Mixtures of Micro and Nanoplastics and Contaminants of Emerging Concern in Environment: What We Know about Their Toxicological Effects
Abstract
:1. Introduction
2. Materials and Methods
3. Ecotoxicity Effects of Emerging Pollutants and Micro–Nanoplastics
3.1. Aquatic Environment
3.1.1. Mixtures Including Pharmaceutical Compounds
- Microorganisms
- 2.
- Plants
- 3.
- Invertebrates
- 4.
- Vertebrates
3.1.2. Mixtures Including Industrial Compounds
- Microorganisms
- 2.
- Plants
- 3.
- Invertebrates
- 4.
- Vertebrates
3.1.3. Mixtures Including Agrochemical Compounds
- Microorganisms
- 2.
- Plants
- 3.
- Invertebrates
- 4.
- Vertebrates
3.2. Terrestrial Environments
3.2.1. Mixtures Including Pharmaceutical Compounds
- Microorganisms
- 2.
- Plants
- 3.
- Invertebrates
3.2.2. Mixtures Including Industrial Compounds
- Plants
- 2.
- Invertebrates
- 3.
- Vertebrates
3.2.3. Mixtures Including Agrochemical Compounds
- Microorganisms
- 2.
- Plants
- 3.
- Invertebrates
3.3. Summary of MPs and NPs in Aquatic and Terrestrial Environments
4. Conclusions and Future Predictions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Godoy, V.; Blázquez, G.; Calero, M.; Quesada, L.; Martín-Lara, M. The potential of microplastics as carriers of metals. Environ. Pollut. 2019, 255, 113363. [Google Scholar] [CrossRef] [PubMed]
- Wijesekara, H.; Bolan, N.S.; Bradney, L.; Obadamudalige, N.; Seshadri, B.; Kunhikrishnan, A.; Dharmarajan, R.; Ok, Y.S.; Rinklebe, J.; Kirkham, M.; et al. Trace element dynamics of biosolids-derived microbeads. Chemosphere 2018, 199, 331–339. [Google Scholar] [CrossRef] [PubMed]
- Plasticsthefastfacts2023-1. (n.d.). Plastics Europe. Plastics—The Fast Facts. 2023. Available online: https://plasticseurope.org/knowledge-hub/plastics-the-fast-facts-2023/ (accessed on 7 November 2023).
- Wang, Q.; Zhang, Y.; Wangjin, X.; Wang, Y.; Meng, G.; Chen, Y. The adsorption behavior of metals in aqueous solution by microplastics effected by UV radiation. J. Environ. Sci. 2020, 87, 272–280. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, R.; Hamid, A.K.; Krebsbach, S.A.; He, J.; Wang, D. Critical review of microplastics removal from the environment. Chemosphere 2022, 293, 133557. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Zhang, J.; Liu, H.; Guo, X.; Zhang, X.; Yao, X.; Cao, Z.; Zhang, T. A review of the removal of microplastics in global wastewater treatment plants: Characteristics and mechanisms. Environ. Int. 2020, 146, 106277. [Google Scholar] [CrossRef] [PubMed]
- Alprol, A.E.; Gaballah, M.S.; Hassaan, M.A. Micro and Nanoplastics analysis: Focus on their classification, sources, and impacts in marine environment. Reg. Stud. Mar. Sci. 2021, 42, 101625. [Google Scholar] [CrossRef]
- Turan, N.B.; Erkan, H.S.; Engin, G.O. Microplastics in wastewater treatment plants: Occurrence, fate and identification. Process Saf. Environ. Prot. 2020, 146, 77–84. [Google Scholar] [CrossRef]
- Zhao, M.; Cao, Y.; Chen, T.; Li, H.; Tong, Y.; Fan, W.; Xie, Y.; Tao, Y.; Zhou, J. Characteristics and source-pathway of microplastics in freshwater system of China: A review. Chemosphere 2022, 297, 134192. [Google Scholar] [CrossRef]
- Jahandari, A. Microplastics in the urban atmosphere: Sources, occurrences, distribution, and potential health implications. J. Hazard. Mater. Adv. 2023, 12, 100346. [Google Scholar] [CrossRef]
- Van Tran, T.; Jalil, A.; Nguyen, T.M.; Nguyen, T.T.T.; Nabgan, W.; Nguyen, D.T.C. A review on the occurrence, analytical methods, and impact of microplastics in the environment. Environ. Toxicol. Pharmacol. 2023, 102, 104248. [Google Scholar] [CrossRef]
- Chae, Y.; An, Y.-J. Current research trends on plastic pollution and ecological impacts on the soil ecosystem: A review. Environ. Pollut. 2018, 240, 387–395. [Google Scholar] [CrossRef] [PubMed]
- Zhao, S.; Zhang, Z.; Chen, L.; Cui, Q.; Cui, Y.; Song, D.; Fang, L. Review on migration, transformation and ecological impacts of microplastics in soil. Appl. Soil Ecol. 2022, 176, 104486. [Google Scholar] [CrossRef]
