Hormesis in the Assessment of Toxicity Assessment by Luminescent Bacterial Methods
Abstract
:1. Introduction
2. Materials and Methods
2.1. Strains and Chemicals
2.2. Resuscitation of Luminescent Bacteria
2.3. Acute Toxicity Assays for Chemicals
2.4. Fitting the Dose–Response Model
3. Results and Discussion
3.1. Toxicity of Different Substances to Luminescent Bacteria
3.2. Hormesis Parameters Based on the New Model
3.3. Hormesis Effect of Pollutants in Natural Waters on Luminescent Bacteria and Its Application
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tang, L.; Sun, Y.; Lu, W.; Chen, X.; Mosa, A.; Minkina, T.; Gao, Y.; Ling, W. A novel remediation strategy of mixed calcium peroxide and degrading bacteria for polycyclic aromatic hydrocarbon contaminated water. J. Hazard. Mater. 2024, 470, 134122. [Google Scholar] [CrossRef]
- Huang, C.; Wu, L.-H.; Liu, G.-Q.; Shi, L.; Guo, Y. Occurrence and Ecological Risk Assessment of Eight Endocrine-Disrupting Chemicals in Urban River Water and Sediments of South China. Arch. Environ. Contam. Toxicol. 2018, 75, 224–235. [Google Scholar] [CrossRef]
- Liao, Z.; Jian, Y.; Lu, J.; Liu, Y.; Li, Q.; Deng, X.; Xu, Y.; Wang, Q.; Yang, Y.; Luo, Z. Distribution, migration patterns, and food chain human health risks of endocrine-disrupting chemicals in water, sediments, and fish in the Xiangjiang River. Sci. Total Environ. 2024, 930, 172484. [Google Scholar] [CrossRef]
- Yang, W.; Li, J.; Yao, Z.; Li, M. A review on the alternatives to antibiotics and the treatment of antibiotic pollution: Current development and future prospects. Sci. Total Environ. 2024, 926, 171757. [Google Scholar] [CrossRef] [PubMed]
- Frank, H.; Robert, L. Why does pesticide pollution in water persist? Environ. Sci. Policy 2021, 128, 185–193. [Google Scholar] [CrossRef]
- Kumar, V.; Parihar, R.D.; Sharma, A.; Bakshi, P.; Singh Sidhu, G.P.; Bali, A.S.; Karaouzas, I.; Bhardwaj, R.; Thukral, A.K.; Gyasi-Agyei, Y.; et al. Global evaluation of heavy metal content in surface water bodies: A meta-analysis using heavy metal pollution indices and multivariate statistical analyses. Chemosphere 2019, 236, 124364. [Google Scholar] [CrossRef] [PubMed]
- Shams Forruque, A.; Kumar, P.S.; Mahtabin Rodela, R.; Anika Tasnim, C.; Samiha, N.; Nazifa, R.; Mahlia, T.M.I.; Hwai Chyuan, O.; Mofijur, M. Heavy metal toxicity, sources, and remediation techniques for contaminated water and soil. Environ. Technol. Innov. 2021, 25, 102114. [Google Scholar] [CrossRef]
- Zuo, S.; Zhou, S.; Ye, L.; Ding, Y.; Jiang, X. Antialgal effects of five individual allelochemicals and their mixtures in low level pollution conditions. Environ. Sci. Pollut. Res. 2016, 23, 15703–15711. [Google Scholar] [CrossRef]
- Cai, J.; Niu, B.; Xie, Q.; Lu, N.; Huang, S.; Zhao, G.; Zhao, J. Accurate Removal of Toxic Organic Pollutants from Complex Water Matrices. Environ. Sci. Technol. 2022, 56, 2917–2935. [Google Scholar] [CrossRef]
- Yu, Y.; Wang, Z.; Yao, B.; Zhou, Y. Occurrence, bioaccumulation, fate, and risk assessment of emerging pollutants in aquatic environments: A review. Sci. Total Environ. 2024, 923, 171388. [Google Scholar] [CrossRef]
- Huang, Y. The Effects of Bisphenol A on Various Human Systems. Highlights Sci. Eng. Technol. 2023, 65, 85–88. [Google Scholar] [CrossRef]
- Sweeney, M.F.; Hasan, N.; Soto, A.M.; Sonnenschein, C. Environmental endocrine disruptors: Effects on the human male reproductive system. Rev. Endocr. Metab. Disord. 2016, 16, 341–357. [Google Scholar] [CrossRef] [PubMed]
