Characterization of Neonicotinoid Metabolites by Cytochrome P450-Mediated Metabolism in Poultry
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Samples and Microsome Preparation
2.3. In Vitro CYP Metabolism of Neonicotinoids
2.4. Metabolite Screening by LC/Q-TOF and Quantification by LC/MS/MS
2.5. Data Analysis
3. Results and Discussion
3.1. Identification of Metabolites and Differences in Kinetics of Neonicotinoids among Species
3.1.1. Acetamiprid
3.1.2. Imidacloprid
3.1.3. Clothianidin
3.1.4. Thiamethoxam
3.2. Higher Capacity for CYP-Dependent Metabolism of Neonicotinoids in Chickens
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Buszewski, B.; Bukowska, M.; Ligor, M.; Staneczko-Baranowska, I. A holistic study of neonicotinoids neuroactive insecticides-properties, applications, occurrence, and analysis. Environ. Sci. Pollut. Res. Int. 2019, 26, 34723–34740. [Google Scholar] [CrossRef]
- Costas-Ferreira, C.; Faro, L.R.F. Neurotoxic Effects of Neonicotinoids on Mammals: What Is There beyond the Activation of Nicotinic Acetylcholine Receptors?—A Systematic Review. Int. J. Mol. Sci. 2021, 22, 8413. [Google Scholar] [CrossRef]
- Matsuda, K.; Buckingham, S.D.; Kleier, D.; Rauh, J.J.; Grauso, M.; Sattelle, D.B. Neonicotinoids: Insecticides acting on insect nicotinic acetylcholine receptors. Trends Pharmacol. Sci. 2001, 22, 573–580. [Google Scholar] [CrossRef]
- Hladik, M.L.; Main, A.R.; Goulson, D. Environmental Risks and Challenges Associated with Neonicotinoid Insecticides. Environ. Sci. Technol. 2018, 52, 3329–3335. [Google Scholar] [CrossRef]
- Zhao, G.-P.; Yang, F.-W.; Li, J.-W.; Xing, H.-Z.; Ren, F.-Z.; Pang, G.-F.; Li, Y.-X. Toxicities of Neonicotinoid-Containing Pesticide Mixtures on Nontarget Organisms. Environ. Toxicol. Chem. 2020, 39, 1884–1893. [Google Scholar] [CrossRef]
- Wood, T.J.; Goulson, D. The environmental risks of neonicotinoid pesticides: A review of the evidence post 2013. Environ. Sci. Pollut. Res. Int. 2017, 24, 17285–17325. [Google Scholar] [CrossRef]
- Alsafran, M.; Rizwan, M.; Usman, K.; Saleem, M.H.; Jabri, H.A. Neonicotinoid insecticides in the environment: A critical review of their distribution, transport, fate, and toxic effects. J. Environ. Chem. Eng. 2022, 10, 108485. [Google Scholar] [CrossRef]
- Kan, C.A. Chemical Residues in Poultry; Woodhead Publishing Limited: Shaston, UK, 2004; pp. 258–282. [Google Scholar]
- Van Overmeire, I.; Pussemier, L.; Hanot, V.; De Temmerman, L.; Hoenig, M.; Goeyens, L. Chemical contamination of free-range eggs from Belgium. Food Addit. Contam. 2006, 23, 1109–1122. [Google Scholar] [CrossRef]
