdová, M.; Rohovec, J.; Chrastný, V.; Penížek, V.; Navrátil, T. The influence of sample drying procedures on mercury concentrations analyzed in soils. Bull. Environ. Contam. Toxicol. 2015, 94, 570–576. [Google Scholar] [CrossRef] [PubMed]
- Boszke, L.; Kowalski, A.; Astel, A.; Barański, A.; Qworek, B.; Siepak, J. Mercury mobility and bioavailability in soil from contaminated area. Environ. Geol. 2008, 55, 1075–1087. [Google Scholar] [CrossRef]
- Reis, A.T.; Lopes, C.B.; Davidson, C.M.; Duarte, A.C.; Pereira, E. Extraction of mercury water-soluble fraction from soils: An optimization study. Geoderma 2014, 213, 255–260. [Google Scholar] [CrossRef]
- ISO 11265; Soil Quality—Determination of EC. HRN: Insch, UK, 2004.
- Dall’Aglio, M. Distribuzione del mercurio nelle acque superficiali. Atti Soc. Tosc. Sci. Nat. 1966, 36, 577–595. (In Italian) [Google Scholar]
- Hakanson, L. An ecological risk index for aquatic pollution control. A sedimentological approach. Water Res. 1980, 14, 975–1001. [Google Scholar] [CrossRef]
- Müller, G. Index of geoaccumulation in sediments of the Rhine River. Geojournal 1969, 2, 108–118. [Google Scholar]
- ASTM. Standard Provisional Guide for Risk-Based Corrective Action; Report E 2081-00; American Society for Testing Materials: West Conshohocken, PA, USA, 2000.
- US EPA. Soil Screening Guidance: Technical Background Document; EPA/540/R-95/128; Office of Emergency and Remedial Response, US Environmental Protection Agency: Washington, DC, USA, 1996. Available online: http://oehha.ca.gov/chemicals/mercury-inorganic (accessed on 3 May 2024).
- US EPA. Supplemental Guidance for Developing Soil Screening Levels for Superfund Sites. In Solid Waste and Remedial Response; OSWER 9355.4-24; US Environmental Protection Agency: Washington, DC, USA, 2002. [Google Scholar]
- US EPA. Regional Screening Levels (RSLs)—Generic Tables; US Environmental Protection Agency: Washington, DC, USA, 2023. Available online: https://www.epa.gov/risk (accessed on 3 May 2024).
- US EPA. Risk Assessment Guidance for Superfund—Volume I: Human Health Evaluation Manual. Part A; EPA/540/1-89/002; Office of Emergency and Remediation Response, US Environmental Protection Agency: Washington, DC, USA, 1989.
- US UT. RAIS: Risk Assessment Information System. Chemical Risk Calculator User’s Guide; University of Tennessee: Knoxville, TN, USA, 2023. Available online: https://rais.ornl.gov/tools/rais_chemical_risk_guide.html (accessed on 3 May 2024).
- US EPA. Risk Assessment Guidance for Superfund—Volume I: Human Health Evaluation Manual (Part F, Supplemental Guidance for Inhalation Risk Assessment); EPA-540-R-070-002; Office of Superfund Remediation and Technology Innovation; US Environmental Protection Agency: Washington, DC, USA, 2009.
- Cowherd, C.; Muleski, G.E.; Englehart, P.J.; Gillett, D.A. Rapid Assessment of Exposure to Particulate Emissions from Surface Contamination Sites; PB85-192219; Midwest Research Institute: Kansas, MO, USA, 1985. [Google Scholar]
- Jury, W.A.; David Russo, D.; Streile, G.; El Abd, H. Evaluation of volatilization by organic chemicals residing below the soil surface. Water Resour. Res. 1990, 26, 13–20. [Google Scholar] [CrossRef]
- US EPA. Regional Screening Level (RSLs)—Equations; US Environmental Protection Agency: Washington, DC, USA, 2023. Available online: https://www.epa.gov/risk/regional-screening-levels-rsls-equations#res (accessed on 3 May 2024).
- US EPA. Human Health Evaluation Manual, Supplemental Guidance: Update of Standard Default Exposure Factors; OSWER directive 9200.1–120; Office of Solid Waste and Emergency Response; US Environmental Protection Agency: Washington, DC, USA, 2014.
- US TCEQ. TRRP PCL Tables. Texas Commission of Environmental Quality. 2023. Available online: https://www.tceq.texas.gov/downloads/remediation/trrp/march-2023-pcl-tables.pdf (accessed on 3 May 2024).
