Pollution Characteristics of Heavy Metals in PM1 and Source-Specific Health Risks in the Tianjin Airport Community, China
Abstract
:1. Introduction
2. Sampling and Methodology
2.1. Description of the Study Area and Sampling of PM1
2.2. Chemical Analysis and Quality Control
2.3. Statistical Analysis and Source Apportionment
2.3.1. Enrichment Factors
2.3.2. Positive Matrix Factorization Model
2.4. Source-Specific Health Risk Assessment
2.4.1. Health Risk Assessment Model
2.4.2. Source-Specific Health Risk
3. Results and Discussion
3.1. The Mass Concentration and the Characteristics of PM1
3.2. An Overview of the Contamination and PM1-Related HMs
3.2.1. HM Contents and Variation
Spring | Summer | BVs a (μg·g−1) | WHO b (ng·m−3) | |||
---|---|---|---|---|---|---|
Daily (n= 7) | Night (n = 7) | Daily (n = 9) | Night (n = 9) | |||
PM1 (μg/m3) | 35.44 ± 16.18 | 30.52 ± 7.49 | 30.46 ± 14.37 | 23.31 ± 6.67 | ||
V | 10.43 ± 5.28 | 15.65 ± 4.29 | 3.93 ± 1.90 | 8.19 ± 3.46 | 82.4 | 1000 |
Cr | 7.42 ± 0.68 | 7.12 ± 0.79 | 9.79 ± 2.84 | 8.71 ± 0.86 | 61.0 | - |
Mn | 25.63 ± 6.26 | 22.85 ± 9.76 | 21.68 ± 8.01 | 20.88 ± 3.94 | 583.0 | 150 |
Co | 3.41 ± 0.77 | 3.63 ± 1.13 | 1.96 ± 0.49 | 2.13 ± 0.44 | 12.7 | - |
Ni | 12.36 ± 3.04 | 13.58 ± 3.24 | 9.52 ± 3.43 | 4.28 ± 1.31 | 26.9 | 25 |
Cu | 24.81 ± 13.37 | 33.17 ± 18.15 | 26.02 ± 5.77 | 25.07 ± 6.07 | 22.6 | - |
Zn | 160.85 ± 22.50 | 156.38 ± 36.14 | 161.21 ± 44.31 | 173.89 ± 26.16 | 74.2 | - |
As | 4.60 ± 1.49 | 5.59 ± 1.86 | 5.63 ± 3.07 | 5.87 ± 2.12 | 11.2 | 6.6 |
Cd | 5.62 ± 1.77 | 5.83 ± 2.40 | 7.09 ± 4.49 | 4.96 ± 1.02 | 0.097 | 5 |
Pb | 48.32 ± 15.46 | 44.39 ± 24.51 | 55.98 ± 29.92 | 45.55 ± 15.12 | 26.0 | 500 |
3.2.2. The Relationships between the Concentrations of HMs and Flight Activities
3.3. Seasonal-Specific Source Apportionment Using PMF
3.3.1. Source Apportionment in Spring
3.3.2. Source Apportionment in Summer
3.4. Seasonal Health Risk of HMs
Study | Study Area | Particle Size | HMs Compositions | ||
---|---|---|---|---|---|
Sax [63] | School, Los Angeles, USA | PM2.5 | Cr, Ni, As, Cd, Pb, and Be | - | 10−5 |
School, New York City, USA | 10−5 | ||||
Hieu [64] | Residential district, Ulsan, Republic of Korea | PM1.0 | Cr, Mn, Ni, Cu, Cd, and Pb | - | 10−5 |
Pandey [68] | Residential district, Lucknow, India | PM2.5 | Fe, Cr, Ni, Cu, Cd, and Pb | - | 10−5 |
Zhang [61] | Urban area, Taiyuan, China | PM2.5 | Cr, Mn, Co, Ni, Cu, Zn, Cd, and Pb | 6 | - |
Peng [20] | Harbor, Huzhou, China | PM2.5 | Cr, Co, Ni, As, Cd, and Pb | 0.15 | 10−4 |
Zhou [69] | Urban area, Pearl River Delta region, China | PM2.5 | Cr, Ni, Mn, As, and Pb | 2.09 | 10−4 |
Liu [60] | School, Beijing, China | PM2.5 | Ba, V, Cr, Mn, Co, Ni, As, Cd, and Pb | 0.89 | 10−6 |
Huang [62] | Urban area, Shanghai, China | PM2.5 and PM10 | Mn, Cu, Zn, and Pb | 2.99 (PM2.5) and 3.18 (PM10) | - |
Huang [70] | School, Beijing, China | PM2.5 | Ti, V, Cr, Mn, Co, Ni, As, Cd, and Pb | 1.15 | 10−4 |