- Li, Y.; Miao, R.; Khanna, M. Neonicotinoids and decline in bird biodiversity in the United States. Nat. Sustain. 2020, 3, 1027–1035. [Google Scholar] [CrossRef]
- Gibbons, D.; Morrissey, C.; Mineau, P. A review of the direct and indirect effects of neonicotinoids and fipronil on vertebrate wildlife. Environ. Sci. Pollut. Res. Int. 2015, 22, 103–118. [Google Scholar] [CrossRef] [PubMed]
- Eng, M.L.; Stutchbury, B.J.M.; Morrissey, C.A. Imidacloprid and chlorpyrifos insecticides impair migratory ability in a seed-eating songbird. Sci. Rep. 2017, 7, 15176. [Google Scholar] [CrossRef]
- Hallmann, C.A.; Foppen, R.P.B.; van Turnhout, C.A.M.; de Kroon, H.; Jongejans, E. Declines in insectivorous birds are associated with high neonicotinoid concentrations. Nature 2014, 511, 341–343. [Google Scholar] [CrossRef]
- Cook, D.J.; Finnigan, J.D.; Cook, K.; Black, G.W.; Charnock, S.J. Chapter Five—Cytochromes P450: History, Classes, Catalytic Mechanism, and Industrial Application. In Advances in Protein Chemistry and Structural Biology; Christov, C.Z., Ed.; Academic Press: Cambridge, MA, USA, 2016; Volume 105, pp. 105–126. [Google Scholar]
- Thompson, D.A.; Lehmler, H.-J.; Kolpin, D.W.; Hladik, M.L.; Vargo, J.D.; Schilling, K.E.; LeFevre, G.H.; Peeples, T.L.; Poch, M.C.; LaDuca, L.E.; et al. A critical review on the potential impacts of neonicotinoid insecticide use: Current knowledge of environmental fate, toxicity, and implications for human health. Environ. Sci. Process. Impacts 2020, 22, 1315–1346. [Google Scholar] [CrossRef] [PubMed]
- Shi, X.; Dick, R.A.; Ford, K.A.; Casida, J.E. Enzymes and Inhibitors in Neonicotinoid Insecticide Metabolism. J. Agric. Food Chem. 2009, 57, 4861–4866. [Google Scholar] [CrossRef]
- Khidkhan, K.; Ikenaka, Y.; Ichise, T.; Nakayama, S.M.M.; Mizukawa, H.; Nomiyama, K.; Iwata, H.; Arizono, K.; Takahashi, K.; Kato, K.; et al. Interspecies differences in cytochrome P450-mediated metabolism of neonicotinoids among cats, dogs, rats, and humans. Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 2021, 239, 108898. [Google Scholar] [CrossRef]
- Katagi, T.; Fujisawa, T. Acute toxicity and metabolism of pesticides in birds. J. Pestic. Sci. 2021, 46, 305–321. [Google Scholar] [CrossRef] [PubMed]
- Pan, Y.; Chang, J.; Xu, P.; Xie, Y.; Yang, L.; Hao, W.; Li, J.; Wan, B. Twenty-four hours of Thiamethoxam: In vivo and molecular dynamics simulation study on the toxicokinetic and underlying mechanisms in quails (Coturnix japonica). J. Hazard. Mater. 2022, 427, 128159. [Google Scholar] [CrossRef]
- Watanabe, K.P.; Kawai, Y.K.; Ikenaka, Y.; Kawata, M.; Ikushiro, S.; Sakaki, T.; Ishizuka, M. Avian cytochrome P450 (CYP) 1–3 family genes: Isoforms, evolutionary relationships, and mRNA expression in chicken liver. PLoS ONE 2013, 8, e75689. [Google Scholar] [CrossRef]
