Phthalate Acid Esters (PAEs) in Indoor Dust from Decoration Material Stores: Occurrence, Sources, and Health Risks
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents and Chemicals
2.2. Sample Collection, Preparation and Instrumental Analysis
2.3. Quality Assurance and Quality Control (QA/QC)
2.4. Estimation of Human Exposure to PAEs
2.5. Carcinogenic Risk Assessment of DEHP
2.6. Cumulative Risk Assessment of Exposure to Phthalates
2.7. Risk Assessment of DEHP
2.8. Data Analysis
3. Results and Discussion
3.1. Total Concentrations of PAEs in Decoration Material-Store Dust
3.2. Variations in PAEs in Different Decoration-Material Stores
3.3. Comparison with Other Studies
3.4. Source Elucidation
3.5. Exposure Risk Assessment
3.5.1. Estimation of Exposure Doses
3.5.2. Cumulative Risk Assessment of Exposure to PAEs
3.5.3. Carcinogenic Risk Assessment and China-Specific NSRL and MADL Risk
Assessments of DEHP
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Leech, J.A.; Nelson, W.C.; Burnett, R.T.; Aaron, S.; Raizenne, M.E. It’s about time: A comparison of Canadian and American time-activity patterns. J. Expo. Sci. Environ. Epidemiol. 2002, 12, 427–432. [Google Scholar] [CrossRef] [PubMed]
- Klepeis, N.E.; Nelson, W.C.; Ott, W.R.; Robinson, J.P.; Tsang, A.M.; Switzer, P.; Behar, J.V.; Hern, S.C.; Engelmann, W.H. The National Human Activity Pattern Survey (NHAPS): A resource for assessing exposure to environmental pollutants. J. Expo. Sci. Environ. Epidemiol. 2001, 11, 231–252. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.K.; Wang, H.; Xu, B.P.; Wang, H.M.; Wang, Y.Z.; Yang, T.; Tan, Y.D.; Xiong, J.Y.; Liu, X.Y. Predicting the emissions of VOCs/SVOCs in source and sink materials: Development of analytical model and determination of the key parameters. Environ. Int. 2022, 160, 107064. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.D.; Shen, J.; Chen, Y.; Zheng, D.Z.; Li, L. Identification and analysis of volatile organic compound and very volatile organic compound of MDF coated with different lacquers and their health risks to humans. J. Environ. Chem. Eng. 2024, 12, 112120. [Google Scholar] [CrossRef]
- Degerlier, M. Assessment of natural radioactivity and radiation hazard in volcanic tuff stones used as building and decoration materials in the Cappadocia region, Turkey. Radioprotection 2013, 48, 215–229. [Google Scholar] [CrossRef]
- Cogliano, V.J.; Grosse, Y.; Baan, R.A.; Straif, K.; Secretan, M.B.; El Ghissassi, F.; The Working Group for Volume 88. Meeting report: Summary of IARC monographs on formaldehyde, 2-butoxyethanol, and 1-tert-butoxy-2-propanol. Environ. Health Perspect. 2005, 113, 1205–1208. [Google Scholar] [CrossRef] [PubMed]
- Zhai, L.; Zhao, J.; Xu, B.; Deng, Y.; Xu, Z. Influence of indoor formaldehyde pollution on respiratory system health in the urban area of Shenyang, China. Afr. Health Sci. 2013, 13, 137–143. [Google Scholar] [CrossRef] [PubMed]
- Schettler, T. Human exposure to phthalates via consumer products. Int. J. Urol. 2006, 29, 134–139, discussion 181–185. [Google Scholar] [CrossRef] [PubMed]
- An, J.; Roh, H.H.; Jeong, H.; Lee, K.Y.; Rhim, T. Rapid assessment of di(2-ethylhexyl) phthalate migration from consumer PVC products. Toxics 2024, 12, 12010007. [Google Scholar] [CrossRef] [PubMed]
- Koch, H.M.; Angerer, J. Phthalates: Biomarkers and Human Biomonitoring; The Royal Society of Chemistry: Cambridge, UK, 2011; pp. 179–233. [Google Scholar]
- Kelishadi, R.; Poursafa, P.; Jamshidi, F. Role of environmental chemicals in obesity: A systematic review on the current evidence. J. Environ. Public Health 2013, 2013, 896789. [Google Scholar] [CrossRef] [PubMed]
- Becker, K.; Goen, T.; Seiwert, M.; Conrad, A.; Pick-Fuss, H.; Muller, J.; Wittassek, M.; Schulz, C.; Kolossa-Gehring, M. GerES IV: Phthalate metabolites and bisphenol A in urine of German children. Int. J. Hyg. Environ. Health 2009, 212, 685–692. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.X.; Wang, T.; Luo, L.; He, Q.; Guo, F.F.; Chen, Z.B.; Liu, Y.J.; Liu, X.Y.; Xie, Y.; Shang, X.J.; et al. Co-exposure of polycyclic aromatic hydrocarbons and phthalates with blood cell-based inflammation in early pregnant women. Toxics 2023, 11, 11100810. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.J.; Jin, J.; Seo, Y.; Kang, I.; Son, J.; Yi, E.C.; Min, H. Untargeted metabolomics analysis reveals toxicity based on the sex and sexual maturity of single low-dose DEHP exposure. Toxics 2023, 11, 11090794. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zhu, H.; Kannan, K. A review of biomonitoring of phthalate exposures. Toxics 2019, 7, 7020021. [Google Scholar] [CrossRef] [PubMed]
