QSTR Models in Dioxins and Dioxin-like Compounds Provide Insights into Gene Expression Dysregulation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Gathering and Trimming
2.2. Regression and Principal Component Analysis
2.3. Molecular Docking Studies
2.4. Molecular Dynamics Simulation
3. Results and Discussion
3.1. Data Gathering and Trimming
3.2. QSTR Models
3.3. Principal Component Analysis
3.4. Molecular Docking Studies
3.5. Molecular Dynamics Simulations
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kirkok, S.K.; Kibet, J.K.; Kinyanjui, T.K.; Okanga, F.I. A review of persistent organic pollutants: Dioxins, furans, and their associated nitrogenated analogues. SN Appl. Sci. 2020, 2, 1729. [Google Scholar] [CrossRef]
- Aoudeh, E.; Oz, E.; Khan, M.R.; Oz, F. Dioxins and dioxin-like compounds in meat and meat products. Theory Pract. Meat Process. 2022, 7, 4–15. [Google Scholar] [CrossRef]
- González, N.; Domingo, J.L. Polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) in food and human dietary intake: An update of the scientific literature. Food Chem. Toxicol. 2021, 157, 112585. [Google Scholar] [CrossRef] [PubMed]
- WHO Food Additive Series: 48. Available online: https://www.inchem.org/documents/jecfa/jecmono/v48je20.htm (accessed on 17 June 2024).
- Liem, A.K.; Furst, P.; Rappe, C. Exposure of populations to dioxins and related compounds. Food Addit. Contam. 2000, 17, 241–259. [Google Scholar] [CrossRef]
- Stockholm Convention. Available online: https://chm.pops.int/TheConvention/ThePOPs/The12InitialPOPs/tabid/296 (accessed on 17 June 2024).
- Stahl, B.U.; Kettrup, A.; Rozman, K. Comparative toxicity of four chlorinated dibenzo-p-dioxins (CDDs) and their mixture. Part I: Acute toxicity and toxic equivalency factors (TEFs). Arch. Toxicol. 1985, 66, 471–477. [Google Scholar] [CrossRef] [PubMed]
- Chapman, D.E.; Schiller, C.M. Dose-related effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) in C57BL/6J and DBA/2J mice. Toxicol. Appl. Pharmacol. 1985, 78, 147–157. [Google Scholar] [CrossRef]
- Henck, J.M.; New, M.A.; Kociba, R.J.; Rao, K.S. 2,3,7,8-Tetrachlorodibenzo-p-dioxin: Acute oral toxicity in hamsters. Toxicol. Appl. Pharmacol. 1981, 59, 405–407. [Google Scholar] [CrossRef] [PubMed]
- Li, F.F.; Fan, T.J.; Sun, G.H.; Zhao, L.J.; Zhong, R.G.; Peng, Y.Z. Systematic QSAR and iQCCR modelling of fused/non-fused aromatic hydrocarbons (FNFAHs) carcinogenicity to rodents: Reducing unnecessary chemical synthesis and animal testing. Green Chem. 2022, 24, 5304–5319. [Google Scholar] [CrossRef]
- Hao, Y.X.; Sun, G.H.; Fan, T.J.; Tang, X.Y.; Zhang, J.; Liu, Y.D.; Zhang, N.; Zhao, L.J.; Zhong, R.G.; Peng, Y.Z. In vivo toxicity of nitroaromatic compounds to rats: QSTR modelling and interspecies toxicity relationship with mouse. J. Hazard. Mater. 2020, 399, 122981. [Google Scholar] [CrossRef]
- Wang, L.L.; Ding, J.J.; Pan, L.; Fu, L.; Tian, J.H.; Cao, D.S.; Jiang, H.; Ding, X.Q. Quantitative structure-toxicity relationship model for acute toxicity of organophosphates via multiple administration routes in rats and mice. J. Hazard. Mater. 2021, 401, 123724. [Google Scholar] [CrossRef]
- Sun, G.H.; Zhang, Y.F.; Pei, L.Y.; Lou, Y.Q.; Mu, Y.; Yun, J.Y.; Li, F.F.; Wang, Y.C.; Hao, Z.Q.; Xi, S.; et al. Chemometric QSAR modeling of acute oral toxicity of polycyclic aromatic hydrocarbons (PAHs) to rat using simple 2D descriptors and interspecies toxicity modeling with mouse. Ecotoxicol. Environ. Saf. 2021, 222, 112525. [Google Scholar] [CrossRef] [PubMed]