- Berens, M.J.; Capel, P.D.; Arnold, W.A. Neonicotinoid Insecticides in Surface Water, Groundwater, and Wastewater Across Land-Use Gradients and Potential Effects. Environ. Toxicol. Chem. 2021, 40, 1017–1033. [Google Scholar] [CrossRef] [PubMed]
- Simon-Delso, N.; Amaral-Rogers, V.; Belzunces, L.P.; Bonmatin, J.M.; Chagnon, M.; Downs, C.; Furlan, L.; Gibbons, D.W.; Giorio, C.; Girolami, V.; et al. Systemic insecticides (neonicotinoids and fipronil): Trends, uses, mode of action and metabolites. Environ. Sci. Pollut. Res. 2015, 22, 5–34. [Google Scholar] [CrossRef]
- Farooqui, T. A potential link among biogenic amines-based pesticides, learning and memory, and colony collapse disorder: A unique hypothesis. Neurochem. Int. 2013, 62, 122–136. [Google Scholar] [CrossRef] [PubMed]
- Rymuszka, A.; Sieroslawska, A. Comparative evaluation of neonicotinoids and their metabolites-induced oxidative stress in carp primary leukocytes and CLC cells. Sci. Rep. 2024, 14, 8291. [Google Scholar] [CrossRef]
- Nauen, R.; Ebbinghaus-Kintscher, U.; Salgado, V.L.; Kaussmann, M. Thiamethoxam is a neonicotinoid precursor converted to clothianidin in insects and plants. Pestic. Biochem. Physiol. 2003, 76, 55–69. [Google Scholar] [CrossRef]
- Benzidane, Y.; Touinsi, S.; Motte, E.; Jadas-Hécart, A.; Communal, P.-Y.; Leduc, L.; Thany, S.H. Effect of thiamethoxam on cockroach locomotor activity is associated with its metabolite clothianidin. Pest Manag. Sci. 2010, 66, 1351–1359. [Google Scholar] [CrossRef] [PubMed]
- Khidkhan, K.; Poapolathep, S.; Kulprasertsri, S.; Sukkheewan, R.; Khunlert, P.; Giorgi, M.; Poapolathep, A. Comparative in vitro biotransformation of fipronil in domestic poultry using liver microsome. J. Vet. Sci. 2022, 23, e82. [Google Scholar]
- Omura, T.; Sato, R. The Carbon Monoxide-binding Pigment of Liver Microsomes: I. Evidence for its hemoprotein nature. J. Biol. Chem. 1964, 239, 2370–2378. [Google Scholar] [CrossRef]
- Authority, E.F.S.; Abdourahime, H.; Anastassiadou, M.; Brancato, A.; Brocca, D.; Carrasco Cabrera, L.; De Lentdecker, C.; Ferreira, L.; Greco, L.; Jarrah, S.; et al. Review of the existing maximum residue levels for imidacloprid according to Article 12 of Regulation (EC) No 396/2005. EFSA J. 2019, 17, e05570. [Google Scholar] [CrossRef]
- EFSA; Bellisai, G.; Bernasconi, G.; Brancato, A.; Cabrera, L.C.; Castellan, I.; Ferreira, L.; Giner, G.; Greco, L.; Jarrah, S.; et al. Modification of the existing maximum residue levels for acetamiprid in honey and various oilseed crops. EFSA J. 2022, 20, e07535. [Google Scholar] [CrossRef]
