Surfactant-Based Chemical Washing to Remediate Oil-Contaminated Soil: The State of Knowledge
Abstract
:1. Introduction
2. Soil Oil Pollution
2.1. The Sources of Oil in Soil
2.2. The Harm of Oil to Soil Ecosystems
3. Remediation of Oil-Contaminated Soil
4. Soil Washing
4.1. Surfactant
4.1.1. Mechanism of Surfactant Cleaning of Petroleum Hydrocarbons in Soil
4.1.2. Classification and Selection of Surfactants
Cationic Surfactants
Anionic Surfactants
Nonionic Surfactants
Amphoteric Surfactants
Gemini Surfactants
Biosurfactants
4.2. Influencing Factors of Soil Washing
4.2.1. Detergent Configuration
The Combination of Surfactants
Auxiliary Agents
4.2.2. Factors Influencing the Chemical Washing Process
pH Value
Temperature
Mixing Mode
Other Conditions
4.2.3. Factors Related to Soil Properties
4.2.4. Parameters of Oil
5. Conclusions and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kuppusamy, S.; Maddela, N.R.; Megharaj, M.; Venkateswarlu, K. An overview of total petroleum hydrocarbons. In Total Petroleum Hydrocarbons: Environmental Fate, Toxicity, and Remediation; Kuppusamy, S., Maddela, N.R., Megharaj, M., Venkateswarlu, K., Eds.; Springer: Cham, Switzerland, 2020; pp. 1–27. [Google Scholar]
- Ossai, I.C.; Ahmed, A.; Hassan, A.; Hamid, F.S. Remediation of soil and water contaminated with petroleum hydrocarbon: A review. Environ. Technol. Innov. 2020, 17, 100526. [Google Scholar] [CrossRef]
- Nwadibe, E.C.; Aniebonam, E.E.; Jude, O.U. Effect of crude oil pollution on soil and aquatic bacteria and fungi. J. Exp. Biol. Agric. Sci. 2020, 8, 176–184. [Google Scholar] [CrossRef]
- Love, C.R.; Arrington, E.C.; Gosselin, K.M.; Reddy, C.M.; Van Mooy, B.A.; Nelson, R.K.; Valentine, D.L. Microbial production and consumption of hydrocarbons in the global ocean. Nat. Microbiol. 2021, 6, 489–498. [Google Scholar] [CrossRef]
- Haider, F.U.; Ejaz, M.; Cheema, S.A.; Khan, M.I.; Zhao, B.; Liqun, C.; Salim, M.A.; Naveed, M.; Khan, N.; Nunez-Delgado, A. Phytotoxicity of petroleum hydrocarbons: Sources, impacts and remediation strategies. Environ. Res. 2021, 197, 111031. [Google Scholar] [CrossRef]
- Dindar, E.; Şağban, F.O.T.; Başkaya, H.S. Variations of soil enzyme activities in petroleum-hydrocarbon contaminated soil. Int. Biodeter. Biodegrad. 2015, 105, 268–275. [Google Scholar] [CrossRef]
- Li, Y.; Wang, X.; Sun, Z. Ecotoxicological effects of petroleum-contaminated soil on the earthworm Eisenia fetida. J. Hazard. Mater. 2020, 393, 122384. [Google Scholar] [CrossRef]
- Li, Y.; Li, C.; Xin, Y.; Huang, T.; Liu, J. Petroleum pollution affects soil chemistry and reshapes the diversity and networks of microbial communities. Ecotoxicol. Environ. Saf. 2022, 246, 114129. [Google Scholar] [CrossRef]
- Ayobami, A.O. An assessment of trace metal pollution indicators in soils around oil well clusters. Petroleum Res. 2022, 7, 275–285. [Google Scholar] [CrossRef]
- Rusin, M.; Gospodarek, J.; Nadgórska-Socha, A. The effect of petroleum-derived substances on the growth and chemical composition of Vicia faba L. Polish J. Environ. Stud. 2015, 24, 2157–2166. [Google Scholar] [CrossRef]
- Shan, B.-Q.; Zhang, Y.-T.; Cao, Q.-L.; Kang, Z.-Y.; Li, S.-Y. Growth responses of six leguminous plants adaptable in Northern Shaanxi to petroleum contaminated soil. Environ. Sci. 2014, 35, 1125–1130. [Google Scholar]
- Cruz, J.M.; Corroqué, N.A.; Montagnoli, R.N.; Lopes, P.R.M.; Morales, M.A.M.; Bidoia, E.D. Comparative study of phytotoxicity and genotoxicity of soil contaminated with biodiesel, diesel fuel and petroleum. Ecotoxicology 2019, 28, 449–456. [Google Scholar] [CrossRef]