Xie [35] | Urban area, Pearl River Delta and Yangtze River Delta, China | PM2.5 | Fe, V, Cr, Mn, Co, Ni, Zn, As, Cd, and Pb | - | 0.68–1.3 × 10−5 (PRD) and 1.9–2.7 × 10−5 (YRD) |
Cui [66] | Urban area, Beijing, China | PM2.5 | Ba, Cr, Mn, Ni, As, and Pb | >100 | 10−2 |
Xu [24] | Urban area, Zhejiang Province, China | PM2.5 | Cr, Mn, Co, Ni, As, Cd, and Pb | 11.9 | 10−3 |
Chen [59] | School, Tianjin, China | PM2.5 | Cr, Mn, Co, Ni, Cu, Zn, As, and Pb | 1.3 | 10−5 |
Sun [65] | Urban area, Chengdu, China | PM10 | V, Cr, Mn, Co, Ni, Cu Zn, As, Cd, and Pb | 2.9–6.9 | 8.2–11 × 10−5 |
3.5. Source-Specific Assessment of Health Risk
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Barrett, S.R.H.; Britter, R.E.; Waitz, I.A. Global Mortality Attributable to Aircraft Cruise Emissions. Environ. Sci. Technol. 2010, 44, 7736–7742. [Google Scholar] [CrossRef] [PubMed]
- ICAO. Global Air Transport Outlook to 2030 and Trends to 2040; International Civil Aviation Organization Montréal: Quebec, QC, Canada, 2013. [Google Scholar]
- Merzenich, H.; Riccetti, N.; Hoffmann, B.; Blettner, M.; Forastiere, F.; Gianicolo, E. Air pollution and airport apron workers: A neglected occupational setting in epidemiological research. Int. J. Hyg. Environ. Health 2021, 231, 113649. [Google Scholar] [CrossRef] [PubMed]
- Hudda, N.; Simon, M.C.; Zamore, W.; Durant, J.L. Aviation-Related Impacts on Ultrafine Particle Number Concentrations Outside and Inside Residences near an Airport. Environ. Sci. Technol. 2018, 52, 1765–1772. [Google Scholar] [CrossRef]
- Zhang, X.; Karl, M.; Zhang, L.; Wang, J. Influence of Aviation Emission on the Particle Number Concentration near Zurich Airport. Environ. Sci. Technol. 2020, 54, 14161–14171. [Google Scholar] [CrossRef] [PubMed]
- Perrone, M.G.; Gualtieri, M.; Consonni, V.; Ferrero, L.; Sangiorgi, G.; Longhin, E.; Ballabio, D.; Bolzacchini, E.; Camatini, M. Particle size, chemical composition, seasons of the year and urban, rural or remote site origins as determinants of biological effects of particulate matter on pulmonary cells. Environ. Pollut. 2013, 176, 215–227. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Y.; Zou, S.C.; Lee, S.C.; Chow, J.C.; Ho, K.F.; Watson, J.G.; Han, Y.M.; Zhang, R.J.; Zhang, F.; Yau, P.S.; et al. Characteristics and source apportionment of PM1 emissions at a roadside station. J. Hazard. Mater. 2011, 195, 82–91. [Google Scholar] [CrossRef] [PubMed]
- Suvarapu, L.N.; Baek, S.O. Determination of heavy metals in the ambient atmosphere: A review. Toxicol. Ind. Health 2017, 33, 79–96. [Google Scholar] [CrossRef] [PubMed]
- Massas, I.; Gasparatos, D.; Ioannou, D.; Kalivas, D. Signs for secondary buildup of heavy metals in soils at the periphery of Athens International Airport, Greece. Environ. Sci. Pollut. Res. 2018, 25, 658–671. [Google Scholar] [CrossRef] [PubMed]
- Fang, W.; Yang, Y.; Xu, Z. PM10 and PM2.5 and Health Risk Assessment for Heavy Metals in a Typical Factory for Cathode Ray Tube Television Recycling. Environ. Sci. Technol. 2013, 47, 12469–12476. [Google Scholar] [CrossRef]