- Ford, K.A.; Casida, J.E. Unique and Common Metabolites of Thiamethoxam, Clothianidin, and Dinotefuran in Mice. Chem. Res. Toxicol. 2006, 19, 1549–1556. [Google Scholar] [CrossRef]
- Food and Agriculture Organization of the United Nations; World Health Organization. Pesticide Residues in Food 2011: Joint FAO/WHO Meeting on Pesticide Residues: Report of the Joint Meeting of the FAO Panel of Experts on Pesticide Residues in Food and the Environment and the WHO Core Assessment Group on Pesticide Residues, Geneva, Switzerland, 20–29 September 2011; World Health Organization: Geneva, Switzerland, 2011. [Google Scholar]
- Authority, E.F.S. Peer review of the pesticide risk assessment of the active substance acetamiprid. EFSA J. 2016, 14, e04610. [Google Scholar] [CrossRef]
- Pest Management Regulatory Agency of Health Canada. Acetamiprid; Proposed Registration Decision PRD2010-02; Pest Management Regulatory Agency: Ottawa, ON, Canada, 2010. [Google Scholar]
- Zuščíková, L.; Bažány, D.; Greifová, H.; Knížatová, N.; Kováčik, A.; Lukáč, N.; Jambor, T. Screening of Toxic Effects of Neonicotinoid Insecticides with a Focus on Acetamiprid: A Review. Toxics 2023, 11, 598. [Google Scholar] [CrossRef]
- Kolanczyk, R.C.; Tapper, M.A.; Sheedy, B.R.; Serrano, J.A. In vitro metabolism of imidacloprid and acetamiprid in rainbow trout and rat. Xenobiotica 2020, 50, 805–814. [Google Scholar] [CrossRef]
- Casida, J.E. Neonicotinoid Metabolism: Compounds, Substituents, Pathways, Enzymes, Organisms, and Relevance. J. Agric. Food Chem. 2011, 59, 2923–2931. [Google Scholar] [CrossRef] [PubMed]
- Schulz-Jander, D.A.; Casida, J.E. Imidacloprid insecticide metabolism: Human cytochrome P450 isozymes differ in selectivity for imidazolidine oxidation versus nitroimine reduction. Toxicol. Lett. 2002, 132, 65–70. [Google Scholar] [CrossRef]
- Cai, H.; Jiang, J.; Yang, Q.; Chen, Q.; Deng, Y. Functional Characterization of a First Avian Cytochrome P450 of the CYP2D Subfamily (CYP2D49). PLoS ONE 2012, 7, e38395. [Google Scholar] [CrossRef]
- Vardavas, A.I.; Ozcagli, E.; Fragkiadaki, P.; Stivaktakis, P.D.; Tzatzarakis, M.N.; Alegakis, A.K.; Vasilaki, F.; Kaloudis, K.; Tsiaoussis, J.; Kouretas, D.; et al. The metabolism of imidacloprid by aldehyde oxidase contributes to its clastogenic effect in New Zealand rabbits. Mutat. Res./Genet. Toxicol. Environ. Mutagen. 2018, 829–830, 26–32. [Google Scholar] [CrossRef]
- Mourikes, V.E.; Santacruz Márquez, R.; Deviney, A.; Neff, A.M.; Laws, M.J.; Flaws, J.A. Imidacloprid and Its Bioactive Metabolite, Desnitro-Imidacloprid, Differentially Affect Ovarian Antral Follicle Growth, Morphology, and Hormone Synthesis In Vitro. Toxics 2023, 11, 349. [Google Scholar] [CrossRef]
