Mercury Dynamics in the Sea of Azov: Insights from a Mass Balance Model
Abstract
:1. Introduction
2. Materials and Methods
2.1. Theory
2.2. Site Description and Model Input Variables
2.3. Assumptions and Limitations
3. Results and Discussion
3.1. Environmental Implications
3.2. State of Mercury Pollution in the SoA Region
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- AEEA. Mercury in Europe’s Environment. A Priority for European and Global Action; European Environment Agency: Copenhagen, Denmark, 2018; ISBN 9789292139841. [Google Scholar]
- Panov, B.S.; Dudik, A.M.; Shevchenko, O.A.; Matlak, E.S. On Pollution of the Biosphere in Industrial Areas: The Example of the Donets Coal Basin. Int. J. Coal Geol. 1999, 40, 199–210. [Google Scholar] [CrossRef]
- Diripasko, O.A.; Bogutskaya, N.G.; Dem’yanenko, K.V.; Izergin, L.V. Sea of Azov: A Brief Review of the Environment and Fishery. Aquat. Ecosyst. Health Manag. 2015, 18, 184–194. [Google Scholar] [CrossRef]
- Korablina, I.V.; Kotov, S.V.; Barabashin, T.O. Azov Roach as an Indicator of Pollution of the Ecosystem of the Sea of Azov. Tr. Vniro 2019, 178, 84–103. [Google Scholar] [CrossRef]
- Kuznetsov, A.N.; Fedorov, Y.A.; Yaroslavtsev, V.M. Technogenic and Natural Radionuclides in the Bottom Sediments of the Sea of Azov: Regularities of Distribution and Application to the Study of Pollutants Accumulation Chronology. In IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2018; Volume 107, p. 012063. [Google Scholar] [CrossRef]
- Nikanorov, A.M.; Khoruzhaya, T.A. Tendencies of Long-Term Changes in Water Quality of Water Bodies in the South of Russia. Geogr. Nat. Resour. 2012, 33, 125–130. [Google Scholar] [CrossRef]
- Bank, M.S. The Mercury Science-Policy Interface: History, Evolution and Progress of the Minamata Convention. Sci. Total Environ. 2020, 722, 137832. [Google Scholar] [CrossRef]
- Environmental Protection in the Ukraine. Econ. Bull. 1992, 29, 1–4. [CrossRef]
- Zolkos, S.; Zhulidov, A.V.; Gurtovaya, T.Y.; Gordeev, V.V.; Berdnikov, S.; Pavlova, N.; Kalko, E.A.; Kuklina, Y.A.; Zhulidov, D.A.; Kosmenko, L.S.; et al. Multidecadal Declines in Particulate Mercury and Sediment Export from Russian Rivers in the Pan-Arctic Basin. Proc. Natl. Acad. Sci. USA 2022, 119, e2119857119. [Google Scholar] [CrossRef]
- Mikhailenko, A.; Dotsenko, I.; Fedorov, Y. Levels of Mercury Content in Russian Federation Rivers. In Proceedings of the 19th International Multidisciplinary Scientific GeoConference SGEM 2019, Albena, Bulgaria, 28 June–6 July 2019; pp. 439–445. [Google Scholar]
- Shulyak, S.; Shevchenko, L.; Mykhalska, V.; Kaminska, O.; Gaidei, O.; Kovalenko, V.; Balatskyi, Y.; Kryvenok, M.; Boyarchuk, S. Quality and Safety of Tap Water in Selected Ukrainian Regions. Ukr. J. Ecol. 2021, 11, 274–283. [Google Scholar] [PubMed]
- Azimov, A.; Nekrasova, L.; Gura, D. Assessment of Groundwater Potability for the Population: Geochemical Evaluation of Aquifers in the City of Krasnodar. J. Water Land Dev. 2021, 52, 34–43. [Google Scholar] [CrossRef]