- Long, Y.; Zhou, Z.; Yin, L.; Wen, X.; Xiao, R.; Du, L.; Zhu, L.; Liu, R.; Xu, Q.; Li, H.; et al. Microplastics removal and characteristics of constructed wetlands WWTPs in rural area of Changsha, China: A different situation from urban WWTPs. Sci. Total Environ. 2021, 811, 152352. [Google Scholar] [CrossRef]
- Edo, C.; González-Pleiter, M.; Leganés, F.; Fernández-Piñas, F.; Rosal, R. Fate of microplastics in wastewater treatment plants and their environmental dispersion with effluent and sludge. Environ. Pollut. 2019, 259, 113837. [Google Scholar] [CrossRef] [PubMed]
- Kaur, P.; Singh, K.; Singh, B. Microplastics in soil: Impacts and microbial diversity and degradation. Pedosphere 2021, 32, 49–60. [Google Scholar] [CrossRef]
- Azizi, N.; Nasseri, S.; Nodehi, R.N.; Jaafarzadeh, N.; Pirsaheb, M. Evaluation of conventional wastewater treatment plants efficiency to remove microplastics in terms of abundance, size, shape, and type: A systematic review and Meta-analysis. Mar. Pollut. Bull. 2022, 177, 113462. [Google Scholar] [CrossRef] [PubMed]
- Zettler, E.R.; Mincer, T.J.; Amaral-Zettler, L.A. Life in the “Plastisphere”: Microbial Communities on Plastic Marine Debris. Environ. Sci. Technol. 2013, 47, 7137–7146. [Google Scholar] [CrossRef] [PubMed]
- Atugoda, T.; Wijesekara, H.; Werellagama, D.; Jinadasa, K.; Bolan, N.S.; Vithanage, M. Adsorptive interaction of antibiotic ciprofloxacin on polyethylene microplastics: Implications for vector transport in water. Environ. Technol. Innov. 2020, 19, 100971. [Google Scholar] [CrossRef]
- Hermabessiere, L.; Dehaut, A.; Paul-Pont, I.; Lacroix, C.; Jezequel, R.; Soudant, P.; Duflos, G. Occurrence and effects of plastic additives on marine environments and organisms: A review. Chemosphere 2017, 182, 781–793. [Google Scholar] [CrossRef]
- Li, J.; Zhang, K.; Zhang, H. Adsorption of antibiotics on microplastics. Environ. Pollut. 2018, 237, 460–467. [Google Scholar] [CrossRef]
- Cheng, Y.; Ding, J.; Arenas, C.E.D.; Brinkmann, M.; Ji, X. A brief review on the assessment of potential joint effects of complex mixtures of contaminants in the environment. Environ. Sci. Adv. 2024, 3, 661–675. [Google Scholar] [CrossRef]
- Hu, L.; Zhao, Y.; Xu, H. Trojan horse in the intestine: A review on the biotoxicity of microplastics combined environmental contaminants. J. Hazard. Mater. 2022, 439, 129652. [Google Scholar] [CrossRef] [PubMed]
- Bhatt, P.; Bhandari, G.; Bilal, M. Occurrence, toxicity impacts and mitigation of emerging micropollutants in the aquatic environments: Recent tendencies and perspectives. J. Environ. Chem. Eng. 2022, 10, 107598. [Google Scholar] [CrossRef]
- Göbölös, B.; Sebők, R.E.; Szabó, G.; Tóth, G.; Szoboszlay, S.; Kriszt, B.; Kaszab, E.; Háhn, J. The Cocktail Effects on the Acute Cytotoxicity of Pesticides and Pharmaceuticals Frequently Detected in the Environment. Toxics 2024, 12, 189. [Google Scholar] [CrossRef] [PubMed]
- Shao, Y.; Chen, Z.; Hollert, H.; Zhou, S.; Deutschmann, B.; Seiler, T.-B. Toxicity of 10 organic micropollutants and their mixture: Implications for aquatic risk assessment. Sci. Total Environ. 2019, 666, 1273–1282. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Zhang, X.; Fu, L.; Li, C.; Zhang, S. The number of test organisms might influence the toxicity evaluation of hydrophobic micropollutants. Chemosphere 2024, 355, 141814. [Google Scholar] [CrossRef] [PubMed]
- Yaseen, A.; Assad, I.; Sofi, M.S.; Hashmi, M.Z.; Bhat, S.U. A global review of microplastics in wastewater treatment plants: Understanding their occurrence, fate and impact. Environ. Res. 2022, 212, 113258. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, M.-K.; Rakib, R.J.; Lin, C.; Hung, N.T.Q.; Le, V.-G.; Nguyen, H.-L.; Malafaia, G.; Idris, A.M. A comprehensive review on ecological effects of microplastic pollution: An interaction with pollutants in the ecosystems and future perspectives. TrAC Trends Anal. Chem. 2023, 168, 117294. [Google Scholar] [CrossRef]
- Rafa, N.; Ahmed, B.; Zohora, F.; Bakya, J.; Ahmed, S.; Ahmed, S.F.; Mofijur, M.; Chowdhury, A.A.; Almomani, F. Microplastics as carriers of toxic pollutants: Source, transport, and toxicological effects. Environ. Pollut. 2024, 343, 123190. [Google Scholar] [CrossRef]