- Lin, Y.-C.; Zhang, Y.-L.; Song, W.; Yang, X.; Fan, M.-Y. Specific sources of health risks caused by size-resolved PM-bound metals in a typical coal-burning city of northern China during the winter haze event. Sci. Total Environ. 2020, 734, 138651. [Google Scholar] [CrossRef]
- Agrawal, H.; Sawant, A.A.; Jansen, K.; Miller, J.W.; Cocker, D.R. Characterization of chemical and particulate emissions from aircraft engines. Atmos. Environ. 2008, 42, 4380–4392. [Google Scholar] [CrossRef]
- Kinsey, J.S.; Hays, M.D.; Dong, Y.; Williams, D.C.; Logan, R. Chemical Characterization of the Fine Particle Emissions from Commercial Aircraft Engines during the Aircraft Particle Emissions eXperiment (APEX) 1 to 3. Environ. Sci. Technol. 2011, 45, 3415–3421. [Google Scholar] [CrossRef] [PubMed]
- Gagne, S.; Couillard, M.; Gajdosechova, Z.; Momenimovahed, A.; Smallwood, G.; Mester, Z.; Thomson, K.; Lobo, P.; Corbin, J.C. Ash-Decorated and Ash-Painted Soot from Residual and Distillate-Fuel Combustion in Four Marine Engines and One Aviation Engine. Environ. Sci. Technol. 2021, 55, 6584–6593. [Google Scholar] [CrossRef]
- Amato, F.; Moreno, T.; Pandolfi, M.; Querol, X.; Alastuey, A.; Delgado, A.; Pedrero, M.; Cots, N. Concentrations, sources and geochemistry of airborne particulate matter at a major European airport. J. Environ. Monit. 2010, 12, 854–862. [Google Scholar] [CrossRef] [PubMed]
- Mazaheri, M.; Bostrom, T.E.; Johnson, G.R.; Morawska, L. Composition and Morphology of Particle Emissions from in-use Aircraft during Takeoff and Landing. Environ. Sci. Technol. 2013, 47, 5235–5242. [Google Scholar] [CrossRef] [PubMed]
- Shirmohammadi, F.; Lovett, C.; Sowlat, M.H.; Mousavi, A.; Verma, V.; Shafer, M.M.; Schauer, J.J.; Sioutas, C. Chemical composition and redox activity of PM0.25 near Los Angeles International Airport and comparisons to an urban traffic site. Sci. Total Environ. 2018, 610–611, 1336–1346. [Google Scholar] [CrossRef]
- Zhang, Q.; Yang, L.; Peng, J.; Wu, L.; Mao, H. Characteristics, sources, and health risks of inorganic elements in PM2.5 and PM10 at Tianjin Binhai international airport. Environ. Pollut. 2023, 332, 121988. [Google Scholar] [CrossRef]
- Wang, S.; Cai, L.M.; Wen, H.H.; Luo, J.; Wang, Q.S.; Liu, X. Spatial distribution and source apportionment of heavy metals in soil from a typical county-level city of Guangdong Province, China. Sci. Total Environ. 2019, 655, 92–101. [Google Scholar] [CrossRef] [PubMed]
- Peng, X.; Shi, G.L.; Liu, G.R.; Xu, J.; Tian, Y.Z.; Zhang, Y.F.; Feng, Y.C.; Russell, A.G. Source apportionment and heavy metal health risk (HMHR) quantification from sources in a southern city in China, using an ME2-HMHR model. Environ. Pollut. 2017, 221, 335–342. [Google Scholar] [CrossRef] [PubMed]