Substrate | Metabolite | Formula | RT (min) | Mass | Mass (Target) | Mass Difference (ppm) | Score | Species |
---|---|---|---|---|---|---|---|---|
Acetamiprid | N-desmethyl-acetamiprid | C9H9ClN4 | 12.9 | 208.0514–208.0517 | 208.0516 | −0.81–0.55 | 98.4–99.7 | Chicken, Duck, Goose, Quail, Rat |
N-methyl(6-chloro-3-pyridyl) methylamine | C7H9ClN2 | 5.5 | 156.0446–156.0452 | 156.0454 | −5.16–(−1.14) | 77.2–99.5 | Chicken, Duck, Goose, Quail, Rat | |
N-[(6-chloro-3-pyridyl) methyl]-N-methyl acetamidine | C9H12ClN3 | 4.5 | 197.0709–197.0738 | 197.0720 | −5.32–9.28 | 51.1–66.8 | Duck, Goose, Quail, Rat | |
Imidacloprid * | 4OH- and/or 5OH-imidacloprid | C9H10ClN5O3 | 10.7 | 271.0468–271.0471 | 271.0472 | −1.59–(−0.44) | 92.9–96.5 | Chicken, Duck, Rat |
dn-imidacloprid | C9H11ClN4 | 7.8 | 210.067–210.0671 | 210.0672 | −1.32–(−0.45) | 59.1–97.4 | Chicken, Duck, Rat | |
imidacloprid-olefin | C9H8ClN5O2 | 10.5 | 253.0363–253.0364 | 253.0367 | −1.02–(−0.67) | 88.1–96.3 | Chicken, Duck, Rat | |
Clothianidin * | dm-clothianidin | C5H6ClN5O2S | 10.6 | 234.9928–234.9929 | 234.9931 | −1.25–(−0.57) | 95.3–97.5 | Chicken, Duck, Rat |
clothianidin-urea | C6H8ClN3OS | 9.9 | 205.0073–205.0074 | 205.0077 | −1.88–(−1.05) | 94.9–99.5 | Chicken, Duck, Rat | |
Thiamethoxam | clothianidin | C6H8ClN5O2S | 11.8 | 249.0084–249.0087 | 249.0087 | −1.15–0.02 | 98.9–99.5 | Chicken, Duck, Goose, Quail, Rat |
clothianidin-urea | C6H8ClN3OS | 9.9 | 205.0065–205.0084 | 205.0077 | −5.49–3.8 | 67.5–90.8 | Chicken, Duck, Goose, Quail, Rat | |
dm-clothianidin | C5H6ClN5O2S | 10.6 | 234.9924–234.9928 | 234.9931 | −2.96–(−1.03) | 59.1–73.5 | Chicken | |
N-desmethyl-thiamethoxam | C7H8ClN5O3S | 12.3 | 277.0029–277.0036 | 277.0036 | −3.07–(−0.49) | 85.5–99.1 | Chicken, Duck, Goose, Quail, Rat | |
thiamethoxam-urea | C8H10ClN3O2S | 13.1 | 247.0177–247.018 | 247.0182 | −2.27–(−0.73) | 93.8–98.6 | Chicken, Duck, Goose, Quail, Rat |
Substrate | Metabolite | Parameter | Species | ||||
---|---|---|---|---|---|---|---|
Chicken | Duck | Goose | Quail | Rat | |||
Acetamiprid | dm-acetamiprid | Vmax | 1.2 ± 0.0 | 0.4 ± 0.0 | 1.3 ± 0.2 | 0.3 ± 0.1 | 0.1 ± 0.0 |
Km | 25.6 ± 1.4 | 67.5 ± 9.9 | 48.2 ± 8.0 | 35.3 ± 10.3 | 55.8 ± 8.7 | ||
Vmax/Km | 46.5 ± 3.5 a | 5.7 ± 0.4 c | 27.7 ± 0.5 b | 7.2 ± 0.2 c | 1.5 ± 0.1 c | ||
Imidacloprid | 4OH-imidacloprid | Vmax | 0.5 ± 0.0 | 0.1 ± 0.0 | - | - | 0.1 ± 0.0 |
Km | 31.2 ± 3.0 | 77.9 ± 19.1 | 138.5 ± 120.8 | ||||
Vmax/Km | 17.1 ± 0.6 a | 1.6 ± 0.1 b | 1.1 ± 0.3 b | ||||
5OH-imidacloprid | Vmax | 0.5 ± 0.0 | 0.1 ± 0.0 | - | - | 0.1 ± 0.0 | |
Km | 34.1 ± 0.6 | 87.4 ± 27.7 | 112.0 ± 56.1 | ||||
