miR-26a-5p/ADAM17-Mediated Proteolysis of TREM2 Regulates Neuroinflammation in Hypertensive Mice Following Lead Exposure
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animal and Treatment
2.2. Methods of CSF Extraction in Mice
2.3. Cells Culture and Treatment
2.4. Quantitative Real-Time PCR (qPCR)
2.5. Western Blotting
2.6. Immunofluorescence Staining
2.7. Behavioural Test
2.7.1. Sucrose Preference Test (SPT)
2.7.2. Elevated Plus-Maze Test (EPM)
2.8. Transfection
2.9. Enzyme-Linked Immunosorbent Assay (Elisa)
2.10. Statistical Analysis
3. Results
3.1. Hypertension Aggravated Neuroinflammation in Mice Following Pb Exposure
3.2. The Decrease in TREM2 Expression in Microglia Was Accelerated by Co-Exposure to Pb and AngII
3.3. TREM2 Played the Vital Role in Microglia-Related Neuroinflammation Caused by Pb and AngII Exposure
3.4. The Change Profile of ADAM10 and ADAM17 in Hypertensive Mice with/Without Pb Exposure
3.5. TREM2 Was Primarily Clipped by ADAM17 in Hypertensive Mice After Pb Exposure
3.6. miR-26a-5p Regulated Pb- and AngII-Induced TREM2 Change by Targeting ADAM17
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zaman, R.; Hamidzada, H.; Kantores, C.; Wong, A.; Dick, S.A.; Wang, Y.M.; Momen, A.; Aronoff, L.; Lin, J.L.; Razani, B.; et al. Selective loss of resident macrophage-derived insulin-like growth factor-1 abolishes adaptive cardiac growth to stress. Immunity 2021, 54, 2057–2071.e6. [Google Scholar] [CrossRef]
- Song, J.W.; Shou, H.; Obusez, E.C.; Raymond, S.B.; Rafla, S.D.; Kharal, G.A.; Schaefer, P.W.; Romero, J.M. Spatial Distribution of Intracranial Vessel Wall Enhancement in Hypertension and Primary Angiitis of the CNS. Sci. Rep. 2019, 9, 19270. [Google Scholar] [CrossRef]
- Zhang, Z.L.; Zhao, L.; Zhou, X.Y.; Meng, X.; Zhou, X.L. Role of inflammation, immunity, and oxidative stress in hypertension: New insights and potential therapeutic targets. Front. Immunol. 2023, 13, 1098725. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.Y.; Guo, S.Q.; Wang, S.; Li, X.J.; Hou, D.K.; Li, H.Z.; Wang, L.L.; Xu, Y.; Ma, B.J.; Wang, H.T.; et al. LncRNA OIP5-AS1 inhibits ferroptosis in prostate cancer with long-term cadmium exposure through miR-128-3p/SLC7A11 signaling. Ecotoxicol. Environ. Saf. 2021, 220, 112376. [Google Scholar] [CrossRef]
- Xu, L.; He, D.; Bai, Y. Microglia-Mediated Inflammation and Neurodegenerative Disease. Mol. Neurobiol. 2016, 53, 6709–6715. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.C.; Zong, S.; Cui, X.L.; Wang, X.Y.; Wu, S.; Wang, L.; Liu, Y.C.; Lu, Z.M. The effects of microglia-associated neuroinflammation on Alzheimer’s disease. Front. Immunol. 2023, 14, 1117172. [Google Scholar] [CrossRef]
- Köhler, O.; Krogh, J.; Mors, O.; Benros, M.E. Inflammation in Depression and the Potential for Anti-Inflammatory Treatment. Curr. Neuropharmacol. 2016, 14, 732–742. [Google Scholar] [CrossRef]