- Xue, Q.; Jiang, Z.; Wang, X.; Song, D.; Huang, F.; Tian, Y.; Huang-fu, Y.; Feng, Y. Comparative study of PM10-bound heavy metals and PAHs during six years in a Chinese megacity: Compositions, sources, and source-specific risks. Ecotoxicol. Environ. Saf. 2019, 186, 109740. [Google Scholar] [CrossRef]
- Liu, B.; Liang, D.; Yang, J.; Dai, Q.; Bi, X.; Feng, Y.; Yuan, J.; Xiao, Z.; Zhang, Y.; Xu, H. Characterization and source apportionment of volatile organic compounds based on 1-year of observational data in Tianjin, China. Environ. Pollut. 2016, 218, 757–769. [Google Scholar] [CrossRef] [PubMed]
- Rahman, M.S.; Bhuiyan, S.S.; Ahmed, Z.; Saha, N.; Begum, B.A. Characterization and source apportionment of elemental species in PM2.5 with especial emphasis on seasonal variation in the capital city “Dhaka”, Bangladesh. Urban Clim. 2021, 36, 100804. [Google Scholar] [CrossRef]
- Xu, J.S.; Jia, C.R.; Yu, H.; Xu, H.H.; Ji, D.S.; Wang, C.J.; Xiao, H.; He, J. Characteristics, sources, and health risks of PM2.5-bound trace elements in representative areas of Northern Zhejiang Province, China. Chemosphere 2021, 272, 129632. [Google Scholar] [CrossRef] [PubMed]
- CNEMC, The Background Values of Chinese Soil; Environmental Science Press of China: Beijing, China, 1990; pp. 1–370.
- Kong, S.; Lu, B.; Ji, Y.; Zhao, X.; Bai, Z.; Xu, Y.; Liu, Y.; Jiang, H. Risk assessment of heavy metals in road and soil dusts within PM2.5, PM10 and PM100 fractions in Dongying city, Shandong Province, China. J. Environ. Monit. 2012, 14, 791–803. [Google Scholar] [CrossRef] [PubMed]
- Pan, Y.P.; Tian, S.L.; Li, X.R.; Sun, Y.; Li, Y.; Wentworth, G.R.; Wang, Y.S. Trace elements in particulate matter from metropolitan regions of Northern China: Sources, concentrations and size distributions. Sci. Total Environ. 2015, 537, 9–22. [Google Scholar] [CrossRef] [PubMed]
- Paatero, P. Least squares formulation of robust non-negative factor analysis. Chemom. Intell. Lab. Syst. 1997, 37, 23–35. [Google Scholar] [CrossRef]
- Xue, J.L.; Zhi, Y.Y.; Yang, L.P.; Shi, J.C.; Zeng, L.Z.; Wu, L.S. Positive matrix factorization as source apportionment of soil lead and cadmium around a battery plant (Changxing County, China). Environ. Sci. Pollut. Res. 2014, 21, 7698–7707. [Google Scholar] [CrossRef]
- Hopke, P.K. Review of receptor modeling methods for source apportionment. J. Air Waste Manag. Assoc. 2016, 66, 237–259. [Google Scholar] [CrossRef] [PubMed]
- Luo, H.; Wang, Q.; Guan, Q.; Ma, Y.; Ni, F.; Yang, E.; Zhang, J. Heavy metal pollution levels, source apportionment and risk assessment in dust storms in key cities in Northwest China. J. Hazard. Mater. 2022, 422, 126878. [Google Scholar] [CrossRef]
- Liang, B.L.; Li, X.L.; Ma, K.; Liang, S.X. Pollution characteristics of metal pollutants in PM2.5 and comparison of risk on human health in heating and non-heating seasons in Baoding, China. Ecotoxicol. Environ. Saf. 2019, 170, 166–171. [Google Scholar] [CrossRef]