- Rai, M.; Pant, G.; Pant, K.; Aloo, B.N.; Kumar, G.; Singh, H.B.; Tripathi, V. Microplastic Pollution in Terrestrial Ecosystems and Its Interaction with Other Soil Pollutants: A Potential Threat to Soil Ecosystem Sustainability. Resources 2023, 12, 67. [Google Scholar] [CrossRef]
- Rakib, R.J.; Sarker, A.; Ram, K.; Uddin, G.; Walker, T.R.; Chowdhury, T.; Uddin, J.; Khandaker, M.U.; Rahman, M.M.; Idris, A.M. Microplastic Toxicity in Aquatic Organisms and Aquatic Ecosystems: A Review. Water Air Soil Pollut. 2023, 234, 1–28. [Google Scholar] [CrossRef]
- González-Pleiter, M.; Pedrouzo-Rodríguez, A.; Verdú, I.; Leganés, F.; Marco, E.; Rosal, R.; Fernández-Piñas, F. Microplastics as vectors of the antibiotics azithromycin and clarithromycin: Effects towards freshwater microalgae. Chemosphere 2020, 268, 128824. [Google Scholar] [CrossRef]
- Qu, H.; Wang, F.; Barrett, H.; Wang, B.; Han, J.; Wu, J.; Huang, X.; Hu, Y.; Yu, G. Synthetical effect of microplastics and chiral drug amphetamine on a primary food source algae Chlorella pyrenoids. Food Chem. Toxicol. 2022, 169, 113415. [Google Scholar] [CrossRef] [PubMed]
- Prata, J.C.; Lavorante, B.R.; Montenegro, M.d.C.B.; Guilhermino, L. Influence of microplastics on the toxicity of the pharmaceuticals procainamide and doxycycline on the marine microalgae Tetraselmis chuii. Aquat. Toxicol. 2018, 197, 143–152. [Google Scholar] [CrossRef] [PubMed]
- Verdú, I.; Amariei, G.; Plaza-Bolaños, P.; Agüera, A.; Leganés, F.; Rosal, R.; Fernández-Piñas, F. Polystyrene nanoplastics and wastewater displayed antagonistic toxic effects due to the sorption of wastewater micropollutants. Sci. Total Environ. 2022, 819, 153063. [Google Scholar] [CrossRef] [PubMed]
- Mao, H.; Yang, H.; Xu, Z.; Yang, Y.; Zhang, X.; Huang, F.; Wei, L.; Li, Z. Microplastics and co-pollutant with ciprofloxacin affect interactions between free-floating macrophytes. Environ. Pollut. 2023, 316, 120546. [Google Scholar] [CrossRef] [PubMed]
- Mao, H.; Yang, H.; Xu, Z.; Peng, Q.; Yang, S.; Zhu, L.; Yang, Y.; Li, Z. Responses of submerged macrophytes to different particle size microplastics and tetracycline co-pollutants at the community and population level. J. Hazard. Mater. 2024, 464, 132994. [Google Scholar] [CrossRef] [PubMed]
- Nobre, C.R.; Moreno, B.B.; Alves, A.V.; Rosa, J.d.L.; Franco, H.d.R.; Abessa, D.M.D.S.; Maranho, L.A.; Choueri, R.B.; Gusso-Choueri, P.K.; Pereira, C.D.S. Effects of Microplastics Associated with Triclosan on the Oyster Crassostrea brasiliana: An Integrated Biomarker Approach. Arch. Environ. Contam. Toxicol. 2020, 79, 101–110. [Google Scholar] [CrossRef] [PubMed]
- Nugnes, R.; Russo, C.; Lavorgna, M.; Orlo, E.; Kundi, M.; Isidori, M. Polystyrene microplastic particles in combination with pesticides and antiviral drugs: Toxicity and genotoxicity in Ceriodaphnia dubia. Environ. Pollut. 2022, 313, 120088. [Google Scholar] [CrossRef]
- He, Y.; Zhang, Y.; Zhou, W.; Freitas, R.; Zhang, Y.; Zhang, Y. Combined exposure of polystyrene microplastics and carbamazepine induced transgenerational effects on the reproduction of Daphnia magna. Environ. Sci. Pollut. Res. 2023, 30, 67596–67607. [Google Scholar] [CrossRef]
- Liu, B.; Yu, D.; Ge, C.; Luo, X.; Du, L.; Zhang, X.; Hui, C. Combined effects of microplastics and chlortetracycline on the intestinal barrier, gut microbiota, and antibiotic resistome of Muscovy ducks (Cairina moschata). Sci. Total Environ. 2023, 887, 164050. [Google Scholar] [CrossRef] [PubMed]
- Banaee, M.; Faraji, J.; Amini, M.; Multisanti, C.R.; Faggio, C. Rainbow trout (Oncorhynchus mykiss) physiological response to microplastics and enrofloxacin: Novel pathways to investigate microplastic synergistic effects on pharmaceuticals. Aquat. Toxicol. 2023, 261, 106627. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Wu, H.; Chen, J.; Guo, B.; Zhao, X.; Lin, H.; Li, W.; Zhao, X.; Lv, S.; Huang, C. Adsorption mechanism of trace heavy metals on microplastics and simulating their effect on microalgae in river. Environ. Res. 2022, 214, 113777. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Lin, X.; Gao, P.; Zhao, X.; Ma, C.; Wang, L.; Sun, H.; Sun, L.; Liu, C. Combined effects of microplastics and excess boron on Microcystis aeruginosa. Sci. Total Environ. 2023, 891, 164298. [Google Scholar] [CrossRef]
