Bioavailability, Biotransformation and Biotoxicity Induced by Pesticide Exposure

A special issue of Toxics (ISSN 2305-6304). This special issue belongs to the section "Agrochemicals and Food Toxicology".

Deadline for manuscript submissions: 31 December 2024 | Viewed by 2651

Special Issue Editor


E-Mail Website
Guest Editor
College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
Interests: environmental toxicology; risk assessment; pesticides; amphibian model; metabolic disorder

Special Issue Information

Dear Colleagues,

The special issue aims to delve into the complex interplay between pesticide exposure and its effects on bioavailability, biotransformation processes, and resulting biotoxicity in environmental and biological systems. This issue welcomes contributions that explore a range of topics related to pesticide impacts, including but not limited to:

  • Assessing pesticide bioavailability and bioaccumulation in organisms
  • Investigating biotransformation pathways and degradation mechanisms of pesticides in the environment
  • Understanding biochemical responses and metabolic alterations induced by pesticide exposure
  • Evaluating the impacts of pesticide exposure on biodiversity and ecosystem stability
  • Assessing potential risks and health implications of pesticide exposure on human populations.

The primary goal is to provide a comprehensive platform for researchers to share novel insights and research findings regarding the biological effects of pesticide exposure, spanning from molecular interactions to ecosystem-level consequences. Contributions will be situated within the broader context of pesticide research, bridging gaps in understanding and proposing potential solutions to mitigate adverse effects on human health and ecological balance.

We invite researchers and scholars to contribute original research articles, reviews, and case studies to advance our understanding of pesticide-induced biological effects and promote sustainable agricultural practices and environmental health.

Dr. Qiangwei Wang
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Toxics is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • pesticide exposure
  • bioavailability
  • biochemical responses
  • sustainable agriculture
  • environmental health
  • biodiversity

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

12 pages, 2042 KiB  
Article
Characterization of Neonicotinoid Metabolites by Cytochrome P450-Mediated Metabolism in Poultry
by Adisorn Dam-on, Collins Nimako, Sittinee Kulprasertsri, Yoshinori Ikenaka, Yared B. Yohannes, Shouta M. M. Nakayama, Mayumi Ishizuka, Saranya Poapolathep, Amnart Poapolathep and Kraisiri Khidkhan
Toxics 2024, 12(8), 618; https://doi.org/10.3390/toxics12080618 - 21 Aug 2024
Viewed by 1010
Abstract
Neonicotinoids, a neuro-effective class of insecticides, are heavily applied in agricultural activities worldwide. Poultry can be exposed to neonicotinoids by several routes, but the knowledge of neonicotinoid’s metabolism in poultry and its associated interspecies differences is highly limited. Hence, this study aims to [...] Read more.
Neonicotinoids, a neuro-effective class of insecticides, are heavily applied in agricultural activities worldwide. Poultry can be exposed to neonicotinoids by several routes, but the knowledge of neonicotinoid’s metabolism in poultry and its associated interspecies differences is highly limited. Hence, this study aims to investigate the species differences in metabolite formations, as well as cytochrome P450 (CYP)-dependent metabolism of four major neonicotinoid compounds, acetamiprid, imidacloprid, clothianidin, and thiamethoxam, in poultry. In vitro biotransformation assays using hepatic microsomes of chicken, ducks, geese, quails, and rats were conducted. Metabolites of neonicotinoids were then screened by LC/Q-TOF and quantified by LC/MS/MS. The results revealed an existence of interspecies differences in the formations of N-[(6-chloro-3-pyridyl) methyl] -N-methyl acetamidine (IM-1-5) of acetamiprid and dm-clothianidin of clothianidin between chicken and other species. In addition, the greatest CYP activities in the metabolism of most neonicotinoid substrates, such as acetamiprid to dm-acetamiprid, imidacloprid to hydroxylated-imidacloprid and imidacloprid-olefin, clothianidin to dm-clothianidin, and thiamethoxam to clothianidin, were found in chicken. These results suggested that the CYPs in chicken may have a greater capacity for metabolism of neonicotinoids compared to other poultry. This study further revealed that the maximum intrinsic clearance of dn-imidacloprid and dn-clothianidin in ducks may be superintended by CYP-mediated nitro-reductions of imidacloprid and clothianidin. Further studies employing CYP recombinant enzymes may be required to elucidate the specific CYP isoforms that may be involved in neonicotinoid metabolism in avian species. Full article
Show Figures

Graphical abstract

14 pages, 2855 KiB  
Article
The Effect of Different Thiamethoxam Concentrations on Riptortus pedestris Development and Fecundity
by Zijie Wang, Song Wang, Lixia Li, Lei Chen, Yu Gao, Ming Yuan, Yueying Wang and Shusen Shi
Toxics 2024, 12(7), 460; https://doi.org/10.3390/toxics12070460 - 26 Jun 2024
Viewed by 1295
Abstract
The stink bug, Riptortus pedestris (Fabricius) (Hemiptera: Alydidae), is a highly destructive pest that significantly damages legume crops in East and South Asia. Neonicotinoid insecticides containing thiamethoxam are widely used to control R. pedestris in soybean fields. However, the current knowledge on the [...] Read more.
The stink bug, Riptortus pedestris (Fabricius) (Hemiptera: Alydidae), is a highly destructive pest that significantly damages legume crops in East and South Asia. Neonicotinoid insecticides containing thiamethoxam are widely used to control R. pedestris in soybean fields. However, the current knowledge on the impact of different thiamethoxam concentrations on R. pedestris growth and reproduction is lacking and insufficient. The present study investigated the effects of thiamethoxam on the biological traits of R. pedestris after treatment with LC10 (19.8 mg/L), LC20 (31.6 mg/L), LC30 (44.2 mg/L), LC40 (58.9 mg/L), and LC50 (77.0 mg/L) concentrations. These five thiamethoxam concentrations (LC10~LC50) reduced adult longevity and fecundity in the F1 generation females. Thiamethoxam treatment also significantly decreased the population trend index, intrinsic rate of increase, net reproductive rate, gross reproductive rate, and finite rate of increase and increased the mean generation time. These results show that thiamethoxam hinders and suppresses the development and growth of the F1 population of R. pedestris. Thiamethoxam is recommended for spray control during peak adult emergence, as it not only has a controlling effect on the parental generation but also a negative impact on the F1 generations. Full article
Show Figures

Figure 1

Back to TopTop