- Tepanosyan, G.; Sahakyan, L.; Belyaeva, O.; Maghakyan, N.; Saghatelyan, A. Human health risk assessment and riskiest heavy metal origin identification in urban soils of Yerevan, Armenia. Chemosphere 2017, 184, 1230–1240. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Guo, S.; Zeng, G.-m.; Li, F.; Gu, Y.; Shi, Y.; Shi, L.; Liu, W.; Peng, S. A new exploration of health risk assessment quantification from sources of soil heavy metals under different land use. Environ. Pollut. 2018, 243, 49–58. [Google Scholar] [CrossRef] [PubMed]
- Xie, J.W.; Jin, L.; Cui, J.L.; Luo, X.S.; Li, J.; Zhang, G.; Li, X.D. Health risk-oriented source apportionment of PM2.5-associated trace metals. Environ. Pollut. 2020, 262, 114655. [Google Scholar] [CrossRef] [PubMed]
- Chen, R.; Zhao, Y.H.; Tian, Y.Z.; Feng, X.; Feng, Y.C. Sources and uncertainties of health risks for PM2.5-bound heavy metals based on synchronous online and offline filter-based measurements in a Chinese megacity. Environ. Int. 2022, 164, 107236. [Google Scholar] [CrossRef]
- USEPA. Users’ Guide and Background Technical Document for USEPA Region 9—Preliminary Remediation Goals (PRG) Table. 2013. Available online: https://semspub.epa.gov/work/02/103453.pdf (accessed on 17 August 2024).
- Turgut, E.T.; Gaga, E.O.; Jovanovic, G.; Odabasi, M.; Artun, G.; Ari, A.; Urosevic, M.A. Elemental characterization of general aviation aircraft emissions using moss bags. Environ. Sci. Pollut. Res. 2019, 26, 26925–26938. [Google Scholar] [CrossRef]
- Psanis, C.; Triantafyllou, E.; Giamarelou, M.; Manousakas, M.; Eleftheriadis, K.; Biskos, G. Particulate matter pollution from aviation-related activity at a small airport of the Aegean Sea Insular Region. Sci. Total Environ. 2017, 596, 187–193. [Google Scholar] [CrossRef] [PubMed]
- Deng, L.; Bi, C.J.; Jia, J.P.; Zeng, Y.S.; Chen, Z.L. Effects of heating activities in winter on characteristics of PM2.5-bound Pb, Cd and lead isotopes in cities of China. J. Clean. Prod. 2020, 265, 121826. [Google Scholar] [CrossRef]
- WHO. Health Co-Bene Fits of Climate Change Mitigation—Housing Sector; World Health Organization: Geneva, Switzerland, 2011. [Google Scholar]
- Thorpe, A.; Harrison, R.M. Sources and properties of non-exhaust particulate matter from road traffic: A review. Sci. Total Environ. 2008, 400, 270–282. [Google Scholar] [CrossRef]
- Bennett, M.; Christie, S.M.; Graham, A.; Thomas, B.S.; Vishnyakov, V.; Morris, K.; Peters, D.M.; Jones, R.; Ansell, C. Composition of Smoke Generated by Landing Aircraft. Environ. Sci. Technol. 2011, 45, 3533–3538. [Google Scholar] [CrossRef]
- Turgut, E.T.; Acikel, G.; Gaga, E.O.; Calisir, D.; Odabasi, M.; Ari, A.; Artun, G.; Ilhan, S.O.; Savaci, U.; Can, E.; et al. A Comprehensive Characterization of Particulate Matter, Trace Elements, and Gaseous Emissions of Piston-Engine Aircraft. Environ. Sci. Technol. 2020, 54, 7818–7835. [Google Scholar] [CrossRef]
- Duan, J.C.; Tan, J.H. Atmospheric heavy metals and Arsenic in China: Situation, sources and control policies. Atmos. Environ. 2013, 74, 93–101. [Google Scholar] [CrossRef]