- Davarpanah, E.; Guilhermino, L. Are gold nanoparticles and microplastics mixtures more toxic to the marine microalgae Tetraselmis chuii than the substances individually? Ecotoxicol. Environ. Saf. 2019, 181, 60–68. [Google Scholar] [CrossRef] [PubMed]
- Pan, T.; Chen, X.; Kong, C.; Gao, D.; Liu, W.; Liao, H.; Junaid, M.; Wang, J. Single and combined toxicity of polystyrene nanoplastics and PCB-52 to the aquatic duckweed Spirodela polyrhiza. Sci. Total Environ. 2023, 901, 166482. [Google Scholar] [CrossRef]
- Yu, G.; Huang, S.; Luo, X.; Zhao, W.; Zheng, Z. Single and combined toxicity effects of nanoplastics and bisphenol F on submerged the macrophyte Hydrilla verticillata. Sci. Total Environ. 2022, 814, 152564. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Liu, W.; Lian, Y.; Shi, R.; Wang, Q.; Zeb, A. Single and combined toxicity of polystyrene nanoplastics and arsenic on submerged plant Myriophyllum verticillatum L. Plant Physiol. Biochem. 2023, 194, 513–523. [Google Scholar] [CrossRef]
- Wang, Q.; Meng, L.; Liu, W.; Zeb, A.; Shi, R.; Lian, Y.; Su, C. Single and combined effects of polystyrene nanoplastics and Cd on submerged plants Ceratophyllum demersum L. Sci. Total Environ. 2023, 872, 162291. [Google Scholar] [CrossRef]
- Jeyavani, J.; Vaseeharan, B. Combined toxic effects of environmental predominant microplastics and ZnO nanoparticles in freshwater snail Pomaceae paludosa. Environ. Pollut. 2023, 325, 121427. [Google Scholar] [CrossRef]
- Yan, W.; Hamid, N.; Deng, S.; Jia, P.-P.; Pei, D.-S. Individual and combined toxicogenetic effects of microplastics and heavy metals (Cd, Pb, and Zn) perturb gut microbiota homeostasis and gonadal development in marine medaka (Oryzias melastigma). J. Hazard. Mater. 2020, 397, 122795. [Google Scholar] [CrossRef] [PubMed]
- Estrela, F.N.; Guimarães, A.T.B.; Silva, F.G.; da Luz, T.M.; Silva, A.M.; Pereira, P.S.; Malafaia, G. Effects of polystyrene nanoplastics on Ctenopharyngodon idella (grass carp) after individual and combined exposure with zinc oxide nanoparticles. J. Hazard. Mater. 2020, 403, 123879. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Bai, Y.; Meng, H.; Zhu, Y.; Yue, H.; Li, B.; Wang, J.; Wang, J.; Zhu, L.; Du, Z. Combined toxic effects of polystyrene microplastics and 3,6-dibromocarbazole on zebrafish (Danio rerio) embryos. Sci. Total Environ. 2024, 913, 169787. [Google Scholar] [CrossRef] [PubMed]
- Xu, K.; Zhang, Y.; Huang, Y.; Wang, J. Toxicological effects of microplastics and phenanthrene to zebrafish (Danio rerio). Sci. Total Environ. 2020, 757, 143730. [Google Scholar] [CrossRef]
- Sayed, A.E.-D.H.; Emeish, W.F.A.; Bakry, K.A.; Al-Amgad, Z.; Lee, J.-S.; Mansour, S. Polystyrene nanoplastic and engine oil synergistically intensify toxicity in Nile tilapia, Oreochromis niloticus. BMC Vet. Res. 2024, 20, 143. [Google Scholar] [CrossRef]
- Zhang, Q.; Qu, Q.; Lu, T.; Ke, M.; Zhu, Y.; Zhang, M.; Zhang, Z.; Du, B.; Pan, X.; Sun, L.; et al. The combined toxicity effect of nanoplastics and glyphosate on Microcystis aeruginosa growth. Environ. Pollut. 2018, 243, 1106–1112. [Google Scholar] [CrossRef] [PubMed]
- Tang, X.; Chen, L.; Ding, Y.; Liu, H.; Li, M.; Yang, Y. Impact of nanoplastics on the biodegradation, ecotoxicity, and key genes involved in imidacloprid metabolic pathways in papyrus (Cyperus papyrus L.). Chemosphere 2023, 349, 140910. [Google Scholar] [CrossRef] [PubMed]
- Ziajahromi, S.; Kumar, A.; Neale, P.A.; Leusch, F.D. Effects of polyethylene microplastics on the acute toxicity of a synthetic pyrethroid to midge larvae (Chironomus tepperi) in synthetic and river water. Sci. Total Environ. 2019, 671, 971–975. [Google Scholar] [CrossRef]
- Zocchi, M.; Sommaruga, R. Microplastics modify the toxicity of glyphosate on Daphnia magna. Sci. Total Environ. 2019, 697, 134194. [Google Scholar] [CrossRef]
- Felten, V.; Toumi, H.; Masfaraud, J.-F.; Billoir, E.; Camara, B.I.; Férard, J.-F. Microplastics enhance Daphnia magna sensitivity to the pyrethroid insecticide deltamethrin: Effects on life history traits. Sci. Total Environ. 2020, 714, 136567. [Google Scholar] [CrossRef]