- Gworek, B.; Dmuchowski, W.; Baczewska-Dąbrowska, A.H. Mercury in the Terrestrial Environment: A Review. Environ. Sci. Eur. 2020, 32, 128. [Google Scholar] [CrossRef]
- Gworek, B.; Bemowska-Kałabun, O.; Kijeńska, M.; Wrzosek-Jakubowska, J. Mercury in Marine and Oceanic Waters—A Review. Water Air Soil Pollut. 2016, 227, 371. [Google Scholar] [CrossRef] [PubMed]
- Blust, R.; Baillieul, M.; Decleir, W. Effect of Total Cadmium and Organic Complexing on the Uptake of Cadmium by the Brine Shrimp, Artemia Franciscana. Mar. Biol. 1995, 123, 65–73. [Google Scholar] [CrossRef]
- Gaffney, J.; Marley, N. In-Depth Review of Atmospheric Mercury: Sources, Transformations, and Potential Sinks. Energy Emiss. Control. Technol. 2014, 2, 1–21. [Google Scholar] [CrossRef]
- Schuster, P.F.; Krabbenhoft, D.P.; Naftz, D.L.; Cecil, L.D.; Olson, M.L.; Dewild, J.F.; Susong, D.D.; Green, J.R.; Abbott, M.L. Atmospheric Mercury Deposition during the Last 270 Years: A Glacial Ice Core Record of Natural and Anthropogenic Sources. Environ. Sci. Technol. 2002, 36, 2303–2310. [Google Scholar] [CrossRef] [PubMed]
- Narukawa, M.; Sakata, M.; Marumoto, K.; Asakura, K. Air-Sea Exchange of Mercury in Tokyo Bay. J. Ocean. 2006, 62, 249–257. [Google Scholar] [CrossRef]
- Ravichandran, M. Interactions between Mercury and Dissolved Organic Matter—A Review. Chemosphere 2004, 55, 319–331. [Google Scholar] [CrossRef] [PubMed]
- Gade, C.; Mbadugha, L.; Paton, G. Use of Diffusive Gradient in Thin-Films (DGTs) to Advance Environmental Mercury Research: Development, Growth, and Tomorrow. Trends Environ. Anal. Chem. 2024, 42, e00230. [Google Scholar] [CrossRef]
- Gade, C.; von Hellfeld, R.; Mbadugha, L.; Paton, G. Mercury Fingerprint: A Comparative Evaluation of Lability in North Sea Drill Cuttings. Mar. Pollut. Bull. 2024, 204, 116518. [Google Scholar] [CrossRef] [PubMed]
- Gilmour, C.C.; Podar, M.; Bullock, A.L.; Graham, A.M.; Brown, S.D.; Somenahally, A.C.; Johs, A.; Hurt, R.A.; Bailey, K.L.; Elias, D.A. Mercury Methylation by Novel Microorganisms from New Environments. Environ. Sci. Technol. 2013, 47, 11810–11820. [Google Scholar] [CrossRef]
- von Hellfeld, R.; Gade, C.; Doeschate, M.T.; Davison, N.J.; Brownlow, A.; Mbadugha, L.; Hastings, A.; Paton, G. High Resolution Visualisation of Tiemannite Microparticles, Essential in the Detoxification Process of Mercury in Marine Mammals. Environ. Pollut. 2023, 342, 123027. [Google Scholar] [CrossRef]
- Di Guardo, A.; Gouin, T.; MacLeod, M.; Scheringer, M. Environmental Fate and Exposure Models: Advances and Challenges in 21 St Century Chemical Risk Assessment. Environ. Sci. Process Impacts 2018, 20, 58–71. [Google Scholar] [CrossRef] [PubMed]
- Mackay, D.; Paterson, S. Calculating Fugacity. Environ. Sci. Technol. 1981, 15, 1006–1014. [Google Scholar] [CrossRef] [PubMed]
