Testosterone Mediates Reproductive Toxicity in Caenorhabditis elegans by Affecting Sex Determination in Germ Cells through nhr-69/mpk-1/fog-1/3
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Nematodes and Cultured Conditions
2.2. Preparation and Exposure of the Toxic Solution
2.3. Brood Size
2.4. Generation Time Determination
2.5. Gonadal Developmental Stages
2.6. Germ Cell and Sperm Cell Count
2.7. Molecular Docking
2.8. Quantitative Real-Time PCR (qRT-PCR) Was Used for Expression Analysis
2.9. Fitting of Benchmark Dose for Reproductive Toxicity
2.10. Statistic Analysis
3. Results
3.1. Effect of T on Reproductive Capacity
3.2. Effect of T on Gonadal Development
3.3. MPK-1 Has a Strong Binding Capacity to NHR-69
3.4. Effect of T on Expression of nhr-69 Receptor and Related Sex-Determining Genes
3.5. Benchmark Dose Analysis of Toxicity Data of T
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tao, H.; Shi, J.; Guo, W.; Zhang, J.; Ge, H.; Wang, Y. Environmental fate and toxicity of androgens: A critical review. Environ. Res. 2022, 214 Pt 2, 113849. [Google Scholar] [CrossRef]
- Zhang, J.N.; Ying, G.G.; Yang, Y.Y.; Liu, W.R.; Liu, S.S.; Chen, J.; Liu, Y.S.; Zhao, J.L.; Zhang, Q.Q. Occurrence, fate and risk assessment of androgens in ten wastewater treatment plants and receiving rivers of South China. Chemosphere 2018, 201, 644–654. [Google Scholar] [CrossRef]
- Radl, V.; Pritsch, K.; Munch, J.C.; Schloter, M. Structural and functional diversity of microbial communities from a lake sediment contaminated with trenbolone, an endocrine-disrupting chemical. Environ. Pollut. 2005, 137, 345–353. [Google Scholar] [CrossRef]
- Ojoghoro, J.O.; Scrimshaw, M.D.; Sumpter, J.P. Steroid hormones in the aquatic environment. Sci. Total Environ. 2021, 792, 148306. [Google Scholar] [CrossRef]
- Wei, H.; Yanxia, L.; Ming, Y. Effects, sources and behaviors of environmental androgens. Acta Ecol. Sin. 2010, 30, 1594–1603. [Google Scholar]
- Liu, S.; Ying, G.G.; Zhou, L.J.; Zhang, R.Q.; Chen, Z.F.; Lai, H.J. Steroids in a typical swine farm and their release into the environment. Water Res. 2012, 46, 3754–3768. [Google Scholar] [CrossRef]
- Lange, I.G.; Daxenberger, A.; Schiffer, B.; Witters, H.; Ibarreta, D.; Meyer, H.H.D. Sex hormones originating from different livestock production systems: Fate and potential disrupting activity in the environment. Anal. Chim. Acta 2002, 473, 27–37. [Google Scholar] [CrossRef]
- Lorenzen, A.; Hendel, J.G.; Conn, K.L.; Bittman, S.; Kwabiah, A.B.; Lazarovitz, G.; Masse, D.; McAllister, T.A.; Topp, E. Survey of hormone activities in municipal biosolids and animal manures. Environ. Toxicol. 2004, 19, 216–225. [Google Scholar] [CrossRef]
- Jarvinen, E.; Kidron, H.; Finel, M. Human efflux transport of testosterone, epitestosterone and other androgen glucuronides. J. Steroid. Biochem. Mol. Biol. 2020, 197, 105518. [Google Scholar] [CrossRef] [PubMed]
