Impact of Temperature Elevation on Microbial Communities and Antibiotic Degradation in Cold Region Soils of Northeast China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description and Experimental Design
2.2. Extraction and Quantification of Antibiotics
2.3. Biological Analysis
2.4. Computational Analyses
2.5. Statistical Analysis
3. Results
3.1. Changes in Soil Antibiotic Degradation Rates under Different Temperature Conditions
3.2. Effects of Temperature Differences on Bacterial Community Succession
3.3. Differential Responses of Antibiotic-Responsive Bacterial Populations to Temperature
3.4. Microbial Community Assembly
3.5. Co-Occurrence Patterns and Key Taxa Analysis of Microbial Communities
4. Discussion
4.1. Greenhouse Warming Promotes the Stable Development of Soil Microbial Communities and Accelerates Antibiotic Degradation
4.2. Warming Enhanced the Proportion of Stochasticity in Community Assembly and the Independence of Bacterial Communities
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Qian, M.R.; Wu, H.Z.; Wang, J.M.; Zhang, H.; Zhang, Z.L.; Zhang, Y.Z.; Lin, H.; Ma, J.W. Occurrence of trace elements and antibiotics in manure-based fertilizers from the Zhejiang Province of China. Sci. Total Environ. 2016, 559, 174–181. [Google Scholar] [CrossRef] [PubMed]
- Albero, B.; Tadeo, J.L.; Escario, M.; Miguel, E.; Pérez, R.A. Persistence and availability of veterinary antibiotics in soil and soil-manure systems. Sci. Total Environ. 2018, 643, 1562–1570. [Google Scholar] [CrossRef]
- Zhang, X.R.; Gong, Z.Q.; Allinson, G.; Xiao, M.; Li, X.J.; Jia, C.Y.; Ni, Z.J. Environmental risks caused by livestock and poultry farms to the soils: Comparison of swine, chicken, and cattle farms. J. Environ. Manag. 2022, 317, 115320. [Google Scholar] [CrossRef]
- Wu, J.Y.; Gao, J.M.; Guo, J.S.; Hou, X.Y.; Wang, D.R.; Wu, J.C.; Li, X.J.; Jia, C.Y. Comprehensive analysis of the fates and risks of veterinary antibiotics in a small ecosystem comprising a pig farm and its surroundings in Northeast China. J. Hazard. Mater. 2023, 445, 130570. [Google Scholar] [CrossRef]
- Yang, S.F.; Lin, C.F.; Wu, C.J.; Ng, K.K.; Lin, A.Y.C.; Hong, A.P.K. Fate of sulfonamide antibiotics in contact with activated sludge—Sorption and biodegradation. Water Res. 2012, 46, 1301–1308. [Google Scholar] [CrossRef]
- Liu, L.Y.; Mi, J.D.; Wang, Y.; Zou, Y.D.; Ma, B.H.; Liao, X.D.; Liang, J.B.; Wu, Y.B. Different methods of incorporating ciprofloxacin in soil affect microbiome and degradation of ciprofloxacin residue. Sci. Total Environ. 2018, 619–620, 1673–1681. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.Z.; Wen, X.; Shi, Y.L.; Liebner, S.; Jin, H.J.; Perfumo, A. Hydrocarbon degraders establish at the costs of microbial richness, abundance and keystone taxa after crude oil contamination in permafrost environments. Sci. Rep. 2016, 6, 37473. [Google Scholar] [CrossRef]