- Ethier, A.L.M.; Mackay, D.; Toose-Reid, L.K.; O’Driscoll, N.J.; Scheuhammer, A.M.; Lean, D.R.S. The Development and Application of a Mass Balance Model for Mercury (Total, Elemental and Methyl) Using Data from a Remote Lake (Big Dam West, Nova Scotia, Canada) and the Multi-Species Multiplier Method. Appl. Geochem. 2008, 23, 467–481. [Google Scholar] [CrossRef]
- Diamond, M.; Ganapathy, M.; Peterson, S.; Mach, C. Mercury Dynamics in the Lahontan Reservoir, Nevada: Application of the QWASI Fugacity/Aquivalence Multispecies Model. Water Air Soil Pollut. 2000, 117, 133–156. [Google Scholar] [CrossRef]
- Guney, M.; Kumisbek, A.; Akimzhanova, Z.; Kismelyeva, S.; Beisova, K.; Zhakiyenova, A.; Inglezakis, V.; Karaca, F. Environmental Partitioning, Spatial Distribution, and Transport of Atmospheric Mercury (Hg) Originating from a Site of Former Chlor-Alkali Plant. Atmosphere 2021, 12, 275. [Google Scholar] [CrossRef]
- Ethier, A.L.M.; Atkinson, J.F.; DePinto, J.V.; Lean, D.R.S. Estimating Mercury Concentrations and Fluxes in the Water Column and Sediment of Lake Ontario with HERMES Model. Environ. Pollut. 2012, 161, 335–342. [Google Scholar] [CrossRef] [PubMed]
- Ethier, A.; Lean, D.; Scheuhammer, A.; Bodek, T.; Sosso-Kolle, K. Predicting Mercury Concentrations and Fluxes in the Water Column and Sediment of Lakes with a Limited Dataset. Environ. Toxicol. Chem. 2010, 29, 1457–1465. [Google Scholar] [CrossRef] [PubMed]
- Kosarev, A.N.; Kostianoy, A.G.; Shiganova, T.A. The Black Sea Environment. In The Handbook of Environmental Chemistry; Kostianoy, A.G., Kosarev, A.N., Eds.; Springer: Berlin/Heidelberg, Germany, 2008; ISBN 978-3-540-74291-3. [Google Scholar]
- Korablina, I.V.; Sevostyanova, M.; Barabashin, T.; Gevorgyan, J.; Katalevsky, N.; Evseeva, A. Heavy Metals in the Ecosystem of the Azov Sea. Probl. Fish. 2018, 19, 509–521. [Google Scholar] [CrossRef]
- Parnis, J.M.; Mackay, D. Multimedia Environmental Models, 3rd ed.; CRC Press: Boca Raton, FL, USA, 2020; ISBN 9780367809829. [Google Scholar]
- Mackay, D.; Diamond, M. Application of the QWASI (Quantitative Water Air Sediment Interaction) Fugacity Model to the Dynamics of Organic and Inorganic Chemicals in Lakes. Chemosphere 1989, 18, 1343–1365. [Google Scholar] [CrossRef]
- Diamond, M.L.; Mackay, D.; Welbourn, P.M. Models of Multi-Media Partitioning of Multi-Species Chemicals: The Fugacity/Aquivalence Approach. Chemosphere 1992, 25, 1907–1921. [Google Scholar] [CrossRef]
- Toose, L.K.; Mackay, D. Adaptation of Fugacity Models to Treat Speciating Chemicals with Constant Species Concentration Ratios. Environ. Sci. Technol. 2004, 38, 4619–4626. [Google Scholar] [CrossRef]
- Sorokina, V.V.; Berdnikov, S.V. Nutrient Loading of the Don and Kuban on the Ecosystem of the Sea of Azov. Water Resour. 2018, 45, 920–934. [Google Scholar] [CrossRef]
- Magritskii, D. V Variations in Sediment Runoff in the Lower Reaches and the Delta of the Kuban River in the XX–XXI Centuries. Vodn. Resur. 2011, 38, 661–671. [Google Scholar] [CrossRef]