- Meeker, J.D. Exposure to environmental endocrine disrupting compounds and men’s health. Maturitas 2010, 66, 236–241. [Google Scholar] [CrossRef] [PubMed]
- Patisaul, H.B.; Adewale, H.B. Long-term effects of environmental endocrine disruptors on reproductive physiology and behavior. Front. Behav. Neurosci. 2009, 3, 10. [Google Scholar] [CrossRef] [PubMed]
- Hannon, P.R.; Flaws, J.A. The effects of phthalates on the ovary. Front. Endocrinol. 2015, 6, 8. [Google Scholar] [CrossRef] [PubMed]
- Hashemipour, M.; Kelishadi, R.; Amin, M.M.; Ebrahim, K. Is there any association between phthalate exposure and precocious puberty in girls? Environ. Sci. Pollut. Res. 2018, 25, 13589–13596. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.D.; Chi, C.C.; Zhou, C.; Xia, M.; Ronda, C.; Shen, X.Y. Analysis of the influencing factors of PAEs volatilization from typical plastic products. J. Environ. Sci. 2018, 66, 61–70. [Google Scholar] [CrossRef] [PubMed]
- Bu, Z.M.; Zhang, Y.P.; Mmereki, D.; Yu, W.; Li, B.Z. Indoor phthalate concentration in residential apartments in Chongqing, China: Implications for preschool children’s exposure and risk assessment. Atmos. Environ. 2016, 127, 34–45. [Google Scholar] [CrossRef]
- Li, H.L.; Song, W.W.; Zhang, Z.F.; Ma, W.L.; Gao, C.J.; Li, J.; Huo, C.Y.; Mohammed, M.O.A.; Liu, L.Y.; Kannan, K.; et al. Phthalates in dormitory and house dust of northern Chinese cities: Occurrence, human exposure, and risk assessment. Sci. Total Environ. 2016, 565, 496–502. [Google Scholar] [CrossRef] [PubMed]
- Song, M.; Chi, C.C.; Guo, M.; Wang, X.Q.; Cheng, L.X.; Shen, X.Y. Pollution levels and characteristics of phthalate esters in indoor air of offices. J. Environ. Sci. 2015, 28, 157–162. [Google Scholar] [CrossRef] [PubMed]
- Sivanantham, S.; Dassonville, C.; Grégoire, A.; Malingre, L.; Ramalho, O.; Mandin, C. Coexposure to indoor pollutants in French schools and associations with building characteristics. Energy Build. 2021, 252, 111424. [Google Scholar] [CrossRef]
- Langer, S.; de Wit, C.A.; Giovanoulis, G.; Faldt, J.; Karlson, L. The effect of reduction measures on concentrations of hazardous semivolatile organic compounds in indoor air and dust of Swedish preschools. Indoor Air 2021, 31, 1673–1682. [Google Scholar] [CrossRef] [PubMed]
- Bornehag, C.-G.; Lundgren, B.; Weschler, C.J.; Sigsgaard, T.; Hagerhed-Engman, L.; Sundell, J. Phthalates in indoor dust and their association with building characteristics. Environ. Health Perspect. 2005, 113, 1399–1404. [Google Scholar] [CrossRef] [PubMed]
- Ouyang, X.Z.; Xia, M.; Shen, X.Y.; Zhan, Y. Pollution characteristics of 15 gas- and particle-phase phthalates in indoor and outdoor air in Hangzhou. J. Environ. Sci. 2019, 86, 107–119. [Google Scholar] [CrossRef] [PubMed]
- Gao, C.J.; Kannan, K. Phthalates, bisphenols, parabens, and triclocarban in feminine hygiene products from the United States and their implications for human exposure. Environ. Int. 2020, 136, 105465. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Kannan, K. Comparative assessment of human exposure to phthalate esters from house dust in China and the United States. Environ. Sci. Technol. 2011, 45, 3788–3794. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Kannan, K. A survey of phthalates and parabens in personal care products from the United States and its implications for human exposure. Environ. Sci. Technol. 2013, 47, 14442–14449. [Google Scholar] [CrossRef]
- Environmental Protection Agency. Exposure Factors Handbook 2011 Edition (Final Report). Available online: https://www.epa.gov/sites/default/files/2015-09/documents/efh-frontmatter.pdf (accessed on 19 June 2024).