- Tang, J.; Wang, M.; Wang, F.; Sun, Q.; Zhou, Q. Eco-toxicity of petroleum hydrocarbon contaminated soil. J. Environ. Sci. 2011, 23, 845–851. [Google Scholar] [CrossRef]
- Nobili, S.; Masin, C.E.; Zalazar, C.S.; Lescano, M.R. Bioremediation of hydrocarbon contaminated soil using local organic materials and earthworms. Environ. Pollut. 2022, 314, 120169. [Google Scholar] [CrossRef]
- Jagtap, S.S.; Woo, S.M.; Kim, T.-S.; Dhiman, S.S.; Kim, D.; Lee, J.-K. Phytoremediation of diesel-contaminated soil and saccharification of the resulting biomass. Fuel 2014, 116, 292–298. [Google Scholar] [CrossRef]
- Bajagain, R.; Jeong, S.-W. Degradation of petroleum hydrocarbons in soil via advanced oxidation process using peroxymonosulfate activated by nanoscale zero-valent iron. Chemosphere 2021, 270, 128627. [Google Scholar] [CrossRef]
- Villa, R.D.; Trovó, A.G.; Nogueira, R.F.P. Diesel degradation in soil by Fenton process. J. Braz. Chem. Soc. 2010, 21, 1089–1095. [Google Scholar] [CrossRef]
- Oh, S.-Y.; Shin, D.-S. Treatment of diesel-contaminated soil by Fenton and persulfate oxidation with zero-valent iron. Soil Sed. Contam. 2014, 23, 180–193. [Google Scholar] [CrossRef]
- Pazos, M.; Plaza, A.; Martín, M.; Lobo, M. The impact of electrokinetic treatment on a loamy-sand soil properties. Chem. Eng. J. 2012, 183, 231–237. [Google Scholar] [CrossRef]
- Bao, Q.; Huang, L.; Xiu, J.; Yi, L.; Ma, Y. Study on the treatment of oily sludge in oil fields with lipopeptide/sophorolipid complex bio-surfactant. Ecotoxicol. Environ. Saf. 2021, 212, 111964. [Google Scholar] [CrossRef]
- Bao, Q.; Huang, L.; Xiu, J.; Yi, L.; Zhang, Y.; Wu, B. Study on the thermal washing of oily sludge used by rhamnolipid/sophorolipid binary mixed bio-surfactant systems. Ecotoxicol. Environ. Saf. 2022, 240, 113696. [Google Scholar] [CrossRef]
- Falciglia, P.; Vagliasindi, F. Remediation of hydrocarbon polluted soils using 2.45 GHz frequency-heating: Influence of operating power and soil texture on soil temperature profiles and contaminant removal kinetics. J. Geochem. Explor. 2015, 151, 66–73. [Google Scholar] [CrossRef]
- Wang, H.; Cui, Y.; Lu, L.; Jin, S.; Zuo, Y.; Ge, Z.; Ren, Z.J. Moisture retention extended enhanced bioelectrochemical remediation of unsaturated soil. Sci. Total Environ. 2020, 724, 138169. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Li, X.; Zhao, X.; Chen, X.; Zhou, B.; Weng, L.; Li, Y. Bioelectric field accelerates the conversion of carbon and nitrogen in soil bioelectrochemical systems. J. Hazard. Mater. 2020, 388, 121790. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Li, X.; Zhang, W.; Ma, F.; Zhang, Q.; Gu, Q. Pyrolysis of heavy hydrocarbons in weathered petroleum-contaminated soil enhanced with inexpensive additives at low temperatures. J. Clean. Prod. 2021, 302, 127017. [Google Scholar] [CrossRef]
- Fanaei, F.; Moussavi, G.; Shekoohiyan, S. Enhanced treatment of the oil-contaminated soil using biosurfactant-assisted washing operation combined with H2O2-stimulated biotreatment of the effluent. J. Environ. Manag. 2020, 271, 110941. [Google Scholar] [CrossRef]
- Liu, J.; Zhao, L.; Liu, Q.; Li, J.; Qiao, Z.; Sun, P.; Yang, Y. A critical review on soil washing during soil remediation for heavy metals and organic pollutants. Int. J. Environ. Sci. Technol. 2022, 19, 601–624. [Google Scholar] [CrossRef]
- Kim, N.; Kwon, K.; Park, J.; Kim, J.; Choi, J.W. Ex situ soil washing of highly contaminated silt loam soil using core-crosslinked amphiphilic polymer nanoparticles. Chemosphere 2019, 224, 212–219. [Google Scholar] [CrossRef]
- Wu, G.; Li, X.; Coulon, F.; Li, H.; Lian, J.; Sui, H. Recycling of solvent used in a solvent extraction of petroleum hydrocarbons contaminated soil. J. Hazard. Mater. 2011, 186, 533–539. [Google Scholar] [CrossRef]