- Bočková, S.; Bohovic, R.; Hrnčiar, M.; Muroň, M.; Filippovová, P.; Skalský, M.; Soroka, M. Air Pollution in Ukraine from Space; Arnika—Citizen Support Centre: Prague, Czech Republic, 2020. [Google Scholar]
- Sorokina, V.; Berdnikov, S.; Kulygin, V. Total Suspended Solids, Particulate Organic Matter and Secchi Depth in The Sea of Azov. In Proceedings of the Geoinformation Sciences and Environmental Development: New Approaches, Methods, Technologies, Limassol, Cyprus, 5–9 May 2014; pp. 93–96. [Google Scholar]
- Mikhailenko, A.; Dotsenko, I.; Ovsepyan, A.; Zimovets, A. Behaviour and Distribution of Heavy Metals at the Boundary of “Water-Bottom Sediments” in Mouth Zones of Rivers. E3S Web Conf. 2021, 265, 02016. [Google Scholar] [CrossRef]
- Fedorov, Y.A.; Dotsenko, I.V.; Kuznetsov, A.N.; Belov, A.A.; Loginov, E.A. Regularities of Corg Distribution in Bottom Sediments of the Russian Part of the Sea of Azov. Oceanology 2009, 49, 211–217. [Google Scholar] [CrossRef]
- Berdnikov, S.V.; Sorokina, V.V. Influence of Climate and Anthropogenous Activity on the Terrigenous Sedimentation Dynamics of the Sea of Azov in the Second Part of the XX Th Century. In Proceedings of the Environmental Problems in Coastal Regions VII, Cheltenham, UK, 9 May 2008; WIT Press: Southampton, UK, 2008; Volume I, pp. 171–178. [Google Scholar]
- Debolskaya, E.I.; Yakushev, E.V.; Kuznetsov, I.S. Analysis of the Hydrophysical Structure of the Sea of Azov in the Period of the Bottom Anoxia Development. J. Mar. Syst. 2008, 70, 300–307. [Google Scholar] [CrossRef]
- worldseatemp.com. Available online: http://worldseatemp.com/en/ (accessed on 23 November 2022).
- Fedorov, Y.; Mikhailenko, A.; Dmitrik, L.; Dotsenko, I.; Solodko, D.; Chepurnaya, V. Mercury and Iron in Atmospheric Precipitation of the Azov Sea Basin. Limnol. Freshw. Biol. 2020, 9, 838–839. [Google Scholar] [CrossRef]
- Loux, N.T. Diel Temperature Effects on the Exchange of Elemental Mercury between the Atmosphere and Underlying Waters. Environ. Toxicol. Chem. Int. J. 2000, 19, 1191–1198. [Google Scholar] [CrossRef]
- MacLeod, M.; McKone, T.E.; Mackay, D. Mass Balance for Mercury in the San Francisco Bay Area. Environ. Sci. Technol. 2005, 39, 6721–6729. [Google Scholar] [CrossRef]
- Shadrin, N.; Stetsiuk, A.; Latushkin, A.; Anufriieva, E. Mercury in the World’s Largest Hypersaline Lagoon Bay Sivash, the Sea of Azov. Environ. Sci. Pollut. Res. 2021, 28, 28704–28712. [Google Scholar] [CrossRef]
- WHO. Chapter 6.9 Mercury General Description. In Air Quality Guidelines for Europe; World Health Organization: Copenhagen, Denmark, 2000; pp. 1–15. [Google Scholar]
- Fedorov, Y.; Dotsenko, I.; Mikhailenko, A. The Role of the Hydrological Factors in the Formation of Field Concentrations and Fluxes of Reduced Gases and Mercury in the Sea of Azov. In Proceedings of the International Multidisciplinary Scientific GeoConference SGEM 2011, Albena, Bulgaria, 20–25 June 2011; pp. 717–722. [Google Scholar]