- de Jong, B.; Lens, L.; Amininasab, S.M.; van Oers, K.; Darras, V.M.; Eens, M.; Pinxten, R.; Komdeur, J.; Groothuis, T.G. Effects of experimentally sustained elevated testosterone on incubation behaviour and reproductive success in female great tits (Parus major). Gen. Comp. Endocrinol. 2016, 230–231, 38–47. [Google Scholar] [CrossRef] [PubMed]
- Finlay-Moore, O.; Hartel, P.G.; Cabrera, M.L. 17β-Estradiol and Testosterone in Soil and Runoff from Grasslands Amended with Broiler Litter. J. Environ. Qual. 2000, 29, 1604–1611. [Google Scholar] [CrossRef]
- Williams, M.; Kookana, R.S.; Mehta, A.; Yadav, S.K.; Tailor, B.L.; Maheshwari, B. Emerging contaminants in a river receiving untreated wastewater from an Indian urban centre. Sci. Total Environ. 2019, 647, 1256–1265. [Google Scholar] [CrossRef] [PubMed]
- Vulliet, E.; Wiest, L.; Baudot, R.; Grenier-Loustalot, M.F. Multi-residue analysis of steroids at sub-ng/L levels in surface and ground-waters using liquid chromatography coupled to tandem mass spectrometry. J. Chromatogr. A 2008, 1210, 84–91. [Google Scholar] [CrossRef] [PubMed]
- Barbosa, I.R.; Nogueira, A.J.; Soares, A.M. Acute and chronic effects of testosterone and 4-hydroxyandrostenedione to the crustacean Daphnia magna. Ecotoxicol. Environ. Saf. 2008, 71, 757–764. [Google Scholar] [CrossRef] [PubMed]
- Fu, M.; Deng, B.; Lu, H.; Yao, W.; Su, S.; Wang, D. The Bioaccumulation and Biodegradation of Testosterone by Chlorella vulgaris. Int. J. Environ. Res. Public Health 2019, 16, 1253. [Google Scholar] [CrossRef]
- Ding, J.; Sun, H.; Liang, A.; Liu, J.; Song, L.; Lv, M.; Zhu, D. Testosterone amendment alters metabolite profiles of the soil microbial community. Environ. Pollut. 2021, 272, 115928. [Google Scholar] [CrossRef] [PubMed]
- Tominaga, N.; Ura, K.; Kawakami, M.; Kawaguchi, T.; Kohra, S.; Mitsui, Y.; Iguchi, T.; Arizono, K. Caenorhabditis elegans Responses to Specific Steroid Hormones. J. Health Sci. 2003, 49, 28–33. [Google Scholar] [CrossRef]
- Hunt, P.R. The C. elegans model in toxicity testing. J. Appl. Toxicol. 2017, 37, 50–59. [Google Scholar] [CrossRef] [PubMed]
- Kaletta, T.; Hengartner, M.O. Finding function in novel targets: C. elegans as a model organism. Nat. Rev. Drug Discov. 2006, 5, 387–398. [Google Scholar] [CrossRef]
- Zhang, H.; Liu, T.; Song, X.; Zhou, Q.; Tang, J.; Sun, Q.; Pu, Y.; Yin, L.; Zhang, J. Study on the reproductive toxicity and mechanism of tri-n-butyl phosphate (TnBP) in Caenorhabditis elegans. Ecotoxicol. Environ. Saf. 2021, 227, 112896. [Google Scholar] [CrossRef]
- Avila, D.S.; Adams, M.R.; Chakraborty, S.; Aschner, M. Caenorhabditis elegans as a model to assess reproductive and developmental toxicity. In Reproductive and Developmental Toxicology; Elsevier Inc.: Frankfort, KY, USA, 2011; Volume 16, pp. 193–205. [Google Scholar] [CrossRef]
- Li, J.; Qu, M.; Wang, M.; Yue, Y.; Chen, Z.; Liu, R.; Bu, Y.; Li, Y. Reproductive toxicity and underlying mechanisms of di(2-ethylhexyl) phthalate in nematode Caenorhabditis elegans. J. Environ. Sci. 2021, 105, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Gamez-Del-Estal, M.M.; Contreras, I.; Prieto-Perez, R.; Ruiz-Rubio, M. Epigenetic effect of testosterone in the behavior of C. elegans. A clue to explain androgen-dependent autistic traits? Front. Cell. Neurosci. 2014, 8, 69. [Google Scholar] [CrossRef]