- Ho, W.C.; Hsu, C.C.; Huang, H.J.; Wang, H.T.; Lin, A.M.Y. Anti-inflammatory Effect of AZD6244 on Acrolein-Induced Neuroinflammation. Mol. Neurobiol. 2020, 57, 88–95. [Google Scholar] [CrossRef]
- Huang, W.D.; Huang, J.; Huang, N.Q.; Luo, Y. The role of TREM2 in Alzheimer’s disease: From the perspective of Tau. Front. Cell Dev. Biol. 2023, 11, 1280257. [Google Scholar] [CrossRef] [PubMed]
- Shi, Q.; Gutierrez, R.A.; Bhat, M.A. Microglia, Trem2, and Neurodegeneration. The Neuroscientist, 2024; Published online. [Google Scholar] [CrossRef]
- Wang, X.C.; He, Q.F.; Zhou, C.L.; Xu, Y.Y.; Liu, D.H.; Fujiwara, N.; Kubota, N.; Click, A.; Henderson, P.; Vancil, J.; et al. Prolonged hypernutrition impairs TREM2-dependent efferocytosis to license chronic liver inflammation and NASH development. Immunity 2023, 56, 58–77.e11. [Google Scholar] [CrossRef]
- Pillai, J.A.; Khrestian, M.; Bena, J.; Leverenz, J.B.; Bekris, L.M. Temporal Ordering of Inflammatory Analytes sTNFR2 and sTREM2 in Relation to Alzheimer’s Disease Biomarkers and Clinical Outcomes. Front. Aging Neurosci. 2021, 13, 676744. [Google Scholar] [CrossRef]
- Liu, W.F.; Taso, O.; Wang, R.; Bayram, S.; Graham, A.C.; Garcia-Reitboeck, P.; Mallach, A.; Andrews, W.D.; Piers, T.M.; Botia, J.A.; et al. Trem2 promotes anti-inflammatory responses in microglia and is suppressed under pro-inflammatory conditions. Hum. Mol. Genet. 2020, 29, 3224–3248. [Google Scholar] [CrossRef]
- Liu, F.; Zhuang, L.; Wu, R.X.; Li, D.Y. miR-365 inhibits cell invasion and migration of triple negative breast cancer through ADAM10. J. Buon 2019, 24, 1905–1912. [Google Scholar]
- Meng, H.N.; Huang, Q.; Zhang, X.J.; Huang, J.W.; Shen, R.W.; Zhang, B. MiR-449a regulates the cell migration and invasion of human non-small cell lung carcinoma by targeting ADAM10. Oncotargets Ther. 2019, 12, 3829–3838. [Google Scholar] [CrossRef]
- Shi, H.T.; Li, H.; Zhang, F.; Xue, H.H.; Zhang, Y.A.; Han, Q.H. MiR-26a-5p alleviates cardiac hypertrophy and dysfunction via targeting ADAM17. Cell Biol. Int. 2021, 45, 2357–2367. [Google Scholar] [CrossRef]
- Lin, Y.Y.; Liu, L.Z.; Lin, Y.; Yang, R.X.; Liao, S.L.; Xu, M.W.; He, J.B.; Liu, Q.H. MiR-145 Alleviates Sepsis-Induced Inflammatory Responses and Organ Injury by Targeting ADAM17. Front. Biosci. -Landmark 2024, 29, 44. [Google Scholar] [CrossRef]
- Unger, T.; Borghi, C.; Charchar, F.; Khan, N.A.; Poulter, N.R.; Prabhakaran, D.; Ramirez, A.; Schlaich, M.; Stergiou, G.S.; Tomaszewski, M.; et al. 2020 International Society of Hypertension global hypertension practice guidelines. J. Hypertens. 2020, 38, 982–1004. [Google Scholar] [CrossRef] [PubMed]