- Potts, L.D.; Perez Calderon, L.J.; Gontikaki, E.; Keith, L.; Gubry-Rangin, C.; Anderson, J.A.; Witte, U. Effect of spatial origin and hydrocarbon composition on bacterial consortia community structure and hydrocarbon biodegradation rates. FEMS Microbiol. Ecol. 2018, 94, fiy127. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.S.; Wang, X.N.; Wu, F.; Zhang, J.W.; Ai, S.H.; Liu, Z.T. Microbial community composition and degradation potential of petroleum-contaminated sites under heavy metal stress. J. Hazard. Mater. 2023, 457, 131814. [Google Scholar] [CrossRef]
- Martínez Álvarez, L.M.; Ruberto, L.A.M.; Lo Balbo, A.; Mac Cormack, W.P. Bioremediation of hydrocarbon-contaminated soils in cold regions: Development of a pre-optimized biostimulation biopile-scale field assay in Antarctica. Sci. Total Environ. 2017, 590–591, 194–203. [Google Scholar] [CrossRef]
- Zhao, L.X.; Pan, Z.; Sun, B.L.; Sun, Y.; Weng, L.P.; Li, X.J.; Ye, H.K.; Ye, J.Z.; Pan, X.W.; Zhou, B.; et al. Responses of soil microbial communities to concentration gradients of antibiotic residues in typical greenhouse vegetable soils. Sci. Total Environ. 2023, 855, 158587. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Zhang, T.; Zhou, L.; Lou, W.; Zeng, W.A.; Liu, T.B.; Yin, H.Q.; Liu, H.W.; Liu, X.D.; Mathivanan, K.; et al. Soil microbial community assembly model in response to heavy metal pollution. Environ. Res. 2022, 213, 113576. [Google Scholar] [CrossRef] [PubMed]
- Duan, M.L.; Li, Z.J.; Yan, R.P.; Zhou, B.; Su, L.J.; Li, M.X.; Xu, H.B.; Zhang, Z.S. Mechanism for combined application of biochar and Bacillus cereus to reduce antibiotic resistance genes in copper contaminated soil and lettuce. Sci. Total Environ. 2023, 884, 163422. [Google Scholar] [CrossRef]
- Kim, T.S.; Jeong, J.Y.; Wells, G.F.; Park, H.D. General and rare bacterial taxa demonstrating different temporal dynamic patterns in an activated sludge bioreactor. Appl. Microbiol. Biotechnol. 2013, 97, 1755–1765. [Google Scholar] [CrossRef] [PubMed]
- Lynch, M.D.J.; Neufeld, J.D. Ecology and exploration of the rare biosphere. Nat. Rev. Microbiol. 2015, 13, 217–229. [Google Scholar] [CrossRef]
- Wang, Y.C.; Lv, Y.H.; Wang, C.; Deng, Y.; Lin, Y.T.; Jiang, G.Y.; Hu, X.R.; Crittenden, J.C. Stochastic processes shape microbial community assembly in biofilters: Hidden role of rare taxa. Bioresour. Technol. 2024, 402, 130838. [Google Scholar] [CrossRef]
- Wang, Y.F.; Xu, J.Y.; Liu, Z.L.; Cui, H.L.; Chen, P.; Cai, T.G.; Li, G.; Ding, L.J.; Qiao, M.; Zhu, Y.G.; et al. Biological Interactions Mediate Soil Functions by Altering Rare Microbial Communities. Environ. Sci. Technol. 2024, 58, 5866–5877. [Google Scholar] [CrossRef]
- Guo, L.; Chen, Y.Q.; Zhang, L.Y.; Yang, W.J.; He, P.L. Development and Validation of a Liquid Chromatographic/Tandem Mass Spectrometric Method for Determination of Chlortetracycline, Oxytetracycline, Tetracycline, and Doxycycline in Animal Feeds. J. AOAC Int. 2012, 95, 1010–1015. [Google Scholar] [CrossRef] [PubMed]