- Johansson, C.; Norman, M.; Burman, L. Road traffic emission factors for heavy metals. Atmos. Environ. 2009, 43, 4681–4688. [Google Scholar] [CrossRef]
- Stettler, M.E.J.; Eastham, S.; Barrett, S.R.H. Air quality and public health impacts of UK airports. Part I: Emissions. Atmos. Environ. 2011, 45, 5415–5424. [Google Scholar] [CrossRef]
- Masiol, M.; Harrison, R.M. Aircraft engine exhaust emissions and other airport-related contributions to ambient air pollution: A review. Atmos. Environ. 2014, 95, 409–455. [Google Scholar] [CrossRef] [PubMed]
- Khan, J.Z.; Sun, L.; Tian, Y.Z.; Shi, G.L.; Feng, Y.C. Chemical characterization and source apportionment of PM1 and PM2.5 in Tianjin, China: Impacts of biomass burning and primary biogenic sources. J. Environ. Sci. 2021, 99, 196–209. [Google Scholar] [CrossRef] [PubMed]
- Mazaheri, M.; Johnson, G.R.; Morawska, L. An inventory of particle and gaseous emissions from large aircraft thrust engine operations at an airport. Atmos. Environ. 2011, 45, 3500–3507. [Google Scholar] [CrossRef]
- Sun, Y.; Zhuang, G.; Wang, Y.; Zhao, X.; Li, J.; Wang, Z.; An, Z. Chemical composition of dust storms in Beijing and implications for the mixing of mineral aerosol with pollution aerosol on the pathway. J. Geophys. Res. Atmos. 2005, 110, D24209. [Google Scholar] [CrossRef]
- Lin, H.L.; Tao, J.; Qian, Z.M.; Ruan, Z.L.; Xu, Y.J.; Hang, J.; Xu, X.J.; Liu, T.; Guo, Y.M.; Zeng, W.L.; et al. Shipping pollution emission associated with increased cardiovascular mortality: A time series study in Guangzhou, China. Environ. Pollut. 2018, 241, 862–868. [Google Scholar] [CrossRef]
- Nriagu, J.O.; Pacyna, J.M. Quantitative assessment of worldwide contamination of air, water and soils by trace metals. Nature 1988, 333, 134–139. [Google Scholar] [CrossRef]
- Lane, S.; Proemse, B.C.; Tennant, A.; Wieser, M.E. Concentration measurements and isotopic composition of airborne molybdenum collected in an urban environment. Anal. Bioanal. Chem. 2013, 405, 2957–2963. [Google Scholar] [CrossRef]
- Pacyna, J.M.; Pacyna, E.G. An assessment of global and regional emissions of trace metals to the atmosphere from anthropogenic sources worldwide. Environ. Rev. 2001, 9, 269–298. [Google Scholar] [CrossRef]
- Pan, H.; Lu, X.; Lei, K. A comprehensive analysis of heavy metals in urban road dust of Xi’an, China: Contamination, source apportionment and spatial distribution. Sci. Total Environ. 2017, 609, 1361–1369. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Guan, Q.; Tian, J.; Lin, J.; Yang, Y.; Yang, L.; Pan, N. Contamination characteristics, source apportionment, and health risk assessment of heavy metals in agricultural soil in the Hexi Corridor. CATENA 2020, 191, 104573. [Google Scholar] [CrossRef]
- Tao, J.; Gao, J.; Zhang, L.; Zhang, R.; Che, H.; Zhang, Z.; Lin, Z.; Jing, J.; Cao, J.; Hsu, S.-C.J. PM 2.5 pollution in a megacity of southwest China: Source apportionment and implication. Atmos. Chem. Phys. 2014, 14, 8679–8699. [Google Scholar] [CrossRef]