- Jeong, J.; Kim, H.; Choi, J. In Silico Molecular Docking and In Vivo Validation with Caenorhabditis elegans to Discover Molecular Initiating Events in Adverse Outcome Pathway Framework: Case Study on Endocrine-Disrupting Chemicals with Estrogen and Androgen Receptors. Int. J. Mol. Sci. 2019, 20, 1209. [Google Scholar] [CrossRef] [PubMed]
- Craig, A.L.; Moser, S.C.; Bailly, A.P.; Gartner, A. Methods for studying the DNA damage response in the Caenorhabdatis elegans germ line. Methods Cell Biol. 2012, 107, 321–352. [Google Scholar] [CrossRef] [PubMed]
- Lant, B.; Derry, W.B. Immunostaining for markers of apoptosis in the Caenorhabditis elegans germline. Cold Spring Harb. Protoc. 2014, 2014, pdb-rot080242. [Google Scholar] [CrossRef]
- Yin, J.; Liu, R.; Jian, Z.; Yang, D.; Pu, Y.; Yin, L.; Wang, D. Di (2-ethylhexyl) phthalate-induced reproductive toxicity involved in dna damage-dependent oocyte apoptosis and oxidative stress in Caenorhabditis elegans. Ecotoxicol. Environ. Saf. 2018, 163, 298–306. [Google Scholar] [CrossRef]
- Zhang, J.; Zheng, Y.; Yu, Z. Reproductive toxicities of ofloxacin and norfloxacin on Caenorhabditis elegans with multi-generational oscillatory effects and trans-generational residual influences. Environ. Toxicol. Pharmacol. 2022, 95, 103962. [Google Scholar] [CrossRef]
- Bilal, M.; Iqbal, H.M.N. Persistence and impact of steroidal estrogens on the environment and their laccase-assisted removal. Sci. Total Environ. 2019, 690, 447–459. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Yang, Y.; Wang, D. Induction of reproductive deficits in nematode Caenorhabditis elegans exposed to metals at different developmental stages. Reprod. Toxicol. 2009, 28, 90–95. [Google Scholar] [CrossRef]
- O’Donnell, B.; Huo, L.; Polli, J.R.; Qiu, L.; Collier, D.N.; Zhang, B.; Pan, X. From the Cover: ZnO Nanoparticles Enhanced Germ Cell Apoptosis in Caenorhabditis elegans, in Comparison with ZnCl2. Toxicol. Sci. 2017, 156, 336–343. [Google Scholar] [CrossRef]
- Liu, S.; Wu, Q.; Zhong, Y.; He, Z.; Wang, Z.; Li, R.; Wang, M. Fosthiazate exposure induces oxidative stress, nerve damage, and reproductive disorders in nontarget nematodes. Environ. Sci. Pollut. Res. Int. 2022, 30, 12522–12531. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Yang, Y.; Wang, C.; Hua, X.; Li, H.; Xie, D.; Xiang, M.; Yu, Y. Reproductive toxicity of UV-photodegraded polystyrene microplastics induced by DNA damage-dependent cell apoptosis in Caenorhabditis elegans. Sci. Total Environ. 2022, 811, 152350. [Google Scholar] [CrossRef]
- Chen, F.; Wei, C.; Chen, Q.; Zhang, J.; Wang, L.; Zhou, Z.; Chen, M.; Liang, Y. Internal concentrations of perfluorobutane sulfonate (PFBS) comparable to those of perfluorooctane sulfonate (PFOS) induce reproductive toxicity in Caenorhabditis elegans. Ecotoxicol. Environ. Saf. 2018, 158, 223–229. [Google Scholar] [CrossRef]