- Luo, T.; Weng, Y.; Huang, Z.; Zhao, Y.; Jin, Y. Combined hepatotoxicity of imidacloprid and microplastics in adult zebrafish: Endpoints at gene transcription. Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 2021, 246, 109043. [Google Scholar] [CrossRef]
- Mohamed, I.A.; Soliman, H.A.; Hana, M.; Lee, J.-S.; Sayed, A.E.-D.H. Toxicity of mixture of polyethylene microplastics and Up Grade® pesticide on Oreochromis niloticus juvenile: I. Hemato-biochemical and histopathological alterations. Environ. Toxicol. Pharmacol. 2023, 101, 104213. [Google Scholar] [CrossRef]
- Wang, J.; Liu, X.; Dai, Y.; Ren, J.; Li, Y.; Wang, X.; Zhang, P.; Peng, C. Effects of co-loading of polyethylene microplastics and ciprofloxacin on the antibiotic degradation efficiency and microbial community structure in soil. Sci. Total Environ. 2020, 741, 140463. [Google Scholar] [CrossRef] [PubMed]
- Ya, H.; Zhang, T.; Xing, Y.; Lv, M.; Wang, X.; Jiang, B. Co-existence of polyethylene microplastics and tetracycline on soil microbial community and ARGs. Chemosphere 2023, 335, 139082. [Google Scholar] [CrossRef]
- Khan, K.Y.; Li, G.; Du, D.; Ali, B.; Zhang, S.; Zhong, M.; Stoffella, P.J.; Iqbal, B.; Cui, X.; Fu, L.; et al. Impact of polystyrene microplastics with combined contamination of norfloxacin and sulfadiazine on Chrysanthemum coronarium L. Environ. Pollut. 2023, 316, 120522. [Google Scholar] [CrossRef]
- Araújo, A.M.; Ringeard, H.; Nunes, B. Do microplastics influence the long-term effects of ciprofloxacin on the polychaete Hediste diversicolor? An integrated behavioral and biochemical approach. Environ. Toxicol. Pharmacol. 2023, 99, 104088. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.; Sheng, G.D.; O’connor, P. Microplastics combined with tetracycline in soils facilitate the formation of antibiotic resistance in the Enchytraeus crypticus microbiome. Environ. Pollut. 2020, 264, 114689. [Google Scholar] [CrossRef]
- Xiang, Q.; Zhu, D.; Chen, Q.-L.; O’connor, P.; Yang, X.-R.; Qiao, M.; Zhu, Y.-G. Adsorbed Sulfamethoxazole Exacerbates the Effects of Polystyrene (~2 μm) on Gut Microbiota and the Antibiotic Resistome of a Soil Collembolan. Environ. Sci. Technol. 2019, 53, 12823–12834. [Google Scholar] [CrossRef]
- Han, Z.; Osman, R.; Liu, Y.; Wei, Z.; Wang, L.; Xu, M. Analyzing the impacts of cadmium alone and in co-existence with polypropylene microplastics on wheat growth. Front. Plant Sci. 2023, 14, 1240472. [Google Scholar] [CrossRef]
- Barreto, A.; Santos, J.; Almeida, L.; Tavares, V.; Pinto, E.; Celeiro, M.; Garcia-Jares, C.; Maria, V.L. First approach to assess the effects of nanoplastics on the soil species Folsomia candida: A mixture design with bisphenol A and diphenhydramine. NanoImpact 2023, 29, 100450. [Google Scholar] [CrossRef]
- Zeidi, A.; Sayadi, M.H.; Rezaei, M.R.; Banaee, M.; Gholamhosseini, A.; Pastorino, P.; Multisanti, C.R.; Faggio, C. Single and combined effects of CuSO4 and polyethylene microplastics on biochemical endpoints and physiological impacts on the narrow-clawed crayfish Pontastacus leptodactylus. Chemosphere 2023, 345, 140478. [Google Scholar] [CrossRef]
- Salla, R.F.; Oliveira, F.N.; Jacintho, J.C.; Cirqueira, F.; Tsukada, E.; Vieira, L.G.; Rocha, T.L. Microplastics and TiO2 nanoparticles mixture as an emerging threat to amphibians: A case study on bullfrog embryos. Environ. Pollut. 2024, 346, 123624. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.; Song, X.; Wang, D.; Ma, Y.; Shan, Y.; Ren, X.; Hu, H.; Cui, J.; Ma, Y. Combined effects of mulch film-derived microplastics and pesticides on soil microbial communities and element cycling. J. Hazard. Mater. 2024, 466, 133656. [Google Scholar] [CrossRef] [PubMed]
- Nie, E.; Guo, L.; Zhou, X.; Zhou, D.; Wang, H.; Ye, Q.; Yang, Z. Effects of charged polystyrene microplastics on the bioavailability of dufulin in tomato plant. J. Hazard. Mater. 2024, 467, 133748. [Google Scholar] [CrossRef]
- Ju, H.; Yang, X.; Tang, D.; Osman, R.; Geissen, V. Pesticide bioaccumulation in radish produced from soil contaminated with microplastics. Sci. Total Environ. 2024, 910, 168395. [Google Scholar] [CrossRef] [PubMed]