- Sui, H.; Hua, Z.; Li, X.; Li, H.; Wu, G. Influence of soil and hydrocarbon properties on the solvent extraction of high-concentration weathered petroleum from contaminated soils. Environ. Sci. Pollut. Res. 2014, 21, 5774–5784. [Google Scholar] [CrossRef]
- Khanpour, R.; Sheikhi-Kouhsar, M.R.; Esmaeilzadeh, F.; Mowla, D. Removal of contaminants from polluted drilling mud using supercritical carbon dioxide extraction. J. Supercrit. Fluids 2014, 88, 1–7. [Google Scholar] [CrossRef]
- Seaton, S.; Hall, J. Recovery of oil from drilled cuttings by liquefied gas extraction. In Proceedings of the SPE International Symposium on Oilfield Chemistry, Houston, TX, USA, 2–4 February 2005; p. SPE-92963-MS. [Google Scholar]
- Li, G.; Guo, S.; Hu, J. The influence of clay minerals and surfactants on hydrocarbon removal during the washing of petroleum-contaminated soil. Chem. Eng. J. 2016, 286, 191–197. [Google Scholar] [CrossRef]
- Pei, G.; Zhu, Y.; Cai, X.; Shi, W.; Li, H. Surfactant flushing remediation of o-dichlorobenzene and p-dichlorobenzene contaminated soil. Chemosphere 2017, 185, 1112–1121. [Google Scholar] [CrossRef]
- Han, M.; Ji, G.; Ni, J. Washing of field weathered crude oil contaminated soil with an environmentally compatible surfactant, alkyl polyglucoside. Chemosphere 2009, 76, 579–586. [Google Scholar] [CrossRef] [PubMed]
- Bonal, N.S.; Paramkusam, B.R.; Basudhar, P.K. Enhancement of surfactant efficacy during the cleanup of engine oil contaminated soil using salt and multi-walled carbon nanotubes. J. Hazard. Mater. 2018, 351, 54–62. [Google Scholar] [CrossRef] [PubMed]
- Adrion, A.C.; Nakamura, J.; Shea, D.; Aitken, M.D. Screening nonionic surfactants for enhanced biodegradation of polycyclic aromatic hydrocarbons remaining in soil after conventional biological treatment. Environ. Sci. Technol. 2016, 50, 3838–3845. [Google Scholar] [CrossRef] [PubMed]
- Huang, Z.; Wang, D.; Ayele, B.A.; Zhou, J.; Srivastava, I.; Pan, D.; Wang, Z.; Chen, Q. Enhancement of auxiliary agent for washing efficiency of diesel contaminated soil with surfactants. Chemosphere 2020, 252, 126494. [Google Scholar] [CrossRef]
- Abo-Riya, M.A.; Reda, L.M.; Tantawy, A.H.; Metwally, A.M. Novel cationic copolymeric surfactants bearing imidazole moiety as petro-dispersing/petro-collecting agents: Synthesis, surface activity and characterization. J. Mol. Liq. 2022, 364, 120057. [Google Scholar] [CrossRef]
- Liu, J.; Zhong, L.; Zewen, Y.; Liu, Y.; Meng, X.; Zhang, W.; Zhang, H.; Yang, G.; Shaojie, W. High-efficiency emulsification anionic surfactant for enhancing heavy oil recovery. Colloid Surf. A Physicochem. Eng. Asp. 2022, 642, 128654. [Google Scholar] [CrossRef]
- Zhang, H.; Liu, S.; Wang, X.; Yuan, S.; Yuan, S. Molecular dynamics study on emulsified oil droplets with nonionic surfactants. J. Mol. Liq. 2022, 346, 117102. [Google Scholar] [CrossRef]
- Fukuda, K.; Söderman, O.; Shinoda, K.; Lindman, B. Microemulsions formed by alkyl polyglucosides and an alkyl glycerol ether. Langmuir 1993, 9, 2921–2925. [Google Scholar] [CrossRef]
- Hong, P.; Fa, C.; Wei, Y.; Sen, Z. Surface properties and synthesis of the cellulose-based amphoteric polymeric surfactant. Carbohyd. Polym. 2007, 69, 625–630. [Google Scholar] [CrossRef]
- Si, Y.; Zhu, Y.; Liu, T.; Xu, X.; Yang, J. Synthesis of a novel borate ester Anion-Nonionic surfactant and its application in viscosity reduction and emulsification of heavy crude oil. Fuel 2023, 333, 126453. [Google Scholar] [CrossRef]