- Liang, H.; Yuan, P.; Song, Y.; Cheng, J.; Zhao, Y. Progress on Toxicity Assessment Methods of Industrial Wastewater and their Applications. Environ. Monit. China 2013, 29, 85–91. [Google Scholar]
- Huang, M.; Li, Y.; Gu, G. Bioassay methods o wastewater toxicity. Ind. Water Treat. 2003, 23, 14–18. [Google Scholar]
- Wu, Y.; Zhang, G.; Xu, M.; Zhang, J.; Sun, G. Advance in the Application of Luminescent Bacteria on Inspecting Ecotoxicity in Water. Microbiology 2010, 37, 1222–1226. [Google Scholar]
- Hu, X.; He, Z.; Li, H. Research progress of the detection mechanism of luminescent bacterial toxicity and its application. Food Mach. 2018, 34, 179–184. [Google Scholar]
- Ma, Y.; Huang, Y.; Jia, Y.; Yu, H.; Cai, Q.; Wang, A.; Chen, M. Improved acute toxicity test method for luminescent bacteria. Environ. Pollut. Control. 2010, 32, 48–52. [Google Scholar]
- Yao, Z.; Wang, D.; Wu, X.; Lin, Z.; Long, X.; Liu, Y. Hormetic mechanism of sulfonamides on Aliivibrio fischeri luminescence based on a bacterial cell-cell communication. Chemosphere 2019, 215, 793–799. [Google Scholar] [CrossRef]
- Deng, Z.; Lin, Z.; Zou, X.; Yao, Z.; Tian, D.; Wang, D.; Yin, D. Model of Hormesis and Its Toxicity Mechanism Based on Quorum Sensing: A Case Study on the Toxicity of Sulfonamides to Photobacterium phosphoreum. Environ. Sci. Technol. 2012, 46, 7746–7754. [Google Scholar] [CrossRef]
- Jennings, V.L.K.; Rayner-Brandes, M.H.; Bird, D.J. Assessing chemical toxicity with the bioluminescent photobacterium (vibrio fischeri): A comparison of three commercial systems. Water Res. 2001, 35, 3448–3456. [Google Scholar] [CrossRef]
- Yang, J.; Hu, S.; Liao, A.; Weng, Y.; Liang, S.; Lin, Y. Preparation of freeze-dried bioluminescent bacteria and their application in the detection of acute toxicity of bisphenol A and heavy metals. Food Sci. Nutr. 2022, 10, 1841–1853. [Google Scholar] [CrossRef]
- Belz, R.G.; Piepho, H.-P. Statistical modeling of the hormetic dose zone and the toxic potency completes the quantitative description of hormetic dose responses. Environ. Toxicol. Chem. 2015, 34, 1169–1177. [Google Scholar] [CrossRef]
- An, M.; Johnson, I.R.; Lovett, J.V. Mathematical modeling of allelopathy: Biological response to allelochemicals and its interpretation. J. Chem. Ecol. 1993, 19, 2379–2388. [Google Scholar] [CrossRef] [PubMed]
- Calabrese, E.J.; Baldwin, L.A. Hormesis: A generalizable and unifying hypothesis. Crit. Rev. Toxicol. 2001, 31, 353–424. [Google Scholar] [CrossRef]
- Kuttler, C.; Hense, B.A. Interplay of two quorum sensing regulation systems of Vibrio fischeri. J. Theor. Biol. 2008, 251, 167–180. [Google Scholar] [CrossRef] [PubMed]
- Ramos, J.L.; Martínez-Bueno, M.; Molina-Henares, A.J.; Terán, W.; Watanabe, K.; Zhang, X.; Gallegos, M.T.; Brennan, R.; Tobes, R. The TetR family of transcriptional repressors. Microbiol. Mol. Biol. Rev. 2005, 69, 326–356. [Google Scholar] [CrossRef]
- Calabrese, E.J. Toxicological awakenings: The rebirth of hormesis as a central pillar of toxicology. Toxicol. Appl. Pharmacol. 2005, 204, 1–8. [Google Scholar] [CrossRef]
- Brain, P.; Cousens, R. An equation to describe dose responses where there is stimulation of growth at low doses. Weed Res. 1989, 29, 93. [Google Scholar] [CrossRef]
- Cedergreen, N.; Ritz, C.; Streibig, J.C. Improved empirical models describing hormesis. Environ. Toxicol. Chem. 2006, 24, 3166–3172. [Google Scholar] [CrossRef] [PubMed]