- Khan, P.M.; Roy, K.; Benfenati, E. Chemometric modeling of Daphnia magna toxicity of agrochemicals. Chemosphere 2019, 224, 470–479. [Google Scholar] [CrossRef] [PubMed]
- Jia, Q.; Wang, J.; Yan, F.; Wang, Q. A QSTR model for toxicity prediction of pesticides towards Daphnia magna. Chemosphere 2022, 291, 132980. [Google Scholar] [CrossRef] [PubMed]
- Önlü, S.; Saçan, M.T. Toxicity of contaminants of emerging concern to Dugesia japonica: QSTR modeling and toxicity relationship with Daphnia magna. J. Hazard. Mater. 2018, 351, 20–28. [Google Scholar] [CrossRef] [PubMed]
- Nath, A.; Ojha, P.K.; Roy, K. Computational modeling of aquatic toxicity of polychlorinated naphthalenes (PCNs) employing 2D-QSAR and chemical read-across. Aquat. Toxicol. 2023, 257, 106429. [Google Scholar] [CrossRef]
- Jillella, G.K.; Ojha, P.K.; Roy, K. Application of QSAR for the identification of key molecular fragments and reliable predictions of effects of textile dyes on growth rate and biomass values of Raphidocelis subcapitata. Aquat. Toxicol. 2021, 238, 105925. [Google Scholar] [CrossRef] [PubMed]
- Gramatica, P.; Cassani, S.; Sangion, A. Aquatic ecotoxicity of personal care products: QSAR models and ranking for prioritization and safer alternatives’ design. Green Chem. 2016, 18, 4393–4406. [Google Scholar] [CrossRef]
- Chen, S.; Sun, G.; Fan, T.; Li, F.; Xu, Y.; Zhang, N.; Zhao, L.; Zhong, R. Ecotoxicological QSAR study of fused/non-fused polycyclic aromatic hydrocarbons (FNFPAHs): Assessment and priority ranking of the acute toxicity to Pimephales promelas by QSAR and consensus modeling methods. Sci. Total Environ. 2023, 876, 162736. [Google Scholar] [CrossRef]
- Mukherjee, R.K.; Kumar, V.; Roy, K. Chemometric modeling of plant protection products (PPPs) for the prediction of acute contact toxicity against honey bees (A. mellifera): A 2D-QSAR approach. J. Hazard. Mater. 2022, 423, 127230. [Google Scholar] [CrossRef]
- Diamanti-Kandarakis, E.; Bourguignon, J.P.; Giudice, L.C.; Hauser, R.; Prins, G.S.; Soto, A.M.; Zoeller, R.T.; Gore, A.C. Endocrine-Disrupting Chemicals: An Endocrine Society Scientific Statement. Endocr. Rev. 2009, 30, 293–342. [Google Scholar] [CrossRef]
- Tiwari, N.; Kumar, A.; Pandey, A.; Mishra, A. Computational investigation of dioxin-like compounds as human sex hormone-binding globulin inhibitors: DFT calculations, docking study and molecular dynamics simulations. Comput. Toxicol. 2022, 21, 100198. [Google Scholar] [CrossRef]
- Carrera, A.R.M.; Eleazar, E.G.; Caparanga, A.R.; Tayo, L.L. Theoretical Studies on the Quantitative Structure–Toxicity Relationship of polychlorinated biphenyl congeners reveal high affinity binding to multiple human nuclear receptors. Toxics 2024, 12, 49. [Google Scholar] [CrossRef]
- Khan, S.H.; Dube, N.; Sudhakar, N.; Fraser, O.; Villalona, P.; Braet, S.M.; Leedom, S.M.; Reilly, E.R.; Sivak, J.; Crittenden, K.; et al. Ancient and modern mechanisms compete in progesterone receptor activation. RSC Chem. Biol. 2024, 5, 518–529. [Google Scholar] [CrossRef]
- Khan, S.A.; Rogers, M.A.M.; Obando, J.A.; Tamsen, A. Estrogen Receptor Expression of Benign Breast Epithelium and Its Association with Breast Cancer. Cancer Res. 1994, 54, 993–997. [Google Scholar]
- Critchley, H.O.D.; Maybin, J.A.; Armstrong, G.M.; Williams, A.R.W. Physiology of the Endometrium and Regulation of Menstruation. Physiol. Rev. 2020, 100, 1149–1179. [Google Scholar] [CrossRef] [PubMed]
- Mulac-Jericevic, B.; Conneely, O.M. Reproductive tissue selective actions of progesterone receptors. Reproduction 2004, 128, 139–146. [Google Scholar] [CrossRef] [PubMed]