- Tehrani-Bagha, A.; Holmberg, K.; Van Ginkel, C.; Kean, M. Cationic gemini surfactants with cleavable spacer: Chemical hydrolysis, biodegradation, and toxicity. J. Colloid Interface Sci. 2015, 449, 72–79. [Google Scholar] [CrossRef]
- Abo-Riya, M.A.; Baker, S.A. Novel synthesized anionic gemini and monomeric surfactants bearing sulphonate group as Petro-dispersing/collecting agents: Design, characterization and surface-active properties. J. Mol. Struct. 2022, 1274, 134502. [Google Scholar] [CrossRef]
- Kuyukina, M.S.; Ivshina, I.B.; Makarov, S.O.; Litvinenko, L.V.; Cunningham, C.J.; Philp, J.C. Effect of biosurfactants on crude oil desorption and mobilization in a soil system. Environ. Int. 2005, 31, 155–161. [Google Scholar] [CrossRef]
- Urum, K.; Grigson, S.; Pekdemir, T.; McMenamy, S. A comparison of the efficiency of different surfactants for removal of crude oil from contaminated soils. Chemosphere 2006, 62, 1403–1410. [Google Scholar] [CrossRef]
- Karakashev, S.I.; Smoukov, S.K. CMC prediction for ionic surfactants in pure water and aqueous salt solutions based solely on tabulated molecular parameters. J. Volloid Interface Sci. 2017, 501, 142–149. [Google Scholar] [CrossRef]
- Shi, Z.; Chen, J.; Liu, J.; Wang, N.; Sun, Z.; Wang, X. Anionic–nonionic mixed-surfactant-enhanced remediation of PAH-contaminated soil. Environ. Sci. Pollut. Res. 2015, 22, 12769–12774. [Google Scholar] [CrossRef]
- Gang, H.-Z.; Jiang, C.-Q.; Wu, Q.-Y.; Su, Z.-Q.; Yang, S.-Z.; Ye, R.-Q.; Li, Y.-C.; Mu, B.-Z. Partial substitution of conventional synthetic surfactant by biosurfactant enhances the stability of micro-droplets of crude oil in surfactant solution in flow state and within sub-second period. Colloids Surf. A Physicochem. Eng. Asp. 2022, 653, 130006. [Google Scholar] [CrossRef]
- Han, D.; Mao, J.; Zhao, J.; Zhang, H.; Wang, D.; Wang, C.; Xue, J.; Cao, H.; Yang, X.; Lin, C. Dissipative particle dynamics simulation and experimental analysis of the effect of anionic/cationic mixed surfactants on the stability of emulsions. J. Mol. Liq. 2022, 367, 120482. [Google Scholar] [CrossRef]
- Zhou, W.; Jiang, L.; Liu, X.; Hu, Y.; Yan, Y. Molecular insights into the effect of anionic-nonionic and cationic surfactant mixtures on interfacial properties of oil-water interface. Colloids Surf. A Physicochem. Eng. Asp. 2022, 637, 128259. [Google Scholar] [CrossRef]
- Huang, Z.; Chen, Q.; Zhou, J.; Xie, M. Strengthening effects of sodium salts on washing kerosene contaminated soil with surfactants. Environ. Sci. 2015, 36, 1849–1855. [Google Scholar]
- Wei, Y.; Liang, X.; Tong, L.; Guo, C.; Dang, Z. Enhanced solubilization and desorption of pyrene from soils by saline anionic–nonionic surfactant systems. Colloid Surf. A Physicochem. Eng. Asp. 2015, 468, 211–218. [Google Scholar] [CrossRef]
- Kumar, S.; Mandal, A. Studies on interfacial behavior and wettability change phenomena by ionic and nonionic surfactants in presence of alkalis and salt for enhanced oil recovery. Appl. Surf. Sci. 2016, 372, 42–51. [Google Scholar] [CrossRef]
- Seedher, N.; Kanojia, M. Micellar solubilization of some poorly soluble antidiabetic drugs: A technical note. AAPS PharmSciTech 2008, 9, 431–436. [Google Scholar] [CrossRef]
- Wei, Z.; Wang, J.J.; Gaston, L.A.; Li, J.; Fultz, L.M.; DeLaune, R.D.; Dodla, S.K. Remediation of crude oil-contaminated coastal marsh soil: Integrated effect of biochar, rhamnolipid biosurfactant and nitrogen application. J. Hazard. Mater. 2020, 396, 122595. [Google Scholar] [CrossRef]
- Chen, X.; Ma, X.; Yeung, T.; Sun, D.; Xu, Z. Comprehensive treatment of oil-contaminated soils using CO2-Responsive O/W microemulsions. J. Clean. Prod. 2022, 341, 130857. [Google Scholar] [CrossRef]