- Ning, W.; Yang, P.; Wang, H.; Han, L.; Cao, M.; Luo, J. Evaluating a Sampling Regime for Estimating the Levels of Contamination and the Sources of Elements in Soils Collected from a Rapidly Industrialized Town in Guangdong Province, China. Arch. Environ. Contam. Toxicol. 2022, 82, 403–415. [Google Scholar] [CrossRef]
- Yi, X.; Gao, Z.; Liu, L.; Zhu, Q.; Hu, G.; Zhou, X. Acute toxicity assessment of drinking water source with luminescent bacteria: Impact of environmental conditions and a case study in Luoma Lake, East China. Front. Environ. Sci. Eng. 2020, 14, 109. [Google Scholar] [CrossRef]
Chemicals | EC50 | R2 |
---|---|---|
Naphthalene | 19.07 | 0.97 |
Benzene | 24.65 | 0.93 |
Dichlorophenol | 10.40 | 0.95 |
Bisphenol A | 11.87 | 0.82 |
Kanamycin sulfate | 17.20 | 0.79 |
Erythromycin | 19.29 | 0.98 |
Trichlorfon | 14.76 | 0.97 |
Glyphosate | 15.08 | 0.99 |
Chromium | 20.22 | 0.98 |
Lead | 19.00 | 0.99 |
Gallic acid | 17.41 | 0.93 |
Nonanoic acid | 37.16 | 0.88 |
Chemicals | Smax | Ks | Imax | Ki |
---|---|---|---|---|
Naphthalene | 81.80 | 1.21 | 81.59 | 1.1899 |
Benzene | 0.62 | 0.08 | 0.53 | 0.0173 |
Dichlorophenol | 1.24 | 0.34 | 0.45 | 0.0061 |
Bisphenol A | 0.75 | 0.16 | 0.34 | 0.0004 |
Kanamycin sulfate | 0.71 | 23.24 | 0.43 | 0.6214 |
Erythromycin | 0.94 | 68.04 | 0.40 | 0.8433 |
Trichlorfon | 75.44 | 6.12 | 74.99 | 6.0167 |
Glyphosate | 0.65 | 10.31 | 0.30 | 0.0100 |
Chromium | 0.37 | 0.18 | 0.20 | 0.0002 |
Lead | 71.61 | 0.00 | 71.33 | 0.0013 |
Gallic acid | 0.46 | 0.01 | 0.27 | 0.0004 |
Nonanoic acid | 143.77 | 0.02 | 143.67 | 0.0171 |
Chemicals | Optimal Promotion Concentration (mg/L) | Optimal Promotion Concentration (mg/L) |
---|---|---|
Naphthalene | 0.902 | 23 |
Benzene | 0.030 | 17 |
Dichlorophenol | 0.024 | 27 |
Bisphenol A | 0.005 | 29 |
Kanamycin sulfate | 2.688 | 279 |
Erythromycin | 4.453 | 28 |
Trichlorfon | 2.958 | 14 |
Glyphosate | 0.202 | 26 |
Chromium | 0.005 | 18 |
Lead | 0.001 | 19 |
Gallic acid | 0.013 | 16 |
Nonanoic acid | 0.014 | 25 |
Chemicals | Concentration at Effect Transition (mg/L) |
---|---|
Naphthalene | 6.121 |
Benzene | 0.367 |
Dichlorophenol | 0.181 |
Bisphenol A | 0.128 |
Kanamycin sulfate | 33.537 |
Erythromycin | 48.718 |
Trichlorfon | 11.584 |
Glyphosate | 8.517 |
Chromium | 0.211 |
Lead | 0.004 |
Gallic acid | 0.014 |
Nonanoic acid | 0.189 |
Chemicals | Tolerance Value |
---|---|
Naphthalene | 0.6788 |
Benzene | 0.0248 |
Dichlorophenol | 0.0265 |
Bisphenol A | 0.0167 |
Kanamycin sulfate | 4.2023 |
Erythromycin | 6.7410 |
Trichlorfon | 0.9487 |
Glyphosate | 1.0017 |
Chromium | 0.0157 |
Lead | 0.0004 |
Gallic acid | 0.0011 |
Nonanoic acid | 0.0173 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Si, H.; Zhou, G.; Luo, Y.; Wang, Z.; Pan, X.; Dao, G. Hormesis in the Assessment of Toxicity Assessment by Luminescent Bacterial Methods. Toxics 2024, 12, 596. https://doi.org/10.3390/toxics12080596
Si H, Zhou G, Luo Y, Wang Z, Pan X, Dao G. Hormesis in the Assessment of Toxicity Assessment by Luminescent Bacterial Methods. Toxics. 2024; 12(8):596. https://doi.org/10.3390/toxics12080596
Chicago/Turabian StyleSi, Haoyu, Guoquan Zhou, Yu Luo, Zhuoxuan Wang, Xuejun Pan, and Guohua Dao. 2024. "Hormesis in the Assessment of Toxicity Assessment by Luminescent Bacterial Methods" Toxics 12, no. 8: 596. https://doi.org/10.3390/toxics12080596
APA StyleSi, H., Zhou, G., Luo, Y., Wang, Z., Pan, X., & Dao, G. (2024). Hormesis in the Assessment of Toxicity Assessment by Luminescent Bacterial Methods. Toxics, 12(8), 596. https://doi.org/10.3390/toxics12080596