- Hu, W.; Ma, L.L.; Guo, C.S.; Sha, J.; Zhu, X.W.; Wang, Y.Q. Simultaneous extraction and determination of fluoroquinolones, tetracyclines and sulfonamides antibiotics in soils using optimised solid phase extraction chromatography-tandem mass spectrometry. Int. J. Environ. Anal. Chem. 2012, 92, 698–713. [Google Scholar] [CrossRef]
- Caporaso, J.G.; Lauber, C.L.; Walters, W.A.; Berg-Lyons, D.; Lozupone, C.A.; Turnbaugh, P.J.; Fierer, N.; Knight, R. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc. Natl. Acad. Sci. USA 2011, 108, 4516–4522. [Google Scholar] [CrossRef]
- Callahan, B.J.; McMurdie, P.J.; Rosen, M.J.; Han, A.W.; Johnson, A.J.; Holmes, S.P. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Meth. 2016, 13, 581–583. [Google Scholar] [CrossRef] [PubMed]
- Dixon, P. VEGAN, a package of R functions for community ecology. J. Veg. Sci. 2003, 14, 927–930. [Google Scholar] [CrossRef]
- Ning, D.L.; Yuan, M.T.; Wu, L.W.; Zhang, Y.; Guo, X.; Zhou, X.S.; Yang, Y.F.; Arkin, A.P.; Firestone, M.K.; Zhou, J.Z. A quantitative framework reveals ecological drivers of grassland microbial community assembly in response to warming. Nat. Commun. 2020, 11, 4717. [Google Scholar] [CrossRef]
- Letunic, I.; Bork, P. Interactive Tree of Life (iTOL): An online tool for phylogenetic tree display and annotation. Bioinformatics 2007, 23, 127–128. [Google Scholar] [CrossRef]
- Zhou, T.; Xu, K.D.; Zhao, F.; Liu, W.Y.; Li, L.Z.; Hua, Z.Y.; Zhou, X. itol.toolkit accelerates working with iTOL (Interactive Tree of Life) by an automated generation of annotation files. Bioinformatics 2023, 39, btad339. [Google Scholar] [CrossRef]
- Langfelder, P.; Horvath, S. WGCNA: An R package for weighted correlation network analysis. BMC Bioinform. 2008, 9, 559. [Google Scholar] [CrossRef]
- Wen, T.; Xie, P.H.; Yang, S.D.; Niu, G.Q.; Liu, X.Y.; Ding, Z.X.; Xue, C.; Liu, Y.X.; Shen, Q.Q.; Yuan, J. ggClusterNet: An R package for microbiome network analysis and modularity-based multiple network layouts. iMeta 2022, 1, e32. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, F.; Zhu, D.C.; Sun, J.Z. Environmental fate of tetracycline antibiotics: Degradation pathway mechanisms, challenges, and perspectives. Environ. Sci. Eur 2021, 33, 64. [Google Scholar] [CrossRef]
- Bush, N.G.; Diez-Santos, I.; Abbott, L.R.; Maxwell, A. Quinolones: Mechanism, Lethality and Their Contributions to Antibiotic Resistance. Molecules 2020, 25, 5662. [Google Scholar] [CrossRef]
- Han, B.H.; Yu, Q.L.; Su, W.H.; Yang, J.W.; Zhang, S.H.; Li, X.S.; Li, H. Deterministic Processes Shape Abundant and Rare Bacterial Communities in Drinking Water. Curr. Microbiol. 2023, 80, 111. [Google Scholar] [CrossRef]
- Wang, Y.H.; Li, M.J.; Liu, Z.W.; Zhao, J.J.; Chen, Y.C. Interactions between pyrene and heavy metals and their fates in a soil-maize (Zea mays L.) system: Perspectives from the root physiological functions and rhizosphere microbial community. Environ. Pollut. 2021, 287, 117616. [Google Scholar] [CrossRef] [PubMed]