- Jin, C.; Sun, T.; Ampah, J.D.; Liu, X.; Geng, Z.; Afrane, S.; Yusuf, A.A.; Liu, H. Comparative study on synthetic and biological surfactants’ role in phase behavior and fuel properties of marine heavy fuel oil-low carbon alcohol blends under different temperatures. Renew. Energy 2022, 195, 841–852. [Google Scholar] [CrossRef]
- Chandio, Z.A.; Ramasamy, M.; Mukhtar, H.B. Temperature effects on solubility of asphaltenes in crude oils. Chem. Eng. Res. Des. 2015, 94, 573–583. [Google Scholar] [CrossRef]
- Li, L.; Zhou, X.; Wang, R.; Zhang, X.; Ma, S.; Su, Y.; Wang, C.; Luo, W.; Sun, H. Microscopic experiment study on mechanisms of oil-gas interaction and CO2-surfactant flooding with different temperatures and pressures. J. CO2 Util. 2023, 69, 102389. [Google Scholar] [CrossRef]
- Pang, Z.; Zhou, H.; Yang, S.; Wang, Y.; Xue, Y.; Feng, S. Enhanced surfactant remediation of diesel-contaminated soil using O3 nanobubbles. Chemosphere 2024, 356, 141917. [Google Scholar] [CrossRef] [PubMed]
- Han, G.; Chen, S.; Su, S.; Huang, Y.; Liu, B.; Sun, H. A review and perspective on micro and nanobubbles: What they are and why they matter. Miner. Eng. 2022, 189, 107906. [Google Scholar] [CrossRef]
- Liu, C.; Xiang, M.; Yang, C.; Chen, Y.; Li, Z.; Wang, W.; Yin, W.; Li, H.; Huang, Y. Enhanced flushing mechanism of petroleum hydrocarbon contaminated sandy soil by air nano bubbles. Environ. Sci. Nano 2024, 11, 2494–2506. [Google Scholar] [CrossRef]
- Huang, Z.; Chen, Q.; Yao, Y.; Chen, Z.; Zhou, J. Micro-bubbles enhanced removal of diesel oil from the contaminated soil in washing/flushing with surfactant and additives. J. Environ. Manag. 2021, 290, 112570. [Google Scholar] [CrossRef]
- Lai, C.-C.; Huang, Y.-C.; Wei, Y.-H.; Chang, J.-S. Biosurfactant-enhanced removal of total petroleum hydrocarbons from contaminated soil. J. Hazard. Mater. 2009, 167, 609–614. [Google Scholar] [CrossRef]
- Vaidyanathan, V.K.; Rathankumar, A.K.; Kumar, P.S.; Rangasamy, G.; Saikia, K.; Rajendran, D.S.; Venkataraman, S.; Varjani, S. Utilization of surface-active compounds derived from biosolids to remediate polycyclic aromatic hydrocarbons contaminated sediment soil. Environ. Res. 2022, 215, 114180. [Google Scholar] [CrossRef]
- Ussawarujikulchai, A.; Laha, S.; Tansel, B. Synergistic effects of organic contaminants and soil organic matter on the soil-water partitioning and effectiveness of a nonionic surfactant (Triton X-100). Bioremed. J. 2008, 12, 88–97. [Google Scholar] [CrossRef]
- Amirianshoja, T.; Junin, R.; Idris, A.K.; Rahmani, O. A comparative study of surfactant adsorption by clay minerals. J. Pet. Sci. Eng. 2013, 101, 21–27. [Google Scholar] [CrossRef]
- Ali, N.; Bilal, M.; Khan, A.; Ali, F.; Iqbal, H.M. Effective exploitation of anionic, nonionic, and nanoparticle-stabilized surfactant foams for petroleum hydrocarbon contaminated soil remediation. Sci. Total Environ. 2020, 704, 135391. [Google Scholar] [CrossRef]
- Zhang, T.; Cheng, J.; Tan, H.; Luo, S.; Liu, Y. Particle-size-based elution of petroleum hydrocarbon contaminated soil by surfactant mixture. J. Environ. Manag. 2022, 302, 113983. [Google Scholar] [CrossRef]
- Ying, G.-G. Fate, behavior and effects of surfactants and their degradation products in the environment. Environ. Int. 2006, 32, 417–431. [Google Scholar] [CrossRef] [PubMed]
- Ishiguro, M.; Koopal, L.K. Surfactant adsorption to soil components and soils. Adv. Colloid Interface Sci. 2016, 231, 59–102. [Google Scholar] [CrossRef]
- Ivshina, I.; Kostina, L.; Krivoruchko, A.; Kuyukina, M.; Peshkur, T.; Anderson, P.; Cunningham, C. Removal of polycyclic aromatic hydrocarbons in soil spiked with model mixtures of petroleum hydrocarbons and heterocycles using biosurfactants from Rhodococcus ruber IEGM 231. J. Hazard. Mater. 2016, 312, 8–17. [Google Scholar] [CrossRef]