- Park, M.O.; Kim, M.H.; Hong, Y. The kinetics of mercury vaporization in soil during low-temperature thermal treatment. Geoderma 2020, 363, 114150. [Google Scholar] [CrossRef]
- OEHHA. Technical Supporting Document for Noncancer RELs, Appendix D1; California Office Environmental Health Hazard Assessment: Sacramento, CA, USA, 2008. Available online: https://oehha.ca.gov/chemicals/mercury-inorganic (accessed on 3 May 2024).
- US UT. RAIS: Risk Assessment Information System. Rais Toxicity Value and Physical Parameters Search; University of Tennessee: Knoxville, TN, USA, 2023. Available online: https://rais.ornl.gov/cgi-bin/tools/TOX_search?select=chemtox (accessed on 3 May 2024).
- Montoya, A.J.; Lena, J.C.; Windmöller, C.C. Adsorption of gaseous elemental mercury on soils: Influence of chemical and/or mineralogical characteristics. Ecotoxicol. Environ. Saf. 2019, 170, 98–106. [Google Scholar] [CrossRef]
- Eloussaief, M.; Sdiri, A.; Benzina, M. Modelling the adsorption of mercury onto natural and aluminium pillared clays. Environ. Sci. Pollut. Res. 2013, 20, 469–479. [Google Scholar] [CrossRef] [PubMed]
- Rinklebe, J.; During, A.; Overesch, M.; Du Laing, G.; Wennrich, R.; Stärk, H.J.; Mothes, S. Dynamics of mercury fluxes and their controlling factors in large Hg-polluted floodplain areas. Environ. Pollut. 2010, 158, 308–318. [Google Scholar] [CrossRef] [PubMed]
- Johnson, D.W.; Lindberg, S.E. The biogeochemical cycling of Hg in forests: Alternative methods for quantifying total deposition and soil emission. Water Air Soil Pollut. 1995, 80, 1069–1077. [Google Scholar] [CrossRef]
- Svensson, M.; Düker, A.; Allard, B. Formation of cinnabar—Estimation of favorable conditions in a proposed Swedish repository. J. Hazard. Mater. 2006, 136, 830–836. [Google Scholar] [CrossRef] [PubMed]
- Zhu, W.; Li, Z.; Li, P.; Sommar, J.; Fu, X.; Feng, X.; Reis, A.T.; Pereira, E. Legacy Mercury Re-emission and Subsurface Migration at Contaminated Sites Constrained by Hg Isotopes and Chemical Speciation. Environ. Sci. Technol. 2024, 58, 5336–5346. [Google Scholar] [CrossRef]
- Johnson, P.C.; Ettinger, R.A. Heuristic model for predicting the intrusion rate of contaminant vapors into buildings. Environ. Sci. Technol. 1991, 8, 1445–1452. [Google Scholar] [CrossRef]
Hgtot (mg/kg) | 2000 Sampling | 2009 Sampling | 2023 Sampling |
---|---|---|---|
n° | 22 | 53 | 24 |
Min | 0.13 | 0.10 | 0.10 |
Max | 334 | 258 | 25.5 |
Mean | 50.5 | 7.8 | 2.8 |
Median | 21.7 | 0.2 | 0.2 |
SD | 91.6 | 36 | 6.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arrighi, S.; Franceschini, F.; Petrini, R.; Fornasaro, S.; Ghezzi, L. The Legacy of Hg Contamination in a Past Mining Area (Tuscany, Italy): Hg Speciation and Health Risk Assessment. Toxics 2024, 12, 436. https://doi.org/10.3390/toxics12060436
Arrighi S, Franceschini F, Petrini R, Fornasaro S, Ghezzi L. The Legacy of Hg Contamination in a Past Mining Area (Tuscany, Italy): Hg Speciation and Health Risk Assessment. Toxics. 2024; 12(6):436. https://doi.org/10.3390/toxics12060436
Chicago/Turabian StyleArrighi, Simone, Fabrizio Franceschini, Riccardo Petrini, Silvia Fornasaro, and Lisa Ghezzi. 2024. "The Legacy of Hg Contamination in a Past Mining Area (Tuscany, Italy): Hg Speciation and Health Risk Assessment" Toxics 12, no. 6: 436. https://doi.org/10.3390/toxics12060436
APA StyleArrighi, S., Franceschini, F., Petrini, R., Fornasaro, S., & Ghezzi, L. (2024). The Legacy of Hg Contamination in a Past Mining Area (Tuscany, Italy): Hg Speciation and Health Risk Assessment. Toxics, 12(6), 436. https://doi.org/10.3390/toxics12060436