Vmax/Km | 15.3 ± 0.0 a | 0.8 ± 0.1 b | 0.8 ± 0.1 b | ||||
dn-imidacloprid | Vmax | 1.0 ± 0.7 | 0.2 ± 0.0 | - | - | 0.1 ± 0.0 | |
Km | 699.5 ± 500.0 | 37.6 ± 8.2 | 26.2 ± 0.7 | ||||
Vmax/Km | 1.6 ± 0.2 b | 5.5 ± 0.6 a | 2.8 ± 0.1 b | ||||
imidacloprid-olefin | Vmax | 0.2 ± 0.0 | 0.03 ± 0.0 | - | - | NF | |
Km | 29.4 ± 7.9 | 42.2 ± 0.0 | |||||
Vmax/Km | 7.5 ± 0.9 a | 0.8 ± 0.1 b | |||||
Clothianidin | dm-clothianidin | Vmax | 4.4 ± 1.2 | 2.9 ± 1.3 | - | - | NF |
Km | 52.0 ± 21.8 | 358.8 ± 182.2 | |||||
Vmax/Km | 86.8 ± 12.6 a | 8.1 ± 0.4 b | |||||
dn-clothianidin | Vmax | 0.1 ± 0.0 | 0.3 ± 0.1 | - | - | 0.2 ± 0.0 | |
Km | 27.5 ± 18.4 | 29.1 ± 8.2 | 39.9 ± 9.7 | ||||
Vmax/Km | 3.0 ± 1.3 b | 10.9 ± 0.2 a | 5.5 ± 1.0 b | ||||
clothianidin-urea | Vmax | 0.008 ± 0.001 | 0.005 ± 0.001 | - | - | 0.012 ± 0.002 | |
Km | 119.9 ± 24.1 | 75.2 ± 26.6 | 209.6 ± 56.6 | ||||
Vmax/Km | 0.07 ± 0.01 | 0.07 ± 0.02 | 0.06 ± 0.00 | ||||
Thiamethoxam | clothianidin | Vmax | 1.2 ± 0.0 | 0.1 ± 0.0 | 0.2 ± 0.1 | 0.4 ± 0.1 | 0.1 ± 0.0 |
Km | 73.4 ± 0.1 | 92.7 ± 20.9 | 48.3 ± 19.6 | 181.5 ± 82.7 | 63.0 ± 20.0 | ||
Vmax/Km | 16.9 ± 0.2 a | 1.6 ± 0.1 c | 5.0 ± 0.6 b | 2.4 ± 0.5 c | 1.6 ± 0.2 c | ||
dm-clothianidin | Vmax | 0.01 ± 0.00 | ND | ND | ND | ND | |
Km | 13.0 ± 0.8 | ||||||
Vmax/Km | 0.4 ± 0.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dam-on, A.; Nimako, C.; Kulprasertsri, S.; Ikenaka, Y.; Yohannes, Y.B.; Nakayama, S.M.M.; Ishizuka, M.; Poapolathep, S.; Poapolathep, A.; Khidkhan, K. Characterization of Neonicotinoid Metabolites by Cytochrome P450-Mediated Metabolism in Poultry. Toxics 2024, 12, 618. https://doi.org/10.3390/toxics12080618
Dam-on A, Nimako C, Kulprasertsri S, Ikenaka Y, Yohannes YB, Nakayama SMM, Ishizuka M, Poapolathep S, Poapolathep A, Khidkhan K. Characterization of Neonicotinoid Metabolites by Cytochrome P450-Mediated Metabolism in Poultry. Toxics. 2024; 12(8):618. https://doi.org/10.3390/toxics12080618
Chicago/Turabian StyleDam-on, Adisorn, Collins Nimako, Sittinee Kulprasertsri, Yoshinori Ikenaka, Yared B. Yohannes, Shouta M. M. Nakayama, Mayumi Ishizuka, Saranya Poapolathep, Amnart Poapolathep, and Kraisiri Khidkhan. 2024. "Characterization of Neonicotinoid Metabolites by Cytochrome P450-Mediated Metabolism in Poultry" Toxics 12, no. 8: 618. https://doi.org/10.3390/toxics12080618
APA StyleDam-on, A., Nimako, C., Kulprasertsri, S., Ikenaka, Y., Yohannes, Y. B., Nakayama, S. M. M., Ishizuka, M., Poapolathep, S., Poapolathep, A., & Khidkhan, K. (2024). Characterization of Neonicotinoid Metabolites by Cytochrome P450-Mediated Metabolism in Poultry. Toxics, 12(8), 618. https://doi.org/10.3390/toxics12080618