- Guo, X.; Li, Q.; Shi, J.; Shi, L.; Li, B.; Xu, A.; Zhao, G.; Wu, L. Perfluorooctane sulfonate exposure causes gonadal developmental toxicity in Caenorhabditis elegans through ROS-induced DNA damage. Chemosphere 2016, 155, 115–126. [Google Scholar] [CrossRef]
- Ramezani Tehrani, F.; Noroozzadeh, M.; Zahediasl, S.; Piryaei, A.; Hashemi, S.; Azizi, F. The time of prenatal androgen exposure affects development of polycystic ovary syndrome-like phenotype in adulthood in female rats. Int. J. Endocrinol. Metab. 2014, 12, e16502. [Google Scholar] [CrossRef]
- Mimoto, A.; Fujii, M.; Usami, M.; Shimamura, M.; Hirabayashi, N.; Kaneko, T.; Sasagawa, N.; Ishiura, S. Identification of an estrogenic hormone receptor in Caenorhabditis elegans. Biochem. Biophys. Res. Commun. 2007, 364, 883–888. [Google Scholar] [CrossRef]
- Arur, S.; Ohmachi, M.; Berkseth, M.; Nayak, S.; Hansen, D.; Zarkower, D.; Schedl, T. MPK-1 ERK controls membrane organization in C. elegans oogenesis via a sex-determination module. Dev. Cell 2011, 20, 677–688. [Google Scholar] [CrossRef] [PubMed]
- Shi, C.; Wang, C.; Zeng, L.; Peng, Y.; Li, Y.; Hao, H.; Zheng, Y.; Chen, C.; Chen, H.; Zhang, J.; et al. Triphenyl phosphate induced reproductive toxicity through the JNK signaling pathway in Caenorhabditis elegans. J. Hazard. Mater. 2023, 446, 130643. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Ma, L.; Shi, Y.; Wang, J.; Yin, J.; Wang, D.; Luo, K.; Liu, R. Meiosis-mediated reproductive toxicity by fenitrothion in Caenorhabditis elegans from metabolomic perspective. Ecotoxicol. Environ. Saf. 2023, 253, 114680. [Google Scholar] [CrossRef]
- Ellis, R.; Schedl, T. Sex Determination in the Germ Line (March 5, 2007). In WormBook; The C. elegans Research Community. 2007, pp. 1–13. Available online: http://www.wormbook.org (accessed on 20 July 2023).
- Zarkower, D. Somatic Sex Determination (February 10, 2006). In WormBook; The C. elegans Research Community in WormBook. 2006, pp. 1–12. Available online: http://www.wormbook.org (accessed on 20 July 2023).
- Mendelski, M.N.; Dolling, R.; Feller, F.M.; Hoffmann, D.; Ramos Fangmeier, L.; Ludwig, K.C.; Yucel, O.; Mahrlein, A.; Paul, R.J.; Philipp, B. Steroids originating from bacterial bile acid degradation affect Caenorhabditis elegans and indicate potential risks for the fauna of manured soils. Sci. Rep. 2019, 9, 11120. [Google Scholar] [CrossRef]
- Lee, M.H.; Ohmachi, M.; Arur, S.; Nayak, S.; Francis, R.; Church, D.; Lambie, E.; Schedl, T. Multiple functions and dynamic activation of MPK-1 extracellular signal-regulated kinase signaling in Caenorhabditis elegans germline development. Genetics 2007, 177, 2039–2062. [Google Scholar] [CrossRef] [PubMed]
- Schvarzstein, M.; Spence, A.M. The C. elegans sex-determining GLI protein TRA-1A is regulated by sex-specific proteolysis. Dev. Cell 2006, 11, 733–740. [Google Scholar] [CrossRef] [PubMed]
- Barton, M.K.; Kimble, J. fog-1, a regulatory gene required for specification of spermatogenesis in the germ line of Caenorhabditis elegans. Genetics 1990, 125, 29–39. [Google Scholar] [CrossRef] [PubMed]