- Bufetova, M.V. Pollution of Sea of Azov with Heavy Metals. South Russ. Ecol. Dev. 2015, 10, 112. [Google Scholar] [CrossRef]
- Burylin, M.Y.; Romanovskiy, K.A.; Temerdashev, Z.A.; Galai, E.F. Determination of Mercury in Sediments by Slurry Sampling Electrothermal Atomic Absorption Spectrometry. J. Anal. Chem. 2019, 74, 1184–1191. [Google Scholar] [CrossRef]
- Hladil, J.; Strnad, L.; Šálek, M.; Jankovská, V.; Šimandl, P.; Schwarz, J.; Smolík, J.; Lisá, L.; Koptíková, L.; Rohovec, J.; et al. An Anomalous Atmospheric Dust Deposition Event over Central Europe, 24 March 2007, and Fingerprinting of the SE Ukrainian Source. Bull. Geosci. 2008, 175–206. [Google Scholar] [CrossRef]
- Loux, N.T. A Critical Assessment of Elemental Mercury Air/Water Exchange Parameters. Chem. Speciat. Bioavailab. 2004, 16, 127–138. [Google Scholar] [CrossRef]
- Andersson, M.E.; Gårdfeldt, K.; Wängberg, I.; Strömberg, D. Determination of Henry’s Law Constant for Elemental Mercury. Chemosphere 2008, 73, 587–592. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zhang, P.; Song, Z.; Huang, S.; Yuan, T.; Wu, P.; Shah, V.; Liu, M.; Chen, L.; Wang, X.; et al. An Updated Global Mercury Budget from a Coupled Atmosphere-Land-Ocean Model: 40% More Re-Emissions Buffer the Effect of Primary Emission Reductions. One Earth 2023, 6, 316–325. [Google Scholar] [CrossRef]
- Kurilov, P.I.; Kruglyakova, R.P.; Savitskaya, N.I.; Fedotov, P.S. Fractionation and Speciation Analysis of Heavy Metals in the Azov Sea Bottom Sediments. J. Anal. Chem. 2009, 64, 738–745. [Google Scholar] [CrossRef]
- Sazykina, M.; Barabashin, T.; Konstantinova, E.; Al-Rammahi, A.A.K.; Pavlenko, L.; Khmelevtsova, L.; Karchava, S.; Klimova, M.; Mkhitaryan, I.; Khammami, M.; et al. Non-Corresponding Contaminants in Marine Surface Sediments as a Factor of ARGs Spread in the Sea of Azov. Mar. Pollut. Bull. 2022, 184, 114196. [Google Scholar] [CrossRef]
- von Hellfeld, R.; Gade, C.; Koppel, D.J.; Walters, W.J.; Kho, F.; Hastings, A. An Approach to Assess Potential Environmental Mercury Release, Food Web Bioaccumulation, and Human Dietary Methylmercury Uptake from Decommissioning Offshore Oil and Gas Infrastructure. J. Hazard. Mater. 2023, 452, 131298. [Google Scholar] [CrossRef]
- OSPAR. Assessment of the Disturbance of Drill Cuttings during Decommissioning; OSPAR: London, UK, 2019. [Google Scholar]
- CCME. Canadian Sediment Quality Guidelines for the Protection of Aquatic Life: Mercury; CCME: Winnipeg, MB, Canada, 1999. [Google Scholar]
- Bjerregaard, P.; Jensen, C.L.; Juhl, A.V.R.; Markussen, A.J.R.; Poulsen, S.R. In Search of Mercury Lost from Sediments in a Previously Contaminated Coastal Area, Harboøre Tange, Denmark. Bull. Environ. Contam. Toxicol. 2023, 111, 54. [Google Scholar] [CrossRef]