- Environmental Protection Agency. Risk Assessment Guidance for Superfund Volume I: Human Health Evaluation Manual (Part A). Available online: https://nepis.epa.gov/Exe/ZyPURL.cgi?Dockey=9100SVGE.txt (accessed on 19 June 2024).
- California Environmental Protection Agency. Air Toxics “Hot Spots” Program Risk Assessment Guidelines: Guidance Manual for Preparation of Health Risk Assessments. Available online: https://oehha.ca.gov/media/downloads/crnr/2015guidancemanual.pdf (accessed on 19 June 2024).
- Environmental Protection Agency. Toxicological Profile for Di-n-butyl Phthalate. Available online: https://nepis.epa.gov/Exe/ZyPURL.cgi?Dockey=94006T2X.txt (accessed on 19 June 2024).
- Environmental Protection Agency. Technical Factsheet on Di(2-ethylhexl) Phathalate (DEHP). Available online: https://www.epa.gov/sites/default/files/2019-08/documents/di-ethylhexyl_phthalate_117-81-7_proposeddesignation_082219.pdf (accessed on 19 June 2024).
- Kortenkamp, A.; Faust, M. Combined exposures to anti-androgenic chemicals: Steps towards cumulative risk assessment. Int. J. Urol. 2010, 33, 463–474. [Google Scholar] [CrossRef] [PubMed]
- Benson, R. Hazard to the developing male reproductive system from cumulative exposure to phthalate esters—Dibutyl phthalate, diisobutyl phthalate, butylbenzyl phthalate, diethylhexyl phthalate, dipentyl phthalate, and diisononyl phthalate. Regul. Toxicol. Pharm. 2009, 53, 90–101. [Google Scholar] [CrossRef] [PubMed]
- Office of Environmental Health Hazard Assessment. Proposition 65: Precess for Developing Safe Harbor Numbers. Available online: https://oehha.ca.gov/media/downloads/crnr/2001safeharborprocess.pdf (accessed on 19 June 2024).
- Gaspar, F.W.; Castorina, R.; Maddalena, R.L.; Nishioka, M.G.; McKone, T.E.; Bradman, A. Phthalate exposure and risk assessment in California child care facilities. Environ. Sci. Technol. 2014, 48, 7593–7601. [Google Scholar] [CrossRef] [PubMed]
- Office of Environmental Health Hazard Assessment. No Significant Risk Levels (NSRLs) for the Proposition 65 Carcinogens Di(2-ethylhexyl)phthalate
- Office of Environmental Health Hazard Assessment. Proposition 65 Maximum Allowable Dose Level (MADL) for Reproductive Toxicity for Di(2-ethylhexyl)phthalate (DEHP) by Oral Exposure. Available online: https://oehha.ca.gov/proposition-65/general-info/current-proposition-65-no-significant-risk-levels-nsrls-maximum (accessed on 19 June 2024).