- Feuerbach, D.; Schindler, P.; Barske, C.; Joller, S.; Beng-Louka, E.; Worringer, K.A.; Kommineni, S.; Kaykas, A.; Ho, D.J.; Ye, C.Y.; et al. ADAM17 is the main sheddase for the generation of human triggering receptor expressed in myeloid cells (hTREM2) ectodomain and cleaves TREM2 after Histidine 157. Neurosci. Lett. 2017, 660, 109–114. [Google Scholar] [CrossRef] [PubMed]
- Wen, X.; Yin, Y.; Li, X.H.; He, T.; Wang, P.F.; Song, M.Z.; Gao, J.F. Effect of miR-26a-5p targeting ADAM17 gene on apoptosis, inflammatory factors and oxidative stress response of myocardial cells in hypoxic model. J. Bioenerg. Biomembr. 2020, 52, 83–92. [Google Scholar] [CrossRef] [PubMed]
- Liu, K.-s.; Hao, J.-h.; Zeng, Y.; Dai, F.-c.; Gu, P.-q. Neurotoxicity and biomarkers of lead exposure: A review. Chin. Med. Sci. J. 2013, 28, 178–188. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Wang, Y.; Xing, Y.; Han, J.; Zhang, Y.; Zhang, A.; Hu, J.; Hua, Y.; Bai, Y. Regulation of microglia phagocytosis and potential involvement of exercise. Front. Cell Neurosci. 2022, 16, 953534. [Google Scholar] [CrossRef]
- Du, S.; Xiong, S.; Du, X.; Yuan, T.-F.; Peng, B.; Rao, Y. Primary Microglia Isolation from Postnatal Mouse Brains. J. Vis. Exp. 2021, 168, 62237. [Google Scholar] [CrossRef]
- Gong, S.; Zhai, M.; Shi, J.; Yu, G.; Lei, Z.; Shi, Y.; Zeng, Y.; Ju, P.; Yang, N.; Zhang, Z.; et al. TREM2 macrophage promotes cardiac repair in myocardial infarction by reprogramming metabolism via SLC25A53. Cell Death Differ. 2024, 31, 239–253. [Google Scholar] [CrossRef]
- Hwang, M.; Savarin, C.; Kim, J.; Powers, J.; Towne, N.; Oh, H.; Bergmann, C.C. Trem2 deficiency impairs recovery and phagocytosis and dysregulates myeloid gene expression during virus-induced demyelination. J. Neuroinflamm. 2022, 19, 267. [Google Scholar] [CrossRef] [PubMed]
- Pang, X.-W.; Chu, Y.-H.; Zhou, L.-Q.; Chen, M.; You, Y.-F.; Tang, Y.; Yang, S.; Zhang, H.; Xiao, J.; Deng, G.; et al. Trem2 deficiency attenuates microglial phagocytosis and autophagic-lysosomal activation in white matter hypoperfusion. J. Neurochem. 2023, 167, 489–504. [Google Scholar] [CrossRef]
- Krasemann, S.; Madore, C.; Cialic, R.; Baufeld, C.; Calcagno, N.; El Fatimy, R.; Beckers, L.; O’Loughlin, E.; Xu, Y.; Fanek, Z.; et al. The TREM2-APOE Pathway Drives the Transcriptional Phenotype of Dysfunctional Microglia in Neurodegenerative Diseases. Immunity 2017, 47, 566–581.e9. [Google Scholar] [CrossRef] [PubMed]
- Su, P.; Zhang, J.B.; Wu, J.X.; Chen, H.G.; Luo, W.J.; Hu, M. TREM2 expression on the microglia resolved lead exposure-induced neuroinflammation by promoting anti-inflammatory activities. Ecotoxicol. Environ. Saf. 2023, 260, 115058. [Google Scholar] [CrossRef]
- Thornton, P.; Sevalle, J.; Deery, M.J.; Fraser, G.; Zhou, Y.; Ståhl, S.; Franssen, E.H.; Dodd, R.B.; Qamar, S.; Gomez Perez-Nievas, B.; et al. TREM2 shedding by cleavage at the H157-S158 bond is accelerated for the Alzheimer’s disease-associated H157Y variant. EMBO Mol. Med. 2017, 9, 1366–1378. [Google Scholar] [CrossRef] [PubMed]