- Naylor, D.; McClure, R.; Jansson, J. Trends in Microbial Community Composition and Function by Soil Depth. Microorganisms 2022, 10, 540. [Google Scholar] [CrossRef]
- Fang, X.M.; Zhang, T.; Li, J.; Wang, N.F.; Wang, Z.; Yu, L.Y. Bacterial community pattern along the sediment seafloor of the Arctic fjorden (Kongsfjorden, Svalbard). Antonie Leeuwenhoek 2019, 112, 1121–1136. [Google Scholar] [CrossRef] [PubMed]
- Ray, A.E.; Zaugg, J.; Benaud, N.; Chelliah, D.S.; Bay, S.; Wong, H.L.; Leung, P.M.; Ji, M.; Terauds, A.; Montgomery, K.; et al. Atmospheric chemosynthesis is phylogenetically and geographically widespread and contributes significantly to carbon fixation throughout cold deserts. ISME J. 2022, 16, 2547–2560. [Google Scholar] [CrossRef]
- Huang, J.J.; Gao, K.L.; Yang, L.; Lu, Y.H. Successional action of Bacteroidota and Firmicutes in decomposing straw polymers in a paddy soil. Environ. Microbiome 2023, 18, 76. [Google Scholar] [CrossRef]
- Lu, M.; Zhang, Z.Z.; Wang, J.X.; Zhang, M.; Xu, Y.X.; Wu, X.J. Interaction of Heavy Metals and Pyrene on Their Fates in Soil and Tall Fescue (Festuca arundinacea). Environ. Sci. Technol. 2014, 48, 1158–1165. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.J.; Feng, K.; Lu, G.X.; Yu, H.; Wang, S.; Wei, Z.Y.; Dang, N.; Wang, Y.C.; Deng, Y. Homogeneous Selection and Dispersal Limitation Dominate the Effect of Soil Strata Under Warming Condition. Front. Microbiol. 2022, 13, 801083. [Google Scholar] [CrossRef]
- Doherty, S.J.; Barbato, R.A.; Grandy, A.S.; Thomas, W.K.; Monteux, S.; Dorrepaal, E.; Johansson, M.; Ernakovich, J.G. The Transition From Stochastic to Deterministic Bacterial Community Assembly During Permafrost Thaw Succession. Front. Microbiol. 2020, 11, 596589. [Google Scholar] [CrossRef]
- Zhao, M.Y.; Liu, D.; Zhou, J.; Wei, Z.M.; Wang, Y.M.; Zhang, X.L. Ammonium stress promotes the conversion to organic nitrogen and reduces nitrogen loss based on restructuring of bacterial communities during sludge composting. Bioresour. Technol. 2022, 360, 127547. [Google Scholar] [CrossRef]
- Ma, Y.C.; Wang, J.X.; Liu, Y.; Wang, X.Y.; Zhang, B.L.; Zhang, W.; Chen, T.; Liu, G.X.; Xue, L.G.; Cui, X.W. Nocardioides: “Specialists” for Hard-to-Degrade Pollutants in the Environment. Molecules 2023, 28, 7433. [Google Scholar] [CrossRef]
- Maucourt, F.; Cébron, A.; Budzinski, H.; Le Menach, K.; Peluhet, L.; Czarnes, S.; Melayah, D.; Chapulliot, D.; Vallon, L.; Plassart, G.; et al. Prokaryotic, Microeukaryotic, and Fungal Composition in a Long-Term Polychlorinated Biphenyl-Contaminated Brownfield. Microb. Ecol. 2023, 86, 1696–1708. [Google Scholar] [CrossRef]
- Wu, J.W.; Zhao, N.; Li, X.X.; Zhang, P.; Li, T.; Lu, Y. Nitrogen-mediated distinct rhizosphere soil microbes contribute to Sorghum bicolor (L.) Moench and Solanum nigrum L. for phytoremediation of cadmium-polluted soil. Plant Soil 2024, 495, 723–740. [Google Scholar] [CrossRef]