- Wang, X.K.; Tao, W.; Xu, Y.; Feng, J.T.; Wang, F.H. Indoor phthalate concentration and exposure in residential and office buildings in Xi’an, China. Atmos. Environ. 2014, 87, 146–152. [Google Scholar] [CrossRef]
- Qu, M.N.; Wang, L.X.; Liu, F.; Zhao, Y.; Shi, X.Z.; Li, S.J. Characteristics of dust-phase phthalates in dormitory, classroom, and home and non-dietary exposure in Beijing, China. Environ. Sci. Pollut. Res. 2021, 28, 38159–38172. [Google Scholar] [CrossRef] [PubMed]
- He, R.W.; Li, Y.Z.; Xiang, P.; Li, C.; Zhou, C.Y.; Zhang, S.J.; Cui, X.Y.; Ma, L.Q. Organophosphorus flame retardants and phthalate esters in indoor dust from different microenvironments: Bioaccessibility and risk assessment. Chemosphere 2016, 150, 528–535. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.Y.; Navaranjan, G.; Takaro, T.K.; Bernstein, S.; Jantunen, L.; Lou, W.Y.; Mandhane, P.J.; Moraes, T.J.; Scott, J.A.; Simons, E.; et al. Di-(2-Ethylhexyl) phthalate (DEHP) in house dust in Canadian homes: Behaviors and associations with housing characteristics and consumer products. Indoor Air 2023, 2023, 4655289. [Google Scholar] [CrossRef]
- Christia, C.; Poma, G.; Harrad, S.; de Wit, C.A.; Sjostrom, Y.; Leonards, P.; Lamoree, M.; Covaci, A. Occurrence of legacy and alternative plasticizers in indoor dust from various EU countries and implications for human exposure via dust ingestion and dermal absorption. Environ. Res. 2019, 171, 204–212. [Google Scholar] [CrossRef] [PubMed]
- Shinohara, N.; Uchino, K. Diethylhexyl phthalate (DEHP) emission to indoor air and transfer to house dust from a PVC sheet. Sci. Total Environ. 2020, 711, 134573. [Google Scholar] [CrossRef] [PubMed]
- Weschler, C.J.; Salthammer, T.; Fromme, H. Partitioning of phthalates among the gas phase, airborne particles and settled dust in indoor environments. Atmos. Environ. 2008, 42, 1449–1460. [Google Scholar] [CrossRef]
- Benning, J.L.; Liu, Z.; Tiwari, A.; Little, J.C.; Marr, L.C. Characterizing gas-particle interactions of phthalate plasticizer emitted from vinyl flooring. Environ. Sci. Technol. 2013, 47, 2696–2703. [Google Scholar] [CrossRef] [PubMed]
- Blanchard, O.; Glorennec, P.; Mercier, F.; Bonvallot, N.; Chevrier, C.; Ramalho, O.; Mandin, C.; Le Bot, B. Semivolatile organic compounds in indoor air and settled dust in 30 French dwellings. Environ. Sci. Technol. 2014, 48, 3959–3969. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.; Zhang, Y.J.; Liu, L.Y.; Wang, F.; Guo, Y. Exposure to phthalates and correlations with phthalates in dust and air in South China homes. Sci. Total Environ. 2021, 782, 146806. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Q.Q.; Jia, J.B.; Zhang, K.G.; Zhang, H.; Liao, C.Y.; Jiang, G.B. Phthalate esters in indoor dust from several regions, China and their implications for human exposure. Sci. Total Environ. 2019, 652, 1187–1194. [Google Scholar] [CrossRef] [PubMed]
- Adibi, J.J.; Perera, F.P.; Jedrychowski, W.; Camann, D.E.; Barr, D.; Jacek, R.; Whyatt, R.M. Prenatal exposures to phthalates among women in New York City and Krakow, Poland. Environ. Health Perspect. 2003, 111, 1719–1722. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Wang, S.L.; Fan, C.Q. Atmospheric distribution of particulate- and gas-phase phthalic esters (PAEs) in a Metropolitan City, Nanjing, East China. Chemosphere 2008, 72, 1567–1572. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Wu, Q.; Kannan, K. Phthalate metabolites in urine from China, and implications for human exposures. Environ. Int. 2011, 37, 893–898. [Google Scholar] [CrossRef] [PubMed]