- Li, X.; Wu, B.; Zhang, Q.; Liu, Y.; Wang, J.; Xu, D.; Li, F.; Ma, F.; Gu, Q. Effects of soil properties on the remediation of diesel-contaminated soil by Triton X-100-aided washing. Environ. Sci. Pollut. Res. 2020, 27, 23323–23330. [Google Scholar] [CrossRef] [PubMed]
- Ritoré, E.; Coquelet, B.; Arnaiz, C.; Morillo, J.; Usero, J. Guidelines for surfactant selection to treat petroleum hydrocarbon-contaminated soils. Environ. Sci. Pollut. Res. 2022, 29, 7639–7651. [Google Scholar] [CrossRef] [PubMed]
- Lamichhane, S.; Bal Krishna, K.C.; Sarukkalige, R. Surfactant-enhanced remediation of polycyclic aromatic hydrocarbons: A review. J. Environ. Manag. 2017, 199, 46–61. [Google Scholar] [CrossRef]
- Jousse, F.; Atteia, O.; Höhener, P.; Cohen, G. Removal of NAPL from columns by oxidation, sparging, surfactant and thermal treatment. Chemosphere 2017, 188, 182–189. [Google Scholar] [CrossRef]
- Chen, D.; Xing, B.; Xie, W. Sorption of phenanthrene, naphthalene and o-xylene by soil organic matter fractions. Geoderma 2007, 139, 329–335. [Google Scholar] [CrossRef]
Remediation Technique | Technical Features | Process Details | Contaminant Conc. | Soil Characteristics | Process Duration | Maximum Efficiency Reported | Reference |
---|---|---|---|---|---|---|---|
Bioremediation | Environmentally friendly, low cost; highly time-consuming, low efficiency, greatly affected by environmental factors. | Composting stage (75 days) + vermiremediation stage (60 days); contaminated soil, lombricompost, rice hulls, and wheat stubbles (60:20:15:5% w/w); earthworm species Eisenia fetida and Amynthas morrisi | Diesel/3425 ± 50 mg/kg | Clay 20.5%; silt 59.5%; sand 20.0%; OM 1.5 ± 0.1%; ashes 0.8 ± 0.1%; TN 0.09 ± 0.01%; C/N 10; pH 6.0 ± 0.02 | 75 d + 60 d | 60.81% | [14] |
Pinus densiflora, Thuja orientalis, and Populus tomentiglandulosa amended with microbial consortium and commercial compound fertilizer (NPK 21-17-17) | Diesel/6000 mg/kg | pH 5.65; EC 0.03 dS/m; OM 0.8%; CEC 1.9 cmol/kg | 150 d | 86.80% | [15] | ||
Chemical oxidation | Highly efficient, low-cost, and easy to operate; potential risks and secondary pollution. | Oxidant: PMS; satalyst: nZVI; five serial applications of the 0.3% PMS/0.2% nZVI system | Diesel/6625 ± 115 mg/kg | Clay 8%; silt 10%; sand 82%; pH 4.2 ± 0.03; textural classes: loam; OM 4.51%; CEC 12.0 cmol/kg; EC 130.1 μS/cm; water content (w/w) 4.05%; TN 510 mg/kg | 10 h | 96.00% | [16] |
Oxidant: H2O2, persulfate; catalyst: Fe2+ (FeSO4); mechanical stirring with continuous addition of H2O2 of various concentrations using a peristaltic pump at ambient temperatures | Diesel/5000 mg/kg | Clay 12%; silt 47%; sand 41%; pH 5.7; textural classes: loam; OM 7.5% | 40 h | 80% | [17] | ||
Oxidant: H2O2; catalyst: zero-valent iron; mechanical stirring at 180 rpm in shaking water bath at 22 °C | Diesel/5030 ± 120 mg/kg | Clay 4.9%; silt 75.1%; sand 20.0%; pH 6.3; minerals: quartz, feldspar, kaolinite, goethite | 3 h | 90% | [18] | ||
Electrokinetic remediation | High efficiency, low power consumption, strong controllability; not environmentally friendly, time-consuming. | Electric field: 1.0 V/cm, 2.0 V/cm; graphite electrode chambers 4 L using 0.03 mol/L citric acid | Commercial diesel fuel/11,680 mg/kg | Clay 47.24%; silt 42.44%; sand 3.17%; gravel 7.15%; TOC 1.70%; moisture 46.59%; EC 12.40 mS/cm; pH 7.8; carbonate < 0.1 mg/kg | 15 d | 73% | [19] |