- Smyth, C.M.; Benn, D.E.; Reeve, T.S. Influence of the menstrual cycle on the concentrations of estrogen and progesterone receptors in primary breast cancer biopsies. Breast Cancer Res. Treat. 1988, 11, 45–50. [Google Scholar] [CrossRef]
- Bai, J.; Qi, Q.R.; Li, Y.; Day, R.; Makhoul, J.; Magness, R.R.; Chen, D.B. Estrogen Receptors and Estrogen-Induced Uterine Vasodilation in Pregnancy. Int. J. Mol. Sci. 2020, 21, 4349. [Google Scholar] [CrossRef] [PubMed]
- Darnifayanti, D.; Rizki, D.R.; Amirah, S.; Abdurrahman, M.F.; Akmal, M.; Abdulmadjid, S.N.; Yusuf, S.; Iqhrammullah, M. Association between vitamin D receptor gene variants and neonatal sepsis: A systematic review and meta-analysis. J. Infect. Public Health 2024, 17, 518–526. [Google Scholar] [CrossRef]
- Adorini, L.; Daniel, K.; Penna, G. Vitamin D Receptor Agonists, Cancer and the Immune System: An Intricate Relationship. Curr. Top. Med. Chem. 2006, 6, 1297–1301. [Google Scholar] [CrossRef]
- Bikle, D.D. Vitamin D and Bone. Curr. Osteoporos. Rep. 2012, 10, 151–159. [Google Scholar] [CrossRef] [PubMed]
- Pike, J.W.; Meyer, M.B. The Vitamin D Receptor: New Paradigms for the Regulation of Gene Expression by 1,25-Dihydroxyvitamin D3. Endocrinol. Metab. Clin. N. Am. 2010, 39, 255–269. [Google Scholar] [CrossRef] [PubMed]
- Gan, X.; Liu, Y.; Wang, X. Targeting androgen receptor in glioblastoma. Crit. Rev. Oncol. Hematol. 2023, 191, 104142. [Google Scholar] [CrossRef]
- Kadi, F. Cellular and molecular mechanisms responsible for the action of testosterone on human skeletal muscle. A basis for illegal performance enhancement. Br. J. Pharmacol. 2008, 154, 522–528. [Google Scholar] [CrossRef]
- Chen, J.-F.; Lin, P.-W.; Tsai, Y.-R.; Yang, Y.-C.; Kang, H.-Y. Androgens and Androgen Receptor Actions on Bone Health and Disease: From Androgen Deficiency to Androgen Therapy. Cells 2019, 8, 1318. [Google Scholar] [CrossRef]
- Heinlein, C.A.; Chang, C. Androgen Receptor in Prostate Cancer. Endocr. Rev. 2004, 25, 276–308. [Google Scholar] [CrossRef] [PubMed]
- Yen, P.M. Physiological and Molecular Basis of Thyroid Hormone Action. Physiol. Rev. 2001, 81, 1097–1142. [Google Scholar] [CrossRef]
- Sinha, R.A.; Singh, B.K.; Yen, P.M. Direct effects of thyroid hormones on hepatic lipid metabolism. Nat. Rev. Endocrinol. 2018, 14, 259–269. [Google Scholar] [CrossRef] [PubMed]
- Brent, G.A. Mechanisms of thyroid hormone action. J. Clin. Investig. 2012, 122, 3035–3043. [Google Scholar] [CrossRef]
- Szymański, Ł.; Skopek, R.; Palusińska, M.; Schenk, T.; Stengel, S.; Lewicki, S.; Kraj, L.; Kamiński, P.; Zelent, A. Retinoic Acid and Its Derivatives in Skin. Cells 2020, 9, 2660. [Google Scholar] [CrossRef]
- Amamoto, R.; Wallick, G.K.; Cepko, C.L. Retinoic acid signaling mediates peripheral cone photoreceptor survival in a mouse model of retina degeneration. eLife 2022, 11, 76389. [Google Scholar] [CrossRef]
- Chambon, P. A decade of molecular biology of retinoic acid receptors. FASEB J. 1996, 10, 940–954. [Google Scholar] [CrossRef]
- Sander, T.; Freyss, J.; von Korff, M.; Rufener, C. DataWarrior: An Open-Source Program for Chemistry Aware Data Visualization and Analysis. J. Chem. Inf. Model. 2015, 55, 460–473. [Google Scholar] [CrossRef] [PubMed]
- Daina, A.; Michielin, O.; Zoete, V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep. 2017, 7, 42717. [Google Scholar] [CrossRef]
- User’s Guide for T. E. S. T. (Toxicity Estimation Software Tool) Version 5.1. Available online: https://www.epa.gov/sites/default/files/2016-05/documents/600r16058.pdf (accessed on 17 June 2024).