- Lan, Q.; Cui, K.Y.; Zeng, F.; Zhu, F.; Liu, H.; Chen, H.L.; Ma, Y.Q.; Wen, J.X.; Luan, T.G.; Sun, G.Q.; et al. Characteristics and assessment of phthalate esters in urban dusts in Guangzhou city, China. Environ. Monit. Assess. 2012, 184, 4921–4929. [Google Scholar] [CrossRef] [PubMed]
- Kang, Y.; Man, Y.B.; Cheung, K.C.; Wong, M.H. Risk assessment of human exposure to bioaccessible phthalate esters via indoor dust around the Pearl River Delta. Environ. Sci. Technol. 2012, 46, 8422–8430. [Google Scholar] [CrossRef]
- Deng, M.; Han, X.; Ge, J.L.; Liang, X.X.; Du, B.B.; Li, J.; Zeng, L.X. Prevalence of phthalate alternatives and monoesters alongside traditional phthalates in indoor dust from a typical e-waste recycling area: Source elucidation and co-exposure risk. J. Hazard. Mater. 2021, 413, 125322. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.N.; Chiou, Y.H.; Cho, H.B.; Lee, C.W. Children’s exposure to phthalates in dust and soil in Southern Taiwan: A study following the phthalate incident in 2011. Sci. Total Environ. 2019, 696, 133685. [Google Scholar] [CrossRef]
- Zhang, J.L.; Sun, C.J.; Lu, R.C.; Zou, Z.J.; Liu, W.; Huang, C. Associations between phthalic acid esters in household dust and childhood asthma in Shanghai, China. Environ. Res. 2021, 200, 111760. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Lu, X.M.; Zhang, X.L.; Sun, Y.G.; Zhu, D.M.; Wang, B.L.; Zhao, R.Z.; Zhang, Z.D. Levels of phthalate esters in settled house dust from urban dwellings with young children in Nanjing, China. Atmos. Environ. 2013, 69, 258–264. [Google Scholar] [CrossRef]
- Xu, S.; Li, C. Phthalates in house and dormitory dust: Occurrence, human exposure and risk assessment. Bull. Environ. Contam. Toxicol. 2021, 106, 393–398. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.H.; Lu, J.J.; Yin, X.W.; Liu, Z.L.; Tong, Y.B.; Zhou, L. Indoor phthalate concentrations in residences in Shihezi, China: Implications for preschool children’s exposure and risk assessment. Environ. Sci. Pollut. Res. 2019, 26, 19785–19794. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.H.; Qiao, Y.Q.; Deng, S.X.; Wang, X.K.; Zhao, W.P.; Yue, Y. Phthalates in house dust in Chinese urban residences: Concentrations, partition, origin and determinants. Chemosphere 2022, 286, 131703. [Google Scholar] [CrossRef] [PubMed]
- Hoang, A.Q.; Le, T.M.; Nguyen, H.M.N.; Le, H.Q.; Vu, N.D.; Chu, N.C.; Dang, G.H.M.; Minh, T.B.; Takahashi, S.; Tran, T.M. Phthalic acid esters (PAEs) in workplace and house dust from Vietnam: Concentrations, profiles, emission sources, and exposure risk. Environ. Sci. Pollut. Res. 2022, 29, 14046–14057. [Google Scholar] [CrossRef] [PubMed]
- Bi, C.; Maestre, J.P.; Li, H.; Zhang, G.; Givehchi, R.; Mahdavi, A.; Kinney, K.A.; Siegel, J.; Horner, S.D.; Xu, Y. Phthalates and organophosphates in settled dust and HVAC filter dust of US low-income homes: Association with season, building characteristics, and childhood asthma. Environ. Int. 2018, 121, 916–930. [Google Scholar] [CrossRef] [PubMed]
- Hammel, S.C.; Levasseur, J.L.; Hoffman, K.; Phillips, A.L.; Lorenzo, A.M.; Calafat, A.M.; Webster, T.F.; Stapleton, H.M. Children’s exposure to phthalates and non-phthalate plasticizers in the home: The TESIE study. Environ. Int. 2019, 132, 105061. [Google Scholar] [CrossRef] [PubMed]
- Kubwabo, C.; Rasmussen, P.E.; Fan, X.; Kosarac, I.; Wu, F.; Zidek, A.; Kuchta, S.L. Analysis of selected phthalates in Canadian indoor dust collected using household vacuum and standardized sampling techniques. Indoor Air 2013, 23, 506–514. [Google Scholar] [CrossRef] [PubMed]