- Sun, W.; Meng, Z.; Li, R.; Zhang, R.; Jia, M.; Yan, S.; Tian, S.; Zhou, Z.; Zhu, W. Joint effects of microplastic and dufulin on bioaccumulation, oxidative stress and metabolic profile of the earthworm (Eisenia fetida). Chemosphere 2020, 263, 128171. [Google Scholar] [CrossRef]
- Boughattas, I.; Vaccari, F.; Zhang, L.; Bandini, F.; Miras-Moreno, B.; Missawi, O.; Hattab, S.; Mkhinini, M.; Lucini, L.; Puglisi, E.; et al. Co-exposure to environmental microplastic and the pesticide 2,4-dichlorophenoxyacetic acid (2,4-D) induce distinctive alterations in the metabolome and microbial community structure in the gut of the earthworm Eisenia andrei. Environ. Pollut. 2024, 344, 123213. [Google Scholar] [CrossRef]
- Lu, G.; Xue, Q.; Ling, X.; Zheng, X. Toxic interactions between microplastics and the antifungal agent ketoconazole in sediments on Limnodrilus hoffmeistteri. Process Saf. Environ. Prot. 2023, 172, 250–261. [Google Scholar] [CrossRef]
- Wang, S.; Liu, M.; Wang, J.; Huang, J.; Wang, J. Polystyrene nanoplastics cause growth inhibition, morphological damage and physiological disturbance in the marine microalga Platymonas helgolandica. Mar. Pollut. Bull. 2020, 158, 111403. [Google Scholar] [CrossRef]
- Xiao, Y.; Jiang, X.; Liao, Y.; Zhao, W.; Zhao, P.; Li, M. Adverse physiological and molecular level effects of polystyrene microplastics on freshwater microalgae. Chemosphere 2020, 255, 126914. [Google Scholar] [CrossRef]
Organisms | MNPs | Pollutant Dose | Exposure Time (Days) | Biological Response | EC50 Individual | EC50 Combined | Effect | References | |
---|---|---|---|---|---|---|---|---|---|
Bacterium | Microcystis aeruginosa | PS (ii), amino-modified PS (i) and PS-COOH (ii) | Boron | 4 | Growth rate (A), chlorophyll a content, oxidative stress, cellular structure and microcystines | (A) Boron: 26.6 mg/L | NA | (i) Synergistic; (ii) additive | [45] |
NP-PS (amino modified) | Glyphosate | 4 | Chlorophyll a content (growth rate) | Glyphosate 48 h: 8.1 mg/L; glyphosate 96 h: 6.3 mg/L | NA | Antagonistic | [57] | ||
Anabaena sp. PCC7120 | PS, PET, PLA and POM (1 g/20 mL) virgin and aged | Azithromycin (500 µg/L) and Clarithromycin (1000 µg/L) | 3 | Chlorophyll a Growth rate | NA | NA | Synergistic | [33] | |
Algae | Chlorella pyrenoids | PS 5 µm (50 mg/L) | Amphetamine (0.001, 0.1, 1 and 5 mg/L) | 4 | Concentration photosynthetic pigments, growth rate (A), SOD and MDA activities | (A) 0.45 ppm | (A) 0.67 ppm | Synergistic | [34] |
Tetraselmis chuii | MP 1–5 µm (1.5 mg/L) | Procainamide and doxycycline (4, 8, 16, 32, 64, 128 and 256 mg/L) | 4 | Chlorophyll content (A); growth rate (B) | Procainamide: (A) 143 mg/L, (B) 104 mg/L; doxycycline: (A) 14 mg/L, (B) 22 mg/L | Procainamide + MP: (A) 31 mg/L, (B) 125 mg/L; doxycycline + MP: (A) 7 mg/L, (B) 11 mg/L | Synergistic | [35] | |
MP fluorescent red (0.3, 0.9 and 4 mg/L) | Gold nanoparticles (0.1, 0.3 and 3 mg/L) | 4 | Growth rate | NA | NA | Synergistic | [46] | ||
Chlorella vulgaris | PP (ii), PS (i), PVC (i) (0, 0.1, 0.2, 0.3, 0.4 and 1 g/L) | Pb, Cu, Cr and Cd (0, 50, 500 and 1000 µg/L) | 4 | Growth rate (i, ii) oxidative stress | NA | NA | (i) Antagonistic; (ii) synergistic | [44] | |
Plants | Spirodela polyhriza | NP-PS (12.5, 25, 50, 100 and 200 mg/L) | Wastewater (1:16, 1:8, 1:4, 1:2 and 1:1) | 3 | Growth inhibition (A) chlorophyll fluorescence | (A) NP-PS: 170 + −14 mg/L; WW: 0.94 + −0.27 mg/L | NA | Antagonistic | [36] |
NP-PS 80 nm (0.5, 5, 10 and 20 mg/L) | PCB-52 (0.1 mg/L) | 10 | Growth rate, photosynthetic pigments, osmoregulation and antioxidant response | NA | NA | Synergistic | [47] | ||
Hydrilla verticillata | NP-PS (1 and 10 mg/L) | Bisphenol F (10 mg/L) | 16 | Growth rate, chlorphylls a and b content and antioxidant response | NA | NA | Antagonistic | [48] | |
Myriophyllum virticillatum L. | NP-PS 100 nm (0, 10 and 50 mg/L) | As (0 and 0.1 (i) and 1 (ii) mg/L) | 24 | Growth rate, oxidative stress, osmotic regulation and metabolic response | NA | NA | (i) Synergistic; (ii) antagonistic | [49] | |