- Addinsoft XLSTAT Statistical and Data Analysis Solution. 2022. Available online: https://xlstat.com (accessed on 17 June 2024).
- Williams, S.P.; Sigler, P.B. Atomic structure of progesterone complexed with its receptor. Nature 1998, 393, 392–396. [Google Scholar] [CrossRef] [PubMed]
- Tanenbaum, D.M.; Wang, Y.; Williams, S.P.; Sigler, P.B. Crystallographic comparison of the estrogen and progesterone receptor’s ligand binding domains. Proc. Natl. Acad. Sci. USA 1998, 95, 5998–6003. [Google Scholar] [CrossRef]
- Rochel, N.; Wurtz, J.M.; Mitschler, A.; Klaholz, B.; Moras, D. The Crystal Structure of the Nuclear Receptor for Vitamin D Bound to Its Natural Ligand. Mol. Cell 2000, 5, 173–179. [Google Scholar] [CrossRef]
- Matias, P.M.; Donner, P.; Coelho, R.; Thomaz, M.; Peixoto, C.; Macedo, S.; Otto, N.; Joschko, S.; Scholz, P.; Wegg, A.; et al. Structural Evidence for Ligand Specificity in the Binding Domain of the Human Androgen Receptor. J. Biol. Chem. 2000, 275, 26164–26171. [Google Scholar] [CrossRef]
- Ye, L.; Li, Y.L.; Mellström, K.; Mellin, C.; Bladh, L.G.; Koehler, K.; Garg, N.; Garcia Collazo, A.M.; Litten, C.; Husman, B.; et al. Thyroid Receptor Ligands. 1. Agonist Ligands Selective for the Thyroid Receptor β1. J. Med. Chem. 2003, 46, 1580–1588. [Google Scholar] [CrossRef]
- Bourguet, W.; Vivat, V.; Wurtz, J.-M.; Chambon, P.; Gronemeyer, H.; Moras, D. Crystal Structure of a Heterodimeric Complex of RAR and RXR Ligand-Binding Domains. Mol. Cell 2000, 5, 289–298. [Google Scholar] [CrossRef] [PubMed]
- Pogenberg, V.; Guichou, J.F.; Vivat-Hannah, V.; Kammerer, S.; Pérez, E.; Germain, P.; de Lera, A.R.; Gronemeyer, H.; Royer, C.A.; Bourguet, W. Characterization of the Interaction between Retinoic Acid Receptor/Retinoid X Receptor (RAR/RXR) Heterodimers and Transcriptional Coactivators through Structural and Fluorescence Anisotropy Studies. J. Biol. Chem. 2005, 280, 1625–1633. [Google Scholar] [CrossRef]
- Goodsell, D.S.; Olson, A.J. Automated Docking of Substrates to Proteins by Simulated Annealing. Proteins Struct. Funct. Bioinform. 1990, 8, 195–202. [Google Scholar] [CrossRef]
- Eberhardt, J.; Santos-Martins, D.; Tillack, A.F.; Forli, S. AutoDock Vina 1.2.0: New Docking Methods, Expanded Force Field, and Python Bindings. J. Chem. Inf. Model. 2021, 61, 3891–3898. [Google Scholar] [CrossRef] [PubMed]
- Trott, O.; Olson, A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization and multithreading. J. Comput. Chem. 2010, 31, 455–461. [Google Scholar] [CrossRef]
- The PyMOL Molecular Graphics System, Version 3.0; Schrödinger, LLC.: New York, NY, USA, 2024.
- Dassault Systèmes. BIOVIA Discovery Studio; Dassault Systèmes: San Diego, CA, USA, 2021. [Google Scholar]
- Zenodo. GROMACS 2023. Manual. 2023. Available online: https://zenodo.org/doi/10.5281/zenodo.7588710 (accessed on 27 July 2024).