- Bergh, C.; Torgrip, R.; Emenius, G.; Ostman, C. Organophosphate and phthalate esters in air and settled dust—A multi-location indoor study. Indoor Air 2011, 21, 67–76. [Google Scholar] [CrossRef] [PubMed]
- Luongo, G.; Ostman, C. Organophosphate and phthalate esters in settled dust from apartment buildings in Stockholm. Indoor Air 2016, 26, 414–425. [Google Scholar] [CrossRef] [PubMed]
- Preece, A.-S.; Shu, H.; Knutz, M.; Krais, A.M.; Wikstrom, S.; Bornehag, C.-G. Phthalate levels in indoor dust and associations to croup in the SELMA study. J. Expo. Sci. Environ. Epidemiol. 2021, 31, 257–265. [Google Scholar] [CrossRef] [PubMed]
- Fromme, H.; Lahrz, T.; Kraft, M.; Fembacher, L.; Dietrich, S.; Sievering, S.; Burghardt, R.; Schuster, R.; Bolte, G.; Voelkel, W. Phthalates in German daycare centers: Occurrence in air and dust and the excretion of their metabolites by children (LUPE 3). Environ. Int. 2013, 61, 64–72. [Google Scholar] [CrossRef] [PubMed]
- Basaran, B.; Soylu, G.N.; Civan, M.Y. Concentration of phthalate esters in indoor and outdoor dust in Kocaeli, Turkey: Implications for human exposure and risk. Environ. Sci. Pollut. Res. 2020, 27, 1808–1824. [Google Scholar] [CrossRef] [PubMed]
- Lee, B.-c.; Yoon, H.; Lee, B.; Kim, P.; Moon, H.-B.; Kim, Y. Occurrence of bisphenols and phthalates in indoor dust collected from Korean homes. J. Ind. Eng. Chem. 2021, 99, 68–73. [Google Scholar] [CrossRef]
- Promtes, K.; Kaewboonchoo, O.; Kawai, T.; Miyashita, K.; Panyapinyopol, B.; Kwonpongsagoon, S.; Takemura, S. Human exposure to phthalates from house dust in Bangkok, Thailand. J. Environ. Sci. Health A 2019, 54, 1269–1276. [Google Scholar] [CrossRef] [PubMed]
- Albar, H.M.S.A.; Ali, N.; Shahzad, K.; Ismail, I.M.I.; Rashid, M.I.; Wang, W.; Ali, L.N.; Eqani, S.A.M.A.S. Phthalate esters in settled dust of different indoor microenvironments; source of non-dietary human exposure. Microchem. J. 2017, 132, 227–232. [Google Scholar] [CrossRef]
- Gevao, B.; Al-Ghadban, A.N.; Bahloul, M.; Uddin, S.; Zafar, J. Phthalates in indoor dust in Kuwait: Implications for non-dietary human exposure. Indoor Air 2013, 23, 126–133. [Google Scholar] [CrossRef] [PubMed]
- Raffy, G.; Mercier, F.; Blanchard, O.; Derbez, M.; Dassonville, C.; Bonvallot, N.; Glorennec, P.; Le Bot, B. Semi-volatile organic compounds in the air and dust of 30 French schools: A pilot study. Indoor Air 2017, 27, 114–127. [Google Scholar] [CrossRef] [PubMed]
- Kim, W.; Choi, I.; Jung, Y.; Lee, J.; Min, S.; Yoon, C. Phthalate levels in nursery schools and related factors. Environ. Sci. Technol. 2013, 47, 12459–12468. [Google Scholar] [CrossRef] [PubMed]
- Ali, N.; Alhakamy, N.A.; Ismail, I.M.I.; Nazar, E.; Summan, A.S.; Eqani, S.A.M.A.S.; Malarvannan, G. Exposure to phthalate and organophosphate esters via indoor dust and PM10 is a cause of concern for the exposed Saudi population. Int. J. Environ. 2021, 18, 2125. [Google Scholar] [CrossRef] [PubMed]
- Al Qasmi, N.N.; Al-Thaiban, H.; Helaleh, M.I.H. Indoor phthalates from household dust in Qatar: Implications for non-dietary human exposure. Environ. Sci. Pollut. Res. 2019, 26, 421–430. [Google Scholar] [CrossRef] [PubMed]
- Katsikantami, I.; Sifakis, S.; Tzatzarakis, M.N.; Vakonaki, E.; Kalantzi, O.I.; Tsatsakis, A.M.; Rizos, A.K. A global assessment of phthalates burden and related links to health effects. Environ. Int. 2016, 97, 212–236. [Google Scholar] [CrossRef] [PubMed]