Spirodela polyrhiza | MP PS (10–50 µm) 100 mg/L | Ciprofloxacin 2 mg/L | 15 | (i) Specific leaf area, (ii) chlorophylls a and b, (iii) MDA, (iv) catalase activity and (v) soluble sugar content | NA | NA | (i) Additivity/synergistic; (ii) antagonistic; (iii) antagonistic/additive; (iv) antagonistic; (v) antagonistic/additive | [37] | |
Lemna minor | NA | NA | (i) Additive; (ii) additive; (iii) antagonistic; (iv) antagonistic; (v) synergistic/antagonistic | ||||||
Hydrilla verticillata | MP PS (i) 5 µm, (ii) 50 µm and (iii) 500 µm) 75 mg/L | Tetracycline 50 mg/L | 35 | Total length, specific leaf area, branch net, fresh weight, chlorophylls a and b, soluble sugar, MDA and catalase activities | NA | NA | (i) Synergistic/antagonistic; (ii) antagonistic; (iii) antagonistic | [38] | |
Elodea nuttallii | NA | NA | (i) Synergistic/antagonistic; (ii) antagonistic; (iii) antagonistic | ||||||
Cyperus papyrus L. | NP (A) amino-modified PS and (B) PS-COOH 50 mg/L | Imidacloprid 1.0 mg/L | 28 | Growth inhibition, chlorophyll content, MDA, and antioxidant enzyme activities | NA | NA | Synergistic | [58] | |
Ceratophyllum demersum L. | NP-PS 100 nm (5 and 10 mg/L) | Cd (0.1, 0.5 and 1 mg/L) | 14 | Fresh weight, chlorophyll content and antioxidant response | NA | NA | Synergistic | [50] | |
Invertebrates | Ceriodaphnia dubia | PS 1 µm | Acyclovir and Imidacloprid | 1 to 7 | Reproduction (i) and genotoxicity (ii) | PS: 1.68 µg/L Acyclovir: 0.04 µg/L Imidacloprid: 1358 µg/L | NA | (i) Additive; (ii) antagonistic | [40] |
Cassotrea brasiliana | Environmental MP (250 mg/L) | Triclosan | 3 to 7 | Tissue biomarkers | NA | NA | Additive | [39] | |
Chironomus tepperi | PE 10–27 µm (5 mg/L) | Bifenthrin (range 0.1–3.2 μg/L) | 2 | Survival rate | Synthetic water (i) EC50: 0.5 µg/L; River water (ii) EC50: 1.3 µg/L | Synthetic water (i) EC50: 1.3 µg/L; River water (ii) EC50: 1.4 µg/L | (i) Antagonistic; (ii) synergistic | [59] | |
Daphnia magna | PET + PA and PE | Glyphosate | 7 | Survival rate | NA | NA | Not clear | [60] | |
PS 70 nm, 1 and 5 µm (0, 30, 50, 70, 90 and 120 mg/L) | Carbamazepine (0, 5, 10, 15, 20, 25 and 30 mg/L) | 2 to 21 | Reproduction | 700 nm: 24.15; 1 µm:14.09; 5 µm: 21.66 | 700 nm + 50 mg/L CBZ: 10.69; 1 µm + 50 mg/L CBZ: 15.60; 5 µm + 50 mg/L CBZ: 14.56; CBZ + 5 mg/L 700 nm MP-PS: 74.01; CBZ + 5 mg/L 1 µm MP-PS: 82.12; CBZ + 5 mg/L 5 µm MP-PS: 50.08 | Synergistic | [41] | ||
PE 1–4 µm (0, 1 and 10 mg/L) | Deltamethrin (0, 40 ng/L) | 21 | Survival rate (A), atching and body shape | (A) EC50 24 h MP 1–10 and DM40: 0.815 and 0.855 mg/L 0.873 ng/L EC50 48 h MP 1–10 and DM40: 0.641 and 0.600 mg/L, 0.575 ng/L | NA | Synergistic | [61] | ||
Pomeacea paludosa | PP (10 µg/L) | ZnO nanoparticles (10 µg/L) | 28 | Behavioral parameters, antioxidant, digestive, and neurotransmission enzymes | NA | NA | Synergistic | [51] | |
Vertebrates | Cairina moschata | MP (1000 µg/L) | Chlorotetracycline (50 mg/Kg) | 56 | Inflammation bioaccumulation | NA | NA | Antagonistic | [42] |
Oncorhynchus mykiss | HDPE (0, 1000 and 2000 mg/Kg) | Enrofloxacin (0, 1.35 and 2.7 mL/Kg) | 21 | Blood biomarkersand oxidative stress | NA | NA | Synergistic | [43] | |
Ctenopharyngodon idella | NP-PS 20–26 nm (760 µg/L) | ZnO nanoparticles (760 µg/L) | 72 | Genotoxicity, oxidative stress and behavioral test | NA | NA | Not clear | [53] | |
Danio rerio | PS 5–50 µm (10 mg/L) | 3,6dibromocarbazole (0.5 mg/L) | 4 | Oxidative stress | NA | NA | Antagonistic | [54] | |
PS (3 mg/L) | Phenanthrene (0.2 mg/L) | 1 to 24 | Accumulation, antioxidant enzymes, gene expression and gut microbiota | NA | NA | Synergistic | [55] | ||
PS (20 µg/L) | Imidacloprid (100 µg/L) | 21 | Inflammatory parameters, oxidative stress and glycolytic metabolism parameters | NA | NA | Synergistic | [62] | ||
Oryzias melastigma | PS 5–50 µm (100 µg/L) | Cd (10 µg/L), Pb (50 µg/L) and Zn (100 µg/L) | 30 | Microbial community gonadal development | NA | NA | Not observed | [52] | |
Oreochromus niloticus | PE (10 mg/L) | Up Grade® (2.92 mg/L) | 4 | (A) Mortality hematological and biochemical parameters | (A) LD50 (48 h) 56.37; LD50 (72 h) 36.10; LD50 (96 h) 29.16 | NA | Antagonistic | [63] | |