- Yabe, S.H.; Sakai, Y.; Abe, K.; Yokota, A. Diversity of Ktedonobacteria with Actinomycetes-Like Morphology in Terrestrial Environments. Microbes Environ. 2017, 32, 61–70. [Google Scholar] [CrossRef] [PubMed]
- Kidinda, L.K.; Babin, D.; Doetterl, S.; Kalbitz, K.; Mujinya, B.B.; Vogel, C. Extracellular polymeric substances are closely related to land cover, microbial communities, and enzyme activity in tropical soils. Soil Biol. Biochem 2023, 187, 109221. [Google Scholar] [CrossRef]
- Reddy, G.S.N.; Matsumoto, G.I.; Shivaji, S. Sporosarcina macmurdoensis sp. nov., from a cyanobacterial mat sample from a pond in the McMurdo Dry Valleys, Antarctica. Int. J. Syst. Evol. Microbiol. 2003, 53, 1363–1367. [Google Scholar] [CrossRef] [PubMed]
- Essoussi, I.; Ghodhbane-Gtari, F.; Amairi, H.; Sghaier, H.; Jaouani, A.; Brusetti, L.; Daffonchio, D.; Boudabous, A.; Gtari, M. Esterase as an enzymatic signature of Geodermatophilaceae adaptability to Sahara desert stones and monuments. J. Appl. Microbiol. 2010, 108, 1723–1732. [Google Scholar] [CrossRef]
- Xun, W.B.; Liu, Y.P.; Li, W.; Ren, Y.; Xiong, W.; Xu, Z.H.; Zhang, N.; Miao, Y.Z.; Shen, Q.R.; Zhang, R.F. Specialized metabolic functions of keystone taxa sustain soil microbiome stability. Microbiome 2021, 9, 35. [Google Scholar] [CrossRef]
- Caliz, J.; Vila, X.; Martí, E.; Sierra, J.; Nordgren, J.; Lindgren, P.-E.; Bañeras, L.; Montserrat, G. The microbiota of an unpolluted calcareous soil faces up chlorophenols: Evidences of resistant strains with potential for bioremediation. Chemosphere 2011, 83, 104–116. [Google Scholar] [CrossRef]
- Chen, W.Y.; Wu, J.H.; Chang, J.E. Pyrosequencing Analysis Reveals High Population Dynamics of the Soil Microcosm Degrading Octachlorodibenzofuran. Microbes Environ. 2014, 29, 393–400. [Google Scholar] [CrossRef]
- Lei, H.X.; Zhang, J.Y.; Huang, J.; Shen, D.J.; Li, Y.; Jiao, R.; Zhao, R.X.; Li, X.Y.; Lin, L.; Li, B. New insights into lincomycin biodegradation by Conexibacter sp. LD01: Genomics characterization, biodegradation kinetics and pathways. J. Hazard. Mater. 2023, 441, 129824. [Google Scholar] [CrossRef]
- Wu, T.; Ding, J.; Zhong, L.; Zhao, Y.L.; Sun, H.J.; Pang, J.W.; Zhao, L.; Bai, S.W.; Ren, N.Q.; Yang, S.S. Synergistic analysis of performance, functional genes, and microbial community assembly in SNDPR process under Zn(II) stress. Environ. Res. 2023, 224, 115513. [Google Scholar] [CrossRef] [PubMed]
- Li, C.Z.; Huang, H.; Gu, X.Y.; Zhong, K.; Yin, J.; Mao, J.; Chen, J.X.; Zhang, C.L. Accumulation of heavy metals in rice and the microbial response in a contaminated paddy field. J. Soils Sediments 2024, 24, 644–656. [Google Scholar] [CrossRef]
- Yin, J.J.; Guo, H.Q.; Ellen, L.F.; De Long, J.R.; Tang, S.M.; Yuan, T.; Ren, W.B. Plant roots send metabolic signals to microbes in response to long-term overgrazing. Sci. Total Environ. 2022, 842, 156241. [Google Scholar] [CrossRef]