- Huang, J.; MacKerell, A.D. CHARMM36 all-atom additive protein force field: Validation based on comparison to NMR data. J. Comput. Chem. 2013, 34, 2135–2145. [Google Scholar] [CrossRef] [PubMed]
- Boonstra, S.; Onck, P.R.; van der Giessen, E. CHARMM TIP3P Water Model Suppresses Peptide Folding by Solvating the Unfolded State. J. Phys. Chem. B 2016, 120, 3692–3698. [Google Scholar] [CrossRef]
- Ramireddy, V.S.R.; Kurakula, R.; Chellam, P.V.; James, A.; van Hullebusch, E.D. Systematic computational toxicity analysis of the ozonolytic degraded compounds of azo dyes: Quantitative structure-activity relationship (QSAR) and adverse outcome pathway (AOP) based approach. Environ. Res. 2023, 231, 116142. [Google Scholar] [CrossRef]
- Bordajandi, L.R.; Martin, I.; Abad, E.; Rivera, J.; González, M.J. Organochlorine compounds (PCBs, PCDDs and PCDFs) in seafish and seafood from the Spanish Atlantic Southwest Coast. Chemosphere 2006, 64, 1450–1457. [Google Scholar] [CrossRef] [PubMed]
- Bertato, L.; Chirico, N.; Papa, E. Predicting the bioconcentration factor in fish from molecular structures. Toxics 2022, 10, 581. [Google Scholar] [CrossRef]
- Hens, B.; Hens, L. Persistent Threats by Persistent Pollutants: Chemical Nature, Concerns and Future Policy Regarding PCBs—What Are We Heading For? Toxics 2018, 6, 1. [Google Scholar] [CrossRef]
- Khan, K.; Khan, P.M.; Lavado, G.; Valsecchi, C.; Pasqualini, J.; Baderna, D.; Marzo, M.; Lombardo, A.; Roy, K.; Benfenati, E. QSAR modeling of Daphnia magna and fish toxicities of biocides using 2D descriptors. Chemosphere 2019, 229, 8–17. [Google Scholar] [CrossRef]
- Khan, K.; Benfenati, E.; Roy, K. Consensus QSAR modeling of toxicity of pharmaceuticals to different aquatic organisms: Ranking and prioritization of the DrugBank database compounds. Ecotoxicol. Environ. Saf. 2019, 168, 287–297. [Google Scholar] [CrossRef] [PubMed]
- Khan, K.; Roy, K. Ecotoxicological modelling of cosmetics for aquatic organisms: A QSTR approach. SAR QSAR Environ. Res. 2017, 28, 567–594. [Google Scholar] [CrossRef]
- Tugcu, G.; Ertürk, M.D.; Saçan, M.T. On the aquatic toxicity of substituted phenols to Chlorella vulgaris: QSTR with an extended novel data set and interspecies models. J. Hazard. Mater. 2017, 339, 122–130. [Google Scholar] [CrossRef]
- Wu, X.; Zhang, Q.; Hu, J. QSAR study of the acute toxicity to fathead minnow based on a large dataset. SAR QSAR Environ. Res. 2016, 27, 147–164. [Google Scholar] [CrossRef]
- Eddy, N.O. Theoretical chemistry study on the toxicity of some polychlorobiphenyl (PCB) compounds using molecular descriptors. Sci. Afr. 2020, 10, e00587. [Google Scholar] [CrossRef]
- Kikuchi, A.K.V.; Tayo, L.L. Principal Component and Structural Element Analysis provide insights into the evolutionary divergence of conotoxins. Biology 2023, 12, 20. [Google Scholar] [CrossRef] [PubMed]
- Patil, R.; Das, S.; Stanley, A.; Yadav, L.; Sudhakar, A.; Varma, A.K. Optimized hydrophobic interactions and hydrogen bonding at the target-ligand interface leads the pathways of drug-designing. PLoS ONE 2010, 5, e12029. [Google Scholar] [CrossRef] [PubMed]
- Zhao, S.; Wang, W.; Zhao, R.; Yan, T.; Xu, W.; Xu, E.; Liu, D. The hydrophobic interaction for ellagic acid binding to soybean protein isolate: Multi-spectroscopy and molecular docking analysis. LWT 2022, 170, 114110. [Google Scholar] [CrossRef]