- Chen, R.; Jia, B.; Tian, Y.Z.; Feng, Y.C. Source-specific health risk assessment of PM2.5-bound heavy metals based on high time-resolved measurement in a Chinese megacity: Insights into seasonal and diurnal variations. Ecotoxicol. Environ. Saf. 2021, 216, 112167. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.W.; Chen, Y.J.; Chao, S.H.; Cao, H.B.; Zhang, A.C.; Yang, Y. Emission control priority of PM2.5-bound heavy metals in different seasons: A comprehensive analysis from health risk perspective. Sci. Total Environ. 2018, 644, 20–30. [Google Scholar] [CrossRef]
- Zhang, Y.Y.; Ji, X.T.; Ku, T.T.; Li, G.K.; Sang, N. Heavy metals bound to fine particulate matter from northern China induce season-dependent health risks: A study based on myocardial toxicity. Environ. Pollut. 2016, 216, 380–390. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.; Jiang, Y.; Xu, X.Y.; Cao, X.D. In vitro bioaccessibility and health risk assessment of heavy metals in atmospheric particulate matters from three different functional areas of Shanghai, China. Sci. Total Environ. 2018, 610, 546–554. [Google Scholar] [CrossRef]
- Sax, S.N.; Bennett, D.H.; Chillrud, S.N.; Ross, J.; Kinney, P.L.; Spengler, J.D. A cancer risk assessment of inner-city teenagers living in New York City and Los Angeles. Environ. Health Perspect. 2006, 114, 1558–1566. [Google Scholar] [CrossRef]
- Hieu, N.T.; Lee, B.K. Characteristics of particulate matter and metals in the ambient air from a residential area in the largest industrial city in Korea. Atmos. Res. 2010, 98, 526–537. [Google Scholar] [CrossRef]
- Sun, Y.; Tian, Y.; Xue, Q.; Jia, B.; Wei, Y.; Song, D.; Huang, F.; Feng, Y. Source-specific risks of synchronous heavy metals and PAHs in inhalable particles at different pollution levels: Variations and health risks during heavy pollution. Environ. Int. 2021, 146, 106162. [Google Scholar] [CrossRef] [PubMed]
- Cui, Y.; Ji, D.S.; He, J.; Kong, S.F.; Wang, Y.S. In situ continuous observation of hourly elements in PM2.5 in urban beijing, China: Occurrence levels, temporal variation, potential source regions and health risks. Atmos. Environ. 2020, 222, 117164. [Google Scholar] [CrossRef]
- Liu, B.; Sun, X.; Zhang, J.; Bi, X.; Li, Y.; Li, L.; Dong, H.; Xiao, Z.; Zhang, Y.; Feng, Y. Characterization and Spatial Source Apportionments of Ambient PM10 and PM2.5 during the Heating Period in Tian’jin, China. Aerosol Air Qual. Res. 2020, 20, 1–13. [Google Scholar] [CrossRef]
- Pandey, P.; Patel, D.K.; Khan, A.H.; Barman, S.C.; Murthy, R.C.; Kisku, G.C. Temporal distribution of fine particulates (PM2.5, PM10), potentially toxic metals, PAHs and Metal-bound carcinogenic risk in the population of Lucknow City, India. J. Environ. Sci. Health Part A 2013, 48, 730–745. [Google Scholar] [CrossRef] [PubMed]