- Su, H.F.; Zhang, Y.Z.; Lu, Z.C.; Wang, Q.Y. A mechanism of microbial sensitivity regulation on interventional remediation by nanozyme manganese oxide in soil heavy metal pollution. J. Clean. Prod. 2022, 373, 133825. [Google Scholar] [CrossRef]
- Shi, S.H.; Lin, Z.Y.; Zhou, J.; Fan, X.; Huang, Y.Y.; Zhou, J. Enhanced thermophilic denitrification performance and potential microbial mechanism in denitrifying granular sludge system. Bioresour. Technol. 2022, 344, 126190. [Google Scholar] [CrossRef]
- Wang, G.; Wang, Y.X.; Ji, F.; Xu, L.M.; Yu, M.Z.; Shi, J.R.; Xu, J.H. Biodegradation of deoxynivalenol and its derivatives by Devosia insulae A16. Food Chem. 2019, 276, 436–442. [Google Scholar] [CrossRef]
- Zeng, X.Y.; Li, S.W.; Leng, Y.; Kang, X.H. Structural and functional responses of bacterial and fungal communities to multiple heavy metal exposure in arid loess. Sci. Total Environ. 2020, 723, 138081. [Google Scholar] [CrossRef]
- Patyra, E.; Kwiatek, K.; Nebot, C.; Gavilán, R.E. Quantification of Veterinary Antibiotics in Pig and Poultry Feces and Liquid Manure as a Non-Invasive Method to Monitor Antibiotic Usage in Livestock by Liquid Chromatography Mass-Spectrometry. Molecules 2020, 25, 3265. [Google Scholar] [CrossRef]
Tetracyclines | Mean ± SD (%) | Fluoroquinolones | Mean ± SD (%) | ||
---|---|---|---|---|---|
In | Outside | In | Outside | ||
Oxytetracycline | 60.7 ± 1.0 | 50.6 ± 0.4 | Norfloxacin | 67.0 ± 1.5 | 56.7 ± 1.9 |
Chlortetracycline | 83.4 ± 0.6 | 69.0 ± 0.6 | Enrofloxacin | 59.0 ± 1.2 | 41.9 ± 1.7 |
Doxycycline | 76.8 ± 1.0 | 58.8 ± 0.2 | Ciprofloxacin | 67.6 ± 1.4 | 51.1 ± 1.4 |
Ecological Process | Heterogeneous Selection (%) | Homogeneous Selection (%) | Dispersal Limitation (%) | Homogenizing Dispersal (%) | Drift (%) |
---|---|---|---|---|---|
Outside | 0 (0%) a | 19 (26.3%) | 56 (27.9%) | 0 (0%) | 46 (45.8%) |
In | 2 (1.5%) | 18 (31.1%) | 30 (9.8%) | 2 (3.1%) | 69 (54.5%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ni, Z.; Zhang, X.; Guo, S.; Pan, H.; Gong, Z. Impact of Temperature Elevation on Microbial Communities and Antibiotic Degradation in Cold Region Soils of Northeast China. Toxics 2024, 12, 667. https://doi.org/10.3390/toxics12090667
Ni Z, Zhang X, Guo S, Pan H, Gong Z. Impact of Temperature Elevation on Microbial Communities and Antibiotic Degradation in Cold Region Soils of Northeast China. Toxics. 2024; 12(9):667. https://doi.org/10.3390/toxics12090667
Chicago/Turabian StyleNi, Zijun, Xiaorong Zhang, Shuhai Guo, Huaqi Pan, and Zongqiang Gong. 2024. "Impact of Temperature Elevation on Microbial Communities and Antibiotic Degradation in Cold Region Soils of Northeast China" Toxics 12, no. 9: 667. https://doi.org/10.3390/toxics12090667
APA StyleNi, Z., Zhang, X., Guo, S., Pan, H., & Gong, Z. (2024). Impact of Temperature Elevation on Microbial Communities and Antibiotic Degradation in Cold Region Soils of Northeast China. Toxics, 12(9), 667. https://doi.org/10.3390/toxics12090667