- Kyte, J.; Doolittle, R.F. A simple method for displaying the hydropathic character of a protein. J. Mol. Biol. 1982, 157, 105–132. [Google Scholar] [CrossRef]
Receptor | Physiological Function | Dysfunction Impacts |
---|---|---|
PR | Breast development | Endometriosis and infertility |
Menstrual cycle regulation | ||
ER | Menstrual cycle support Pregnancy support | Breast and ovarian cancers |
VDR | Immune response regulation Bone health maintenance | Autoimmune diseases, cancer, and cardiovascular disorders |
AR | Muscle development Voice deepening | Androgen insensitivity syndrome, prostate cancer |
THR | Development regulation Lipid metabolism | Thyroid hormone resistance, hypo- and hyperthyroidism |
RAR | Skin regulation Vision regulation | Congenital malformations and skin diseases |
Source | Value | Standard Error | T | Pr > |t| | Lower Bound (95%) | Upper Bound (95%) |
---|---|---|---|---|---|---|
Bioconcentration log 10 | ||||||
Intercept | 5.986 | 0.735 | 8.150 | <0.0001 | 4.534 | 7.438 |
Cl Atoms | 0.519 | 0.078 | 6.684 | <0.0001 | 0.366 | 0.673 |
Globularity SVD | 0.760 | 0.244 | 3.116 | 0.002 | 0.278 | 1.243 |
Van der Waals Surface | 0.016 | 0.003 | 4.605 | <0.0001 | 0.009 | 0.022 |
Van der Waals Volume | −0.030 | 0.006 | −4.816 | <0.0001 | −0.043 | −0.018 |
Shape Index | −1.086 | 0.199 | −5.459 | <0.0001 | −1.479 | −0.693 |
Stretch Bend | 0.102 | 0.017 | 5.923 | <0.0001 | 0.068 | 0.136 |
Synthetic Accessibility | −0.221 | 0.099 | −2.245 | 0.026 | −0.416 | −0.026 |
Fathead Minnow LC50 log 10 | ||||||
Intercept | 2.499 | 0.357 | 6.991 | <0.0001 | 1.792 | 3.205 |
Molecular Complexity | 1.318 | 0.564 | 2.337 | 0.021 | 0.204 | 2.433 |
Log P | 0.543 | 0.023 | 23.362 | <0.0001 | 0.497 | 0.589 |
Stretch Bend | 0.192 | 0.017 | 11.301 | <0.0001 | 0.159 | 0.226 |
Daphnia magna LC50 log 10 | ||||||
Intercept | 16.189 | 2.554 | 6.338 | <0.0001 | 11.140 | 21.238 |
Molecular Weight | −0.040 | 0.012 | −3.248 | 0.001 | −0.065 | −0.016 |
Cl Atoms | 1.687 | 0.444 | 3.799 | 0.000 | 0.809 | 2.564 |
Globularity Volume | −6.764 | 2.080 | −3.252 | 0.001 | −10.875 | −2.653 |
Molecular Complexity | 2.416 | 0.958 | 2.522 | 0.013 | 0.523 | 4.310 |
Non-1,4 VDW | 0.012 | 0.004 | 3.085 | 0.002 | 0.004 | 0.019 |
Total Energy | −0.012 | 0.004 | −3.021 | 0.003 | −0.020 | −0.004 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Eleazar, E.G.; Carrera, A.R.M.; Quiambao, J.I.R.; Caparanga, A.R.; Tayo, L.L. QSTR Models in Dioxins and Dioxin-like Compounds Provide Insights into Gene Expression Dysregulation. Toxics 2024, 12, 597. https://doi.org/10.3390/toxics12080597
Eleazar EG, Carrera ARM, Quiambao JIR, Caparanga AR, Tayo LL. QSTR Models in Dioxins and Dioxin-like Compounds Provide Insights into Gene Expression Dysregulation. Toxics. 2024; 12(8):597. https://doi.org/10.3390/toxics12080597
Chicago/Turabian StyleEleazar, Elisa G., Andrei Raphael M. Carrera, Janus Isaiah R. Quiambao, Alvin R. Caparanga, and Lemmuel L. Tayo. 2024. "QSTR Models in Dioxins and Dioxin-like Compounds Provide Insights into Gene Expression Dysregulation" Toxics 12, no. 8: 597. https://doi.org/10.3390/toxics12080597
APA StyleEleazar, E. G., Carrera, A. R. M., Quiambao, J. I. R., Caparanga, A. R., & Tayo, L. L. (2024). QSTR Models in Dioxins and Dioxin-like Compounds Provide Insights into Gene Expression Dysregulation. Toxics, 12(8), 597. https://doi.org/10.3390/toxics12080597