- Bjerregaard, P.; Schmidt, T.G.; Mose, M.P. Elevated Mercury Concentrations in Biota despite Reduced Sediment Concentrations in a Contaminated Coastal Area, Harboøre Tange, Denmark. Environ. Pollut. 2020, 260, 113985. [Google Scholar] [CrossRef] [PubMed]
- Bravo, A.G.; Cosio, C.; Amouroux, D.; Zopfi, J.; Chevalley, P.-A.; Spangenberg, J.E.; Ungureanu, V.-G.; Dominik, J. Extremely Elevated Methyl Mercury Levels in Water, Sediment and Organisms in a Romanian Reservoir Affected by Release of Mercury from a Chlor-Alkali Plant. Water Res. 2014, 49, 391–405. [Google Scholar] [CrossRef] [PubMed]
- Bulgakova, T.I.; Kulba, S.N.; Piatinskii, M.M. Modeling for Scenarios for Stock Recovery of Russian Sturgeon Acipenser Gueldenstaedtii in the Sea of Azov in the Absence of Natural Reproduction. J. Ichthyol. 2022, 62, 254–265. [Google Scholar] [CrossRef]
- UNEP. The Environmental Impact of the Conflict in Ukraine; UNEP: Nairobi, Kenya, 2022; ISBN 9789280739695. [Google Scholar]
- Birkun, A.A.; Frantzis, A. Phocoena Phocoena Ssp. Relicta. The IUCN Red List of Threatened Species 2008: E.T17030A6737111’. Available online: http://dx.doi.org/10.2305/IUCN.UK.2008.RLTS.T17030A6737111.en (accessed on 3 February 2024).
- Kershaw, J.L.; Hall, A.J. Mercury in Cetaceans: Exposure, Bioaccumulation and Toxicity. Sci. Total Environ. 2019, 694, 133683. [Google Scholar] [CrossRef]
- ECE. Environmental Performance Reviews: Ukraine; ECE: New York, NY, USA; Geneva, Switzerland, 2007; ISBN 9789211169584. [Google Scholar]
- Panasiuk, D. Inventory of Mercury Emission to Air, Water and Soil in Poland for Year 2013. Proc. ECOpole 2016, 9, 14–17. [Google Scholar] [CrossRef]
- Pacyna, E.G.; Pacyna, J.M.; Fudala, J.; Strzelecka-Jastrzab, E.; Hlawiczka, S.; Panasiuk, D. Mercury Emissions to the Atmosphere from Anthropogenic Sources in Europe in 2000 and Their Scenarios until 2020. Sci. Total Environ. 2006, 370, 147–156. [Google Scholar] [CrossRef] [PubMed]
- Kolker, A.; Panov, B.S.; Panov, Y.B.; Landa, E.R.; Conko, K.M.; Korchemagin, V.A.; Shendrik, T.; McCord, J.D. Mercury and Trace Element Contents of Donbas Coals and Associated Mine Water in the Vicinity of Donetsk, Ukraine. Int. J. Coal Geol. 2009, 79, 83–91. [Google Scholar] [CrossRef]
- Conko, K.M.; Landa, E.R.; Kolker, A.; Kozlov, K.; Gibb, H.J.; Centeno, J.A.; Panov, B.S.; Panov, Y.B. Arsenic and Mercury in the Soils of an Industrial City in the Donets Basin, Ukraine. Soil Sediment Contam. Int. J. 2013, 22, 574–593. [Google Scholar] [CrossRef]
- Babaev, M.V.; Galetskiy, L.S.; Gosk, E.; Magmedov, V.G.; Madsen, B.; Yakovlev, E.A. Groundwater Quality in Donbass Basin of Ukraine: Pollution Sources Identification and Water Resources Planning and Management. In Building Partnerships; American Society of Civil Engineers: Reston, VA, USA, 2000; pp. 1–10. [Google Scholar]
- Ryzhenko, N.; Zhavryda, D.; Bokhonov, Y.; Ryzhenko, D. Mercury Contamination in Soil, Water, Plants, and Hydrobionts in Kyiv and the Kyiv Region. Pol. J. Soil Sci. 2021, 54, 185. [Google Scholar] [CrossRef]