- Skrbic, B.D.; Ji, Y.; Durisic-Mladenovic, N.; Zhao, J. Occurence of the phthalate esters in soil and street dust samples from the Novi Sad city area, Serbia, and the influence on the children’s and adults’ exposure. J. Hazard. Mater. 2016, 312, 272–279. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Sun, Y.; Zhang, Q.; Hou, J.; Wang, P.; Kong, X.; Sundell, J. Phthalate exposure in Chinese homes and its association with household consumer products. Sci. Total Environ. 2020, 719, 136965. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.J.; Xian, Y.P.; Guo, X.D.; Weng, Y.B.; Peng, Y.; Chen, J.W.; Lu, Y.J. Determination of twenty phthalic acid ester in waterborne wall coatings by gas chromatography-mass spectrometry. J. Instrum. 2014, 33, 437–441. [Google Scholar] [CrossRef]
- Ulker, O.C.; Ulker, O. Toxicity of formaldehyde, polybrominated diphenyl ethers (PBDEs) and phthalates in engineered wood products (EWPs) from the perspective of the green approach to materials: A review. BioResources 2019, 14, 7465–7493. [Google Scholar] [CrossRef]
- Gao, C.J.; Liu, L.Y.; Ma, W.L.; Liu, L.H.; Li, Y.F. Levels of phthalate metabolites in urine of house painters in Harbin. J. Harbin Inst. Technol. 2016, 48, 44–49. [Google Scholar] [CrossRef]
- Orecchio, S.; Indelicato, R.; Barreca, S. Determination of selected phthalates by gas chromatography-mass spectrometry in mural paintings from Palermo (Italy). Microchem. J. 2014, 114, 187–191. [Google Scholar] [CrossRef]
- Namari, S.; Drosky, L.; Pudlitz, B.; Haller, P.; Sotayo, A.; Bradley, D.; Mehra, S.; O’Ceallaigh, C.; Harte, A.M.; El-Houjeyri, I.; et al. Mechanical properties of compressed wood. Constr. Build. Mater. 2021, 301, 124269. [Google Scholar] [CrossRef]
- Bamai, Y.A.; Araki, A.; Kawai, T.; Tsuboi, T.; Saito, I.; Yoshioka, E.; Kanazawa, A.; Tajima, S.; Shi, C.; Tamakoshi, A.; et al. Associations of phthalate concentrations in floor dust and multi-surface dust with the interior materials in Japanese dwellings. Sci. Total Environ. 2014, 468, 147–157. [Google Scholar] [CrossRef] [PubMed]
- Liang, J.Y.; Ning, X.A.; Kong, M.Y.; Liu, D.H.; Wang, G.W.; Cai, H.L.; Sun, J.; Zhang, Y.P.; Lu, X.W.; Yuan, Y. Elimination and ecotoxicity evaluation of phthalic acid esters from textile-dyeing wastewater. Environ. Pollut. 2017, 231, 115–122. [Google Scholar] [CrossRef] [PubMed]
- Aldegunde-Louzao, N.; López, P.P.; Aira, M.L.; Latorre, C.H. Seven-year-long screening of phthalate esters in clothing and textile products from a quality control laboratory. Text. Res. J. 2023, 93, 1670–1685. [Google Scholar] [CrossRef]
- Afshari, A.; Gunnarsen, L.; Clausen, P.A.; Hansen, V. Emission of phthalates from PVC and other materials. Indoor Air 2004, 14, 120–128. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.-M.; Li, C.-Y.; Zhao, N.; Wang, Z.-H.; Lv, S.-W.; Liu, J.-C.; Chen, L.-J.; Wang, J.; Zhang, Y.; Wang, S. Migration regularity of phthalates in polyethylene wrap film of food packaging. J. Food Sci. 2020, 85, 2105–2113. [Google Scholar] [CrossRef] [PubMed]
- Mostafa, A.; Shaaban, H. GC-MS determination of undeclared phthalate esters in commercial fragrances: Occurrence, profiles and assessment of carcinogenic and non-carcinogenic risk associated with their consumption among adult consumers. Molecules 2023, 28, 1689. [Google Scholar] [CrossRef] [PubMed]
- Schripp, T.; Salthammer, T.; Fauck, C.; Beko, G.; Weschler, C.J. Latex paint as a delivery vehicle for diethylphthalate and di-n-butylphthalate: Predictable boundary layer concentrations and emission rates. Sci. Total Environ. 2014, 494, 299–305. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Zhang, Z.; Liu, L.; Li, Y.; Ren, N.; Kannan, K. Occurrence and profiles of phthalates in foodstuffs from China and their implications for human exposure. J. Agric. Food Chem. 2012, 60, 6913–6919. [Google Scholar] [CrossRef] [PubMed]