- Zhou, S.Z.; Davy, P.K.; Huang, M.J.; Duan, J.B.; Wang, X.M.; Fan, Q.; Chang, M.; Liu, Y.M.; Chen, W.H.; Xie, S.J.; et al. High-resolution sampling and analysis of ambient particulate matter in the Pearl River Delta region of southern China: Source apportionment and health risk implications. Atmos. Chem. Phys. 2018, 18, 2049–2064. [Google Scholar] [CrossRef]
- Huang, R.J.; Cheng, R.; Jing, M.; Yang, L.; Li, Y.J.; Chen, Q.; Chen, Y.; Yan, J.; Lin, C.S.; Wu, Y.F.; et al. Source-Specific Health Risk Analysis on Particulate Trace Elements: Coal Combustion and Traffic Emission As Major Contributors in Wintertime Beijing. Environ. Sci. Technol. 2018, 52, 10967–10974. [Google Scholar] [CrossRef]
- Jiang, H.-H.; Cai, L.-M.; Hu, G.-C.; Wen, H.-H.; Luo, J.; Xu, H.-Q.; Chen, L.-G. An integrated exploration on health risk assessment quantification of potentially hazardous elements in soils from the perspective of sources. Ecotoxicol. Environ. Saf. 2021, 208, 111489. [Google Scholar] [CrossRef]
- Deng, S.; Shi, Y.; Liu, Y.; Zhang, C.; Wang, X.; Cao, Q.; Li, S.; Zhang, F. Emission characteristics of Cd, Pb and Mn from coal combustion: Field study at coal-fired power plants in China. Fuel Process. Technol. 2014, 126, 469–475. [Google Scholar] [CrossRef]
- Li, H.; Wang, Q.G.; Yang, M.; Li, F.; Wang, J.; Sun, Y.; Wang, C.; Wu, H.; Qian, X. Chemical characterization and source apportionment of PM2.5 aerosols in a megacity of Southeast China. Atmos. Res. 2016, 181, 288–299. [Google Scholar]
HMs | Non-Cancer Risk ) | Cancer Risk ) | ||
---|---|---|---|---|
Spring | Summer | Spring | Summer | |
V | 5.9610−4 | 2.7810−4 | - | - |
Cr (VI) | 1.1610−2 | 1.4810−2 | 1.3910−5 | 1.7710−5 |
Mn | 5.4210−1 | 4.7610−1 | - | - |
Co | 1.9710−1 | 1.1410−1 | 1.10 10−5 | 6.4010−6 |
Ni | 2.0110−4 | 1.0710−4 | 3.4810−6 | 1.8510−6 |
Cu | 2.3110−4 | 2.0310−4 | - | - |
Zn | 1.6910−4 | 1.7910−4 | - | - |
As | 5.4210−3 | 6.1010−3 | 2.4610−5 | 2.7810−5 |
Cd | 1.8310−3 | 1.9310−3 | 1.1510−5 | 1.2110−5 |
Pb | 4.2210−3 | 4.6310−3 | - | - |
7.6210−1 | 6.2610−1 | 6.4510−5 | 6.5910−5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, J.; Xu, J.; Xu, Y.; Ji, Y. Pollution Characteristics of Heavy Metals in PM1 and Source-Specific Health Risks in the Tianjin Airport Community, China. Toxics 2024, 12, 601. https://doi.org/10.3390/toxics12080601
Zhao J, Xu J, Xu Y, Ji Y. Pollution Characteristics of Heavy Metals in PM1 and Source-Specific Health Risks in the Tianjin Airport Community, China. Toxics. 2024; 12(8):601. https://doi.org/10.3390/toxics12080601
Chicago/Turabian StyleZhao, Jingbo, Jingcheng Xu, Yanhong Xu, and Yaqin Ji. 2024. "Pollution Characteristics of Heavy Metals in PM1 and Source-Specific Health Risks in the Tianjin Airport Community, China" Toxics 12, no. 8: 601. https://doi.org/10.3390/toxics12080601
APA StyleZhao, J., Xu, J., Xu, Y., & Ji, Y. (2024). Pollution Characteristics of Heavy Metals in PM1 and Source-Specific Health Risks in the Tianjin Airport Community, China. Toxics, 12(8), 601. https://doi.org/10.3390/toxics12080601