NP-PS 50 nm (5 mg/L) | Engine oil (1%) | 15 | Hematological parameters, oxidative stress and inflammation | NA | NA | Synergistic | [56] |
Organisms | MNPs | Pollutant Dose | Exposure Time (Days) | Biological Response | EC50 Individual | EC50 Combined | Effect | References | |
---|---|---|---|---|---|---|---|---|---|
Bacterium | Microbial comunities of soils | PE (1% w/w) | Ciprofloxacin (10 mg/Kg) | 35 | 16s-RNA secuenciation and total nitrogen | NA | NA | Synergistic | [64] |
PE (5% w/w) | Tetracycline (10 mg/Kg) | 35 | 16s-RNA secuenciation, ARGs and enzymes | NA | NA | Synergistic | [65] | ||
MP aged mulch films (2 wt/2 wt) | Imidacloprid (0.5 and 5 mg/Kg) and flumioxazin (0.3 and 3 mg/Kg) | 56 | 16s-RNA secuenciation and elemental analysis | NA | NA | Antagonistic | [74] | ||
Plants | Chrysanthemum coronarium L. | PS 1000–500 nm (4% w/w) | Norfloxacin (50 mg/Kg) and sulfadiazine (10 mg/Kg) | 60 | Acummulation, elemental analysis and cellular distribution | NA | NA | Synergistic | [66] |
Tomato plant | PS-COO- (i), PS, PS-NH3+ (2 mg/L) | Dufulin (50 mg/L) | 60 | Biodisponibility | NA | NA | Antagonistic (i) | [75] | |
Wheat | PP 50 (i) and 100 (ii) µm (500 mg/L) | Cadmium (40 mg/L) | 3 and 7 | Germination, morphology and oxidative stress | NA | NA | (i) Antagonistic; (ii) synergistic | [70] | |
Radish plant | LDPE and biopolimer, pristine and aged (i), 200–500 µm (0.2% w/w) | Chlorpyrifos and difenoconazole (15 mg/Kg) | 35 | Growth rate | NA | NA | (i) Synergistic | [76] | |
Invertebrates | Hediste diversicolor | PET 125 µm–1 mm (0.032 and 0.054 g/L) | Ciprofloxacin (130 ng/L and 1300 ng/L) | 28 | Behavioral parameters, metabolic enzymes and oxidative stress | NA | NA | Synergistic | [67] |
Enchytraeus crypticus | PA and PVC (1000 mg/Kg) | Tetracycline (20 mg/Kg) | 21 | Microbial community and analysis of antibiotic resistant genes | NA | NA | Not observed | [68] | |
Folsomia candida | NP (0.015 and 600 mg/Kg) | BPA and diphenhydramine (0, 1, 10, 100 and 2000 mg/Kg) | 28 | (i) Reproduction; (ii) lipid peroxidation | BPA 1399.3 mg/Kg, DPH 1498.2 mg/Kg | NA | (i) Synergistic; (ii) antagonistic | [71] | |
PS 2 µm (1% w/w) | Sulfamethoxazole (1 mg/L) | 28 | Microbial community, analysis of antibiotic resistant genes and C:N factionation | NA | NA | Synergistic | [69] | ||
Eisenia fetida | MP | Dufulin (10 mg/Kg) | 14 | Bioacumulation, oxidative stress and metabolic profile | NA | NA | Synergistic | [77] | |
Eisenia andrei | Environmental MP (PE, PP, PET, PEVA and PA) (10 µg/Kg) | 2,4-dochlorophenoxyacetic acid (7 mg/Kg) | 14 | Microbial community and metabolonics | NA | NA | Synergistic | [78] | |
Limnodrilus hoffmeistteri | PS 10 µm (0.1, 1, 10 and 100 µg/g) | Ketoconazole (0.1, 1, 10 and 100 µg/g) | 28 | Reproductive, behavioral parameters and oxidative stress | NA | NA | Synergistic | [79] | |
Pontastacus leptodactylus | PE 15–25 µm (0, 0.5 and 1 mg/L) | CuSO4 (0.5 and 1 mg/L) | 28 | Hemolymph parameters and oxidative stress | NA | NA | Synergistic | [72] | |
Vertebrates | Aquarana catesbeiana | PE 35.4 µm (10 µg/L) | TiO2 nanoparticles (10 µm/L) | 4 | Survival rate and hatching rate | NA | NA | Antagonistic | [73] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bastante-Rabadán, M.; Boltes, K. Mixtures of Micro and Nanoplastics and Contaminants of Emerging Concern in Environment: What We Know about Their Toxicological Effects. Toxics 2024, 12, 589. https://doi.org/10.3390/toxics12080589
Bastante-Rabadán M, Boltes K. Mixtures of Micro and Nanoplastics and Contaminants of Emerging Concern in Environment: What We Know about Their Toxicological Effects. Toxics. 2024; 12(8):589. https://doi.org/10.3390/toxics12080589
Chicago/Turabian StyleBastante-Rabadán, Marina, and Karina Boltes. 2024. "Mixtures of Micro and Nanoplastics and Contaminants of Emerging Concern in Environment: What We Know about Their Toxicological Effects" Toxics 12, no. 8: 589. https://doi.org/10.3390/toxics12080589
APA StyleBastante-Rabadán, M., & Boltes, K. (2024). Mixtures of Micro and Nanoplastics and Contaminants of Emerging Concern in Environment: What We Know about Their Toxicological Effects. Toxics, 12(8), 589. https://doi.org/10.3390/toxics12080589