- ACAP/UNEP. Assessment of Mercury Releases from the Russian Federation; ACAP/UNEP: Bonn, Germany, 2005. [Google Scholar]
- Pavlenko, L.F.; Korablina, I.V.; Barabashin, T.O.; Ekilik, V.S. Priority Toxicants in Elements of Lower Don Ecosystem. Water Resour. 2022, 49, 440–447. [Google Scholar] [CrossRef]
- Mikhailenko, A.; Fedorov, Y.; Kostenko, D. Mercury Behaviour Features in Soils and Bottom Sediments of Technogenic Landscapes Water Bodies in the Rostov Region. E3S Web Conf. 2024, 480, 02004. [Google Scholar] [CrossRef]
- Jonsson, S.; Skyllberg, U.; Nilsson, M.B.; Westlund, P.; Shchukarev, A.; Lundberg, E.; Björn, E. Mercury Methylation Rates for Geochemically Relevant Hg II Species in Sediments. Environ. Sci. Technol. 2012, 46, 11653–11659. [Google Scholar] [CrossRef] [PubMed]
- Tarasova, N.; Makarova, A.; Fantke, P.; Shlyakhov, P. Estimating Chemical Footprint: Contamination with Mercury and Its Compounds. Pure Appl. Chem. 2018, 90, 857–868. [Google Scholar] [CrossRef]
- Zalakeviciute, R.; Mejia, D.; Alvarez, H.; Bermeo, X.; Bonilla-Bedoya, S.; Rybarczyk, Y.; Lamb, B. War Impact on Air Quality in Ukraine. Sustainability 2022, 14, 13832. [Google Scholar] [CrossRef]
- Yakovliev, Y.; Chumachenko, S. Ecological Threats in Donbas, Ukraine; Centre for Humanitarian Dialogue: Geneva, Switzerland, 2017. [Google Scholar]
- Stelmakh, V.; Melniichuk, M.; Melnyk, O.; Tokarchuk, I. Hydro-Ecological State of Ukrainian Water Bodies Under the Influence of Military Actions. Rocz. Ochr. Sr. 2023, 25, 174–187. [Google Scholar] [CrossRef]
- OSCE. Environmental Assessment and Recovery Priorities; OSCE: Helsinki, Finland, 2017; ISBN 9789662310870. [Google Scholar]
- Manduca, P.; Al Baraquni, N.; Al Baraquni, L.; Abu Abadi, D.; Abdallah, H.; Hamad, G.A.; Mosa, T.A.; Balousha, S.; Miqdad, H.; Mohammed, W.; et al. Hospital Centered Surveillance of Births in Gaza, Palestine, 2011–2017 and Heavy Metal Contamination of the Mothers Reveals Long-Term Impact of Wars. Reprod. Toxicol. 2019, 86, 23–32. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gade, C.; von Hellfeld, R.; Mbadugha, L.; Paton, G. Mercury Dynamics in the Sea of Azov: Insights from a Mass Balance Model. Toxics 2024, 12, 417. https://doi.org/10.3390/toxics12060417
Gade C, von Hellfeld R, Mbadugha L, Paton G. Mercury Dynamics in the Sea of Azov: Insights from a Mass Balance Model. Toxics. 2024; 12(6):417. https://doi.org/10.3390/toxics12060417
Chicago/Turabian StyleGade, Christoph, Rebecca von Hellfeld, Lenka Mbadugha, and Graeme Paton. 2024. "Mercury Dynamics in the Sea of Azov: Insights from a Mass Balance Model" Toxics 12, no. 6: 417. https://doi.org/10.3390/toxics12060417
APA StyleGade, C., von Hellfeld, R., Mbadugha, L., & Paton, G. (2024). Mercury Dynamics in the Sea of Azov: Insights from a Mass Balance Model. Toxics, 12(6), 417. https://doi.org/10.3390/toxics12060417