- Ellis, R.E.; Kimble, J. The fog-3 Gene and Regulation of Cell Fate in the Germ Line of Caenarhabditis elegans. Genetics 1995, 139, 561–577. [Google Scholar] [CrossRef] [PubMed]
- Parks, L.G.; Lambright, C.S.; Orlando, E.F.; Guillette, L.J., Jr.; Ankley, G.T.; Gray, L.E., Jr. Masculinization of Female Mosquitofish in Kraft Mill EffluentContaminated Fenholloway River Water Is Associated with Androgen Receptor Agonist Activity. Toxicol. Sci. 2001, 62, 257–267. [Google Scholar] [CrossRef] [PubMed]
- Ellis, R.E. Sex determination in the Caenorhabditis elegans germ line. Curr. Top. Dev. Biol. 2008, 83, 41–64. [Google Scholar] [CrossRef] [PubMed]
- Yoon, D.S.; Alfhili, M.A.; Friend, K.; Lee, M.H. MPK-1/ERK regulatory network controls the number of sperm by regulating timing of sperm-oocyte switch in C. elegans germline. Biochem. Biophys. Res. Commun. 2017, 491, 1077–1082. [Google Scholar] [CrossRef] [PubMed]
- Yoon, Y.; Ryu, J.; Oh, J.; Choi, B.G.; Snyder, S.A. Occurrence of endocrine disrupting compounds, pharmaceuticals, and personal care products in the Han River (Seoul, South Korea). Sci. Total Environ. 2010, 408, 636–643. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.; Zhao, Y.; Fent, K. Occurrence and Ecotoxicological Effects of Free, Conjugated, and Halogenated Steroids Including 17alpha-Hydroxypregnanolone and Pregnanediol in Swiss Wastewater and Surface Water. Environ. Sci. Technol. 2017, 51, 6498–6506. [Google Scholar] [CrossRef]
Indicators | Model | BMD (μg/L) | BMDL (μg/L) | Test 4 (P) | AIC | BMDS Recommendation Notes |
---|---|---|---|---|---|---|
Brood size | Hill | 4.089 | 1.160 | 0.132 | 561.358 | Viable—Lowest AIC BMD/BMDL ratio > 3 |
Generation time | Hill | 10.402 | 5.079 | 0.378 | 301.184 | Viable—Lowest AIC |
The number of germ cells | Hill | 100.696 | 17.169 | 0.245 | 447.468 | Viable—Lowest BMDL BMD/BMDL ratio > 3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Meng, K.; Shi, Y.-C.; Li, W.-X.; Wang, J.; Cheng, B.-J.; Li, T.-L.; Li, H.; Jiang, N.; Liu, R. Testosterone Mediates Reproductive Toxicity in Caenorhabditis elegans by Affecting Sex Determination in Germ Cells through nhr-69/mpk-1/fog-1/3. Toxics 2024, 12, 502. https://doi.org/10.3390/toxics12070502
Meng K, Shi Y-C, Li W-X, Wang J, Cheng B-J, Li T-L, Li H, Jiang N, Liu R. Testosterone Mediates Reproductive Toxicity in Caenorhabditis elegans by Affecting Sex Determination in Germ Cells through nhr-69/mpk-1/fog-1/3. Toxics. 2024; 12(7):502. https://doi.org/10.3390/toxics12070502
Chicago/Turabian StyleMeng, Ke, Ying-Chi Shi, Wei-Xi Li, Jia Wang, Bei-Jing Cheng, Tian-Lin Li, Hui Li, Nan Jiang, and Ran Liu. 2024. "Testosterone Mediates Reproductive Toxicity in Caenorhabditis elegans by Affecting Sex Determination in Germ Cells through nhr-69/mpk-1/fog-1/3" Toxics 12, no. 7: 502. https://doi.org/10.3390/toxics12070502
APA StyleMeng, K., Shi, Y. -C., Li, W. -X., Wang, J., Cheng, B. -J., Li, T. -L., Li, H., Jiang, N., & Liu, R. (2024). Testosterone Mediates Reproductive Toxicity in Caenorhabditis elegans by Affecting Sex Determination in Germ Cells through nhr-69/mpk-1/fog-1/3. Toxics, 12(7), 502. https://doi.org/10.3390/toxics12070502