- Wu, B.; Zhang, Y.; Zhang, X.-X.; Cheng, S.-P. Health risk assessment of polycyclic aromatic hydrocarbons in the source water and drinking water of China: Quantitative analysis based on published monitoring data. Sci. Total Environ. 2011, 410–411, 112–118. [Google Scholar] [CrossRef] [PubMed]
- De Miguel, E.; Iribarren, I.; Chacón, E.; Ordoñez, A.; Charlesworth, S. Risk-based evaluation of the exposure of children to trace elements in playgrounds in Madrid (Spain). Chemosphere 2007, 66, 505–513. [Google Scholar] [CrossRef] [PubMed]
Store | Value | DMP | DEP | DIBP | DBP | DHxP | BBP | DEHP | DCHP | DOP | Total |
---|---|---|---|---|---|---|---|---|---|---|---|
Flooring (n = 8) | Min | 530 | 92.9 | 2710 | 12,700 | nd a | nd | nd | nd | nd | 49,600 |
Median | 3060 | 616 | 12,900 | 37,700 | nd | 141 | 56,000 | 17.3 | nd | 95,300 | |
Max | 7560 | 2640 | 21,600 | 248,000 | 4.72 | 522 | 114,000 | 161 | 916 | 374,000 | |
DR b | 100% | 100% | 100% | 100% | 38% | 63% | 88% | 63% | 25% | ||
Furniture board (n = 14) | Min | 87.6 | 24.4 | 1800 | 29,500 | nd | nd | nd | nd | nd | 65,800 |
Median | 2000 | 356 | 22,500 | 45,600 | nd | nd | 68,500 | 10.7 | nd | 159,000 | |
Max | 9990 | 1990 | 319,000 | 132,000 | 21.9 | 136 | 127,000 | 268 | 1320 | 460,000 | |
DR | 100% | 100% | 100% | 100% | 29% | 29% | 93% | 50% | 7% | ||
Wall covering (n = 7) | Min | 337 | 117 | 5540 | 9690 | nd | nd | 36,000 | nd | nd | 86,600 |
Median | 1160 | 199 | 21,500 | 27,400 | nd | nd | 94,900 | 13.4 | nd | 146,000 | |
Max | 5340 | 1380 | 54,400 | 542,000 | 2.14 | 110 | 238,000 | 181 | nd | 695,000 | |
DR | 100% | 100% | 100% | 100% | 29% | 29% | 100% | 57% | 0% | ||
Household article (n = 11) | Min | 621 | 72.4 | nd | 11,900 | nd | nd | 26,200 | nd | nd | 46,100 |
Median | 2480 | 396 | 7030 | 36,400 | 2.33 | nd | 62,200 | nd | nd | 138,000 | |
Max | 5850 | 983 | 202,000 | 245,000 | 38.5 | nd | 193,000 | 180 | nd | 445,000 | |
DR | 100% | 100% | 82% | 100% | 73% | 0% | 100% | 45% | 0% | ||
Household environment (n = 10) | Min | nd | 676 | 19,500 | 40,700 | nd | nd | nd | nd | nd | 427,000 |
Median | 979 | 2090 | 27,300 | 72,100 | nd | nd | 1,130,000 | nd | nd | 1,220,000 | |
Max | 9190 | 4880 | 209,000 | 585,000 | nd | 33,800 | 7,630,000 | nd | nd | 7,820,000 | |
DR | 90% | 100% | 100% | 100% | 0% | 20% | 80% | 0% | 0% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, L.-B.; Gao, C.-J.; Zhang, Y.; Shen, H.-Y.; Lu, X.-Y.; Huang, C.; Dai, X.; Ye, J.; Jia, X.; Wu, K.; et al. Phthalate Acid Esters (PAEs) in Indoor Dust from Decoration Material Stores: Occurrence, Sources, and Health Risks. Toxics 2024, 12, 505. https://doi.org/10.3390/toxics12070505
Chen L-B, Gao C-J, Zhang Y, Shen H-Y, Lu X-Y, Huang C, Dai X, Ye J, Jia X, Wu K, et al. Phthalate Acid Esters (PAEs) in Indoor Dust from Decoration Material Stores: Occurrence, Sources, and Health Risks. Toxics. 2024; 12(7):505. https://doi.org/10.3390/toxics12070505
Chicago/Turabian StyleChen, Li-Bo, Chong-Jing Gao, Ying Zhang, Hao-Yang Shen, Xin-Yu Lu, Cenyan Huang, Xiaorong Dai, Jien Ye, Xiaoyu Jia, Kun Wu, and et al. 2024. "Phthalate Acid Esters (PAEs) in Indoor Dust from Decoration Material Stores: Occurrence, Sources, and Health Risks" Toxics 12, no. 7: 505. https://doi.org/10.3390/toxics12070505
APA StyleChen, L. -B., Gao, C. -J., Zhang, Y., Shen, H. -Y., Lu, X. -Y., Huang, C., Dai, X., Ye, J., Jia, X., Wu, K., Yang, G., Xiao, H., & Ma, W. -L. (2024). Phthalate Acid Esters (PAEs) in Indoor Dust from Decoration Material Stores: Occurrence, Sources, and Health Risks. Toxics, 12(7), 505. https://doi.org/10.3390/toxics12070505