- Pocock, J.; Vasilopoulou, F.; Svensson, E.; Cosker, K. Microglia and TREM2. Neuropharmacology 2024, 257, 110020. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.Y.; Gao, X.; Pei, H. miRNA-384-3p alleviates sevoflurane-induced nerve injury by inhibiting Aak1 kinase in neonatal rats. Brain Behav. 2022, 12, e2556. [Google Scholar] [CrossRef]
- Vishnoi, A.; Rani, S. miRNA Biogenesis and Regulation of Diseases: An Updated Overview. Methods Mol. Biol. 2023, 2595. [Google Scholar] [CrossRef]
- Sartorius, K.; Sartorius, B.; Winkler, C.; Chuturgoon, A.; Makarova, J. The biological and diagnostic role of mirna’s in hepatocellular carcinoma. Front. Biosci. -Landmark 2018, 23, 1701–1720. [Google Scholar] [CrossRef] [PubMed]
- Sotoudeh Anvari, M.; Vasei, H.; Najmabadi, H.; Badv, R.S.; Golipour, A.; Mohammadi-Yeganeh, S.; Salehi, S.; Mohamadi, M.; Goodarzynejad, H.; Mowla, S.J. Identification of microRNAs associated with human fragile X syndrome using next-generation sequencing. Sci. Rep. 2022, 12, 5011. [Google Scholar] [CrossRef]
- Liu, Y.N.; Wang, L.; Xie, F.H.; Wang, X.; Hou, Y.Y.; Wang, X.M.; Liu, J. Overexpression of miR-26a-5p Suppresses Tau Phosphorylation and Aβ Accumulation in the Alzheimer’s Disease Mice by Targeting DYRK1A. Curr. Neurovasc. Res. 2020, 17, 241–248. [Google Scholar] [CrossRef] [PubMed]
Gene | Forward Primer (5′ to 3′) | Reverse Primer (5′ to 3′) |
---|---|---|
TREM2 | TCTGAAGAACCTCCAAGCCG | GGAGGTGCTGTGTTCCACTT |
ADAM10 | TGAAGTGGAGCGAGAGGGAG | GTGCATCGATCCTGAGGGAG |
ADAM17 | AGCTGCCAAGTCCTTTGAGG | TGCTTCCCCGTTTCTCAGAT |
β-actin | CATTGCTGACAGGATGCAGAAGG | TGCTGGAAGGTGGACAGTGAGG |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Wang, Z.; Hao, H.; Zhao, Y.; Wang, J.; Wang, W. miR-26a-5p/ADAM17-Mediated Proteolysis of TREM2 Regulates Neuroinflammation in Hypertensive Mice Following Lead Exposure. Toxics 2025, 13, 37. https://doi.org/10.3390/toxics13010037
Wang Y, Wang Z, Hao H, Zhao Y, Wang J, Wang W. miR-26a-5p/ADAM17-Mediated Proteolysis of TREM2 Regulates Neuroinflammation in Hypertensive Mice Following Lead Exposure. Toxics. 2025; 13(1):37. https://doi.org/10.3390/toxics13010037
Chicago/Turabian StyleWang, Yuran, Zeming Wang, Han Hao, Yuwei Zhao, Jian Wang, and Weixuan Wang. 2025. "miR-26a-5p/ADAM17-Mediated Proteolysis of TREM2 Regulates Neuroinflammation in Hypertensive Mice Following Lead Exposure" Toxics 13, no. 1: 37. https://doi.org/10.3390/toxics13010037
APA StyleWang, Y., Wang, Z., Hao, H., Zhao, Y., Wang, J., & Wang, W. (2025). miR-26a-5p/ADAM17-Mediated Proteolysis of TREM2 Regulates Neuroinflammation in Hypertensive Mice Following Lead Exposure. Toxics, 13(1), 37. https://doi.org/10.3390/toxics13010037