Solvent extraction | High efficiency, less time-consuming, wide applicability; a large amount of solvent consumption, potential hazards, and secondary pollution. | Anionic lipopeptide (LT) and nonionic sophorolipid (SL); concentration 100 mg/L; temperature 55 °C; ratio of sludge/liquid 1:3; stirring speed 300 rpm | Crude oil/17.79 wt% | Oily sludge; oil 17.79 wt%; water 3.54 wt%; solids 78.67 wt% | 3 h | 85% | [20] |
Rhamnolipid and sophorolipid; concentration 500 mg/L; temperature 45 °C; ratio of sludge/liquid 4:1; stirring speed 300 r/min; washing four times | Crude oil/45.66% | Oily sludge; water 42.37%; oil 45.66% | 3 h | 95.66% | [21] | ||
Thermal desorption | High efficiency, fast, reliable; high cost, producing greenhouse gases, affected by high moisture content. | Microwave frequency heating; heating time of 30 min in a modified domestic microwave oven (power: 600 W; frequency 2.45 GHz; temperature: up to 275 °C) | Diesel fuel/1900 mg/kg | Fine sand; moisture content 10%; OM 3.55%; porosity 32.5%; pH 8.72; soil mineral: silica sand | 1 h | 90% | [22] |
Combined remediation | Integrating the advantages of a variety of single techniques, the ideal remediation effect can be achieved; complex technological processes. | Current: 569 ± 2 mA/cm3; bottle-type dual-chamber MFC reactors with carbon fiber brush as anode and titanium wire mesh at 22 ± 2 °C for 140 days | Crude oil/24,085 mg/kg | Clay loam; pH 7.27 ± 0.08; EC 0.61 ± 0.01 mS/cm; sand 69.4%; silt 20.0%; clay 10.6%; TOC 28.5 ± 2.56 g/kg; TPHs 11.34 ± 3.26 g/kg; nitrate 1.90 ± 0.07 mg/kg; phosphate 1.91 ± 0.03 mg/kg; sulfate < 40 mg/kg | 140 d | 76.00% | [23] |
Predominant species of bacteria: Pontibacillus, Sediminimonas, Georgenia; Power: 132 ± 17 mW/m2; A cylindrical soil MFC with carbon cloth anode and activated carbon cathode for 182 days | Petroleum hydrocarbon/83,060 mg/kg | pH 8.26 ± 0.04; EC 5.45 ± 0.07 mS/cm; TN 93.11 ± 2.39 mg/kg; NH4+-N 1.60 ± 0.13 mg/kg; NO3−-N 1.19 ± 0.06 mg/kg; alkanes 48,751 ± 591 mg/kg; aromatics 27,947 ± 278 mg/kg; DON 21.60 ± 0.45 mg/kg; DOC 469.35 ± 0.15 mg/kg | 182 d | 52% | [24] | ||
Pyrolysis temperature of 400 °C and residence time of 30 min; N2 flow: 1 L/min continuous high purity (>99.999%); Additive: Fe2O3, Al2O3, K2CO3, CaO, HZSM-5, and red mud | Petroleum hydrocarbon/119 ± 5 g/kg | Sand 94.8%; silt 4.6%; clay 0.6% | 30 min | >91.6% | [25] | ||
Mixed biosurfactant (surfactin + rhamnolipid) of 0.6 g/L, soil/water ratio of 20% w/v, temperature of 30 °C, and washing time of 24 h; the effluent was efficiently biotreated in the bioprocess with 5 g/L acclimate biomass daily stimulated with 0.1 mM H2O2 | Petroleum hydrocarbon/32 g/kg | Clay loam; clay 32%; silt 38%; sand 30%; permeability 1.5 cm/h; moisture 4.63%; pH 7.2; TN 0.11%; TP 242.5 ppm; organic content 1.11%; density 1.96 g/cm3 | 18 d | 99% | [26] |
Type | Surfactant Conc. | Operating Condition | Contaminant Conc. | Soil Characteristics | Maximum Efficiency Reported | Reference |
---|---|---|---|---|---|---|
Nonionic | Triton X-100/150 mg/L | Mechanical stirring 160 rpm; liquid/solid 10:1; washing time 30 min; temperature 60 °C | Crude oil/20,000 mg/L | Clay soil; clay 13–24%; quartz 13–15% | 68.00% | [33] |
Tween 80/4000 mg/L | Flow rate 0.01 mL/s; total amount of leachate 2000 mL | o-dichlorobenzene and p-dichlorobenzene/537.36 mg/kg | pH 7.87; TOC 20.17 g/kg; CEC 17.52 cmol/kg; specific gravity 1.98; sand 80.38%; silt 14.70%; clay 4.92% | 68.00% | [34] | |
0.75 wt% APG1214, 0.1 wt% Na5P3O10, 0.06 wt% Na2CO3, and 0.04 wt% Na2SiO3 | Mechanical stirring 350 rpm; temperature 80 °C; washing time 30 min; solution/soil ratio 10 mL/g | Crude oil/123 mg/g | Clay 6%; silt 16%; sand 78%; pH 8.1; TOC 6.33% | 97.00% | [35] | |
Triton X-100/2.5% v/v; NaM-si/2.5% w/v; MWCNT/0.04% w/w | Mechanical stirring 220 rpm; washing time 7 days | Engine oil | Clay 18%; silt 75%; sand 7% | 91.83% | [36] | |
Tween20/30 mg/L | Mechanical stirring 160 rpm; liquid/solid 10:1; washing time 30 min; temperature 60 °C | Crude oil/20,000 mg/L | Clay soil; clay 13–24%; quartz 13–15% | 91.30% | [33] | |
Polyoxyethylene sorbitol hexaoleate/12 mg/L in phosphate buffer 960 mg/L | Mechanical stirring 275 rpm 48 h | PAH (C10–C24)/95 mg/kg | Sand 83%; silt 14%; clay 3% | 50.00% | [37] | |
APG/4000 mg/L | Flow rate 0.01 mL/s; total amount of leachate 2000 mL | o-dichlorobenzene and p-dichlorobenzene/537.36 mg/kg | pH 7.87; TOC 20.17 g/kg; CEC 17.52 cmol/kg; specific gravity 1.98; sand 80.38%; silt 14.70%; clay 4.92% | 69.00% | [34] | |
Anionic | SDS/2.5% v/v; NaM-si/2.5% w/v; MWCNT/0.04% w/w | Mechanical stirring 220 rpm; washing time 7 days | Engine oil | clay 18%; silt 75%; sand 7% | 92.22% | [36] |
Dodecyl methylnaphthalene sulfonates/400 mg/L | Mechanical stirring 160 rpm; liquid/solid 10:1; washing time 30 min; temperature 60 °C | Crude oil/20,000 mg/L | Clay soil; clay 13–24%; quartz 13–15% | 86.30% | [33] | |
Cationic | CTAB/300 mg/L | Mechanical stirring 160 rpm; liquid/solid ratio 10:1; washing time 30 min; temperature 60 °C | Crude oil/20,000 mg/L | Clay soil; clay 13–24%; quartz 13–15% | <50% | [33] |
Biosurfactant | Saponin/0.2 g/L | Water/soil ratio 10:1; temperature 45 °C; magnetic stirrer 340 rev/min; washing time 15 min | Diesel oil | pH 7.28; CEC 93.7 mol/kg; organic carbon 2.48%; sand 15.74%; clay 4.51%; silt 76.28% | 61.70% | [38] |
Saponin/4 g/L | Flow rate 0.01 mL/s; total amount of leachate 2000 mL | o-dichlorobenzene and p-dichlorobenzene/537.36 mg/kg | pH 7.87; TOC 20.17 g/kg; CEC 17.52 cmol/kg; specific gravity 1.98; sand 80.38%; silt 14.70%; clay 4.92% | p-dichlorobenzene 76.34%; p-dichlorobenzene 80.43% | [34] | |
Saponin/4000 mg/L | Flow rate 0.01 mL/s; total amount of leachate 2000 mL | o-dichlorobenzene and p-dichlorobenzene/537.36 mg/kg | pH 7.87; TOC 20.17 g/kg; CEC 17.52 cmol/kg; specific gravity 1.98; sand 80.38%; silt 14.70%; clay 4.92% | 80.00% | [34] | |
Anionic lipopeptide (LT) and nonionic sophorolipid (SL)/100 mg/L | Temperature 55 °C; ratio of sludge/liquid 1:3; stirring speed 300 rpm; washing time 3 h | Crude oil/17.79 wt% | Oily sludge; oil 17.79 wt%; water 3.54 wt%; solids 78.67 wt% | 85% | [20] | |
Rhamnolipid and sophorolipid/500 mg/L | Temperature 45 °C; ratio of sludge/liquid 4:1; stirring speed 300 r/min; washing four times; washing time 3 h | Crude oil/45.66% | Oily sludge; water 42.37%; oil 45.66% | 95.66% | [21] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, Y.; Sun, Y.; Sun, H.; Zuo, F.; Kuang, S.; Zhang, S.; Wang, F. Surfactant-Based Chemical Washing to Remediate Oil-Contaminated Soil: The State of Knowledge. Toxics 2024, 12, 648. https://doi.org/10.3390/toxics12090648
Zhao Y, Sun Y, Sun H, Zuo F, Kuang S, Zhang S, Wang F. Surfactant-Based Chemical Washing to Remediate Oil-Contaminated Soil: The State of Knowledge. Toxics. 2024; 12(9):648. https://doi.org/10.3390/toxics12090648
Chicago/Turabian StyleZhao, Yanxin, Yuhuan Sun, Haihan Sun, Fang Zuo, Shaoping Kuang, Shuwu Zhang, and Fayuan Wang. 2024. "Surfactant-Based Chemical Washing to Remediate Oil-Contaminated Soil: The State of Knowledge" Toxics 12, no. 9: 648. https://doi.org/10.3390/toxics12090648
APA StyleZhao, Y., Sun, Y., Sun, H., Zuo, F., Kuang, S., Zhang, S., & Wang, F. (2024). Surfactant-Based Chemical Washing to Remediate Oil-Contaminated Soil: The State of Knowledge. Toxics, 12(9), 648. https://doi.org